Analytic Capacity, Bilipschitz Maps and Cantor Sets

John Garnett and Joan Verdera

Abstract:

We show that for planar Cantor sets analytic capacity is a bilipschitz invariant.

1. Introduction.

Let $E \subset \mathbb{C}$ be a compact plane set. The *analytic capacity* of E is

$$
\gamma(E) = \sup\{|f'(\infty)| : f \in A(E, 1)\}
$$

where

$$
A(E,1) = \{ f : f \text{ is analytic on } \mathbb{C} \setminus E, f(\infty) = 0 \text{ and } \sup_{\mathbb{C} \setminus \mathbb{E}} |f(z)| \le 1 \}
$$

and $f'(\infty) = \lim_{z \to \infty} z f(z)$. Then $\gamma(E) > 0$ if and only if $A(E, 1)$ contains a non-constant function [G2]. A homeomorphism

$$
T:E\to T(E)
$$

is *bilipschitz* if T and T^{-1} satisify Lipschitz conditions

$$
\frac{1}{K}|z-w| \le |T(z) - T(w)| \le K|z-w| \tag{1.1}
$$

for all $z, w \in E$. This paper is concerned with the

Conjecture. If T is bilipschitz, then

$$
\gamma(T(E)) \le C(K)\gamma(E),
$$

where $C(K)$ depends only on the constant K in (1.1).

Because $f \circ T$ and f are seldom both analytic this conjecture may look foolhardy, but it has some supporting evidence. First, let $N(E)$ be the *Newtonian capacity* of E, which we define by

$$
N(E) = \sup \Big{ \mu(E) : \mu \text{ Borel}, \mu > 0, \sup_{z} \int_{E} \frac{d\mu(w)}{|z - w|} \le 1 \Big}. \tag{1.2}
$$

Then $\gamma(E) \geq N(E)$ because

$$
f(z) = \int_{E} \frac{d\mu(w)}{z - w} \in A(E, 1)
$$

for all μ in (1.2), and it is clear from the definition (1.1) that

$$
N(T(E)) \leq KN(E).
$$

Second, suppose E has finite one dimensional Hausdorff measure $\Lambda_1(E) < \infty$. Then by a deep theorem of David [D], $\gamma(E) = 0$ if and only if $\Lambda_1(E \cap \Gamma) = 0$ for every rectifiable curve Γ. Therefore,

$$
\gamma(T(E)) = 0
$$
 if and only if $\gamma(E) = 0$

when $\Lambda_1(E) < \infty$. If the rectifiable curve Γ satisfies an Ahlfors condition:

$$
A^{-1}r \leq \Lambda_1(\Gamma \cap D(z,r)) \leq Ar, \ \ z \in \Gamma, \ \ 0 < r \leq \text{diam}(\Gamma),
$$

then it is well known that for all $E \subset \Gamma$,

$$
C(A)^{-1}\Lambda_1(E) \le \gamma(E) \le C(A)\Lambda_1(E),
$$

and therefore

$$
\gamma(T(E)) \le C(A, K)\gamma(E),
$$

because $T(\Gamma)$ is a rectifiable curve that also satisfies an Ahlfors condition. However, we do not have the preceding inequality with constant $C(K)$ independent of the curve Γ; indeed, that would be equivalent to the full conjecture.

Here we establish the conjecture for the Cantor sets with $\Lambda_1(E) = \infty$ that were studied in [E], $[G2]$, $[M]$ and especially $[MTV]$ and for their bilipschitz images. Let E be a compact set of the form

$$
E = \bigcap_{n=0}^{\infty} E_n,\tag{1.3}
$$

$$
E_n = \bigcup_{|J|=n} Q_J^n,\tag{1.4}
$$

where $J = (j_1, j_2, \ldots, j_n)$ is a multiindex of length $|J| = n$ with $j_k \in \{1, 2, 3, 4\}$ and where

$$
Q_{J,j_{n+1}}^{n+1}\subset Q_J^n
$$

for all n and J . We assume there are constants

$$
0 < a_1 < a_2 < 1/2
$$

and

$$
c_1,c_2>0
$$

and a sequence $\sigma = (\sigma_n)$ such that $\sigma_0 = 1$ and

$$
a_1 \le \frac{\sigma_{n+1}}{\sigma_n} \le a_2,\tag{1.5}
$$

$$
diam(Q_J^n) \le c_1 \sigma_n \tag{1.6}
$$

and

$$
dist(Q_{J}^{n}, Q_{J'}^{n}) \ge c_2 \sigma_n, \quad J \neq J'. \tag{1.7}
$$

A paradigm for the set E is obtained by letting Q_J^n be a square of side σ_n with sides parallel to the axes and requiring that $Q_{J,j}^{n+1}$, $j = 1, 2, 3, 4$, be the four corner subsquares of Q_J^n . In this case E is the square Cantor set $E(\sigma)$ from [MTV], where it was proved that

$$
C^{-1}\Bigl(\sum\tfrac{1}{4^{2n}\sigma_n^2}\Bigr)^{-1/2}\leq\gamma(E(\sigma))\leq C\Bigl(\sum\tfrac{1}{4^{2n}\sigma_n^2}\Bigr)^{-1/2}
$$

with constant C independent of σ .

Now it is clear from (1.6) and (1.7) that if the sets E and E' are defined by (1.3) and (1.4) for the same sequence (σ_n) , then

$$
T(E \cap Q_J^n(E)) = E' \cap Q_J^n(E')
$$
\n
$$
(1.8)
$$

defines a bilipschitz map from E onto E' with constant $K = K(c_1, c_2)$. In particular, (1.3) - (1.7) describe all bilipschitz images of the Cantor set $E(\sigma)$.

Theorem. If E is defined by $(1.3), (1.4), (1.5), (1.6)$ and $(1.7),$ then there is constant

$$
C = C(c_1, c_2, a_1, a_2)
$$

such that

$$
C^{-1}\Big(\sum \frac{1}{4^{2n}\sigma_n^2}\Big)^{-1/2} \leq \gamma(E) \leq C \Big(\sum \frac{1}{4^{2n}\sigma_n^2}\Big)^{-1/2}.
$$

Corollary. There is a constant $C = C(K, a_1, a_2)$ such that

$$
C^{-1}\gamma(E) \le \gamma(T(E)) \le C\gamma(E)
$$

whenever E is a Cantor set $E(\sigma)$ and T is a bilipschitz map on E satisfying (1.1) with constant K.

The Corollary follows immediately from the Theorem and the above discussion.

2. Proof of Theorem.

The proof of the theorem depends on some exciting recent work of Tolsa [T1] and [T2]. Define the maximal function of a postive Borel measure μ as

$$
M\mu(z) = \sup_{r} \frac{\mu(B(z, r))}{r}
$$

where $B(z,r) = \{w : |w - z| < r\}$. Let $R(z, w, \zeta)$ be the radius of the circle through z, w and $\zeta \in \mathbb{C}$. Then $R(z, w, \zeta)^{-1}$ is called the *Menger curvature* of the triple (z, w, ζ) . Define the *pointwise* Menger curvature of μ at z as

$$
c_{\mu}^{2}(z) = \int \int \frac{1}{R(z, w, \zeta)^{2}} d\mu(w) d\mu(\zeta),
$$

and as in [V] define the *Menger Potential* of μ by

$$
U_{\mu}(z) = M_{\mu}(z) + c_{\mu}(z).
$$

Then the results we need from Tolsa $[T1]$ and $[T2]$ can be expressed as two inequalities:

$$
\gamma(E) \ge C_1 \sup \{ \mu(E) : \sup_{z \in E} U_{\mu}(z) \le 1 \},\tag{2.1}
$$

and

$$
\gamma(E) \le C_2 \inf \{ \mu(E) : \inf_{z \in E} U_{\mu}(z) \ge 1 \}
$$
\n(2.2)

with absolute constants C_1 and C_2 . Let E satisfy the hypothesis of the Theorem and define $\mu = \mu_E$ by

$$
\mu(Q_J^n \cap E) = 4^{-n}.
$$

Then for all $z \in E$

$$
M_{\mu}(z) \simeq \sup_{n} \frac{1}{4^n \sigma_n}.
$$
\n(2.3)

with constants depending only on c_2 . Note that $M_\mu(z) = \infty$ is possible for all $z \in E$.

The main difficulty in proving the Theorem comes from the obvious fact that a bilipschitz mapping may transform triples with positive Menger curvature into triples with zero curvature. For example the vertices of an equilateral triangle of side length 1 may be mapped into three collinear points. In the next example we will see that this may happen at all scales and locations, at least on a set of Hausdorff dimension less than 1.

Define a Cantor set as follows. Start with the interval $[0, 1]$ and take 4 subintervals of length $1/5$ forming three equal gaps in $[0, 1]$. Perform the same operation on each of these 4 intervals obtaining at the second step 16 intervals of length 1/25. Proceeding inductively we obtain at the n-th step 4^n intervals Q_J^n of length 5^{-n} . Then (1.3) and (1.4) define a Cantor set E associated to the sequence $\sigma_n = 5^{-n}$. Define another Cantor set E' with the same sequence by starting with the unit square, taking 4 corner squares of side length 1/5 at the first step and then proceeding inductively. As we pointed out before, there is a bilipschitz mapping T from E onto E' satisfying (1.8). Therefore the measure $\mu = \mu_E$ is transformed into the measure $\mu' = \mu_{E'}$. Notice that $c_{\mu}^{2}(z) = 0, z \in E$, but $c_{\mu'}^{2}(z) = \infty, z \in E'$, as shown in [T1]. Nevertheless, it can be easily seen that $U_{\mu}(z) = \infty$ for all $z \in E$ and $U_{\mu'}(z) = \infty$ for all $z \in E'.$

We start with the first lemma.

Lemma 1. If E satisfies $(1.3), (1.4), (1.5), (1.6)$ and $(1.7),$ then

$$
c_{\mu}^{2}(z) \le C(c_1, c_2) \sum_{n=1}^{\infty} \frac{1}{4^{2n} \sigma_n^2}.
$$

Note that by (2.1) , (2.3) and Lemma 1,

$$
\gamma(E) \ge C'(c_1, c_2) \left(\sum \frac{1}{4^{2n} \sigma_n^2}\right)^{-1/2},
$$

which gives the leftmost inequality in the Theorem.

Proof of Lemma 1. The argument is from Mattila $[M]$, and depends only on the trivial estimate

$$
\frac{1}{R(z, w, \zeta)} \le \frac{2}{|z - w|}.\tag{3.1}
$$

By symmetry we have

$$
c^2_\mu(z) = 2 \iint_{|\zeta - z| \le |w - z|} \frac{1}{R(z, w, \zeta)^2} d\mu(\zeta) d\mu(w) .
$$

Set

$$
A_n = \{ (\zeta, w) : |\zeta - z| \le |w - z| \text{ and } \sigma_n \le |w - z| < \sigma_{n-1} \},\
$$

for $n \geq 1$. Then clearly

$$
2\iint_{|\zeta-z|\le|w-z|} \frac{1}{R(z,w,\zeta)^2} d\mu(\zeta) d\mu(w) \le C + \sum_{n=1}^{\infty} \iint_{A_n} \frac{8}{|w-z|^2} d\mu(\zeta) d\mu(w)
$$

$$
\le C \sum_{n=1}^{\infty} \frac{1}{4^{2n} \sigma_n^2}.
$$

To prove the reverse inequality it is enough by (2.2) to show that

$$
U^{\mu}(z) \ge C(\sum \frac{1}{4^{2n} \sigma_n^2})^{\frac{1}{2}},
$$
\n(3.2)

¤

for all $z \in E$.

Take $z \in E$. For each n define $Q_{J}^{n}(z)$ as the Q_{J}^{n} such that $z \in Q_{J}^{n}$ and following [J] define the Jones number

$$
\beta_n(z) = \inf \Biggl\{ \frac{\sup_{w \in Q_J^n(z)} \operatorname{dist}(w, L)}{\sigma_n} : L \text{ is a line} \Biggr\}.
$$

Thus $2\beta_n \sigma_n$ is the width of the narrowest strip containing $Q_J^n(z)$ and β_n is small if the inequality reverse to the trivial estimate (3.1) fails on $Q_J^n(z)$.

Lemma 2. Let
$$
\delta = \frac{c_2}{2\sqrt{2}}
$$
. If

$$
\beta_n(z) \le \delta \frac{\sigma_{n+p}}{\sigma_n},
$$
(3.3)

for some $p \geq 1$, then

$$
\sum_{k=1}^{p} 4^{n+k} \sigma_{n+k} \le \frac{4 \ c_1}{c_2} \ 4^n \sigma_n. \tag{3.4}
$$

Proof of Lemma 2. By the definition of β_n there is a rectangle $R \supset Q_J^n(z)$ such that $Q_J^n(z)$ meets each of the four sides of R and such that the smallest side of R has length $2\beta_n\sigma_n$. Let P denote the orthogonal projection onto the midline L of R. By (1.7), the definition of δ and trigonometry we have for $j \neq k$

dist
$$
(P(Q_{J,j}^{n+1}), P(Q_{J,k}^{n+1})) \ge \frac{c_2}{2}\sigma_{n+1}.
$$

Then because $R \cap L$ is connected,

$$
R \cap L \setminus \bigcup_{j=1}^{4} P(Q_{J,j}^{n+1})
$$

contains three intervals each having endpoints in two distinct $P(Q_{J,j}^{n+1})$ and each having length at least $\frac{c_2}{2}\sigma_{n+1}$.

Similarly, for $k = 1, 2, ..., p$ and for each $Q_K^{n+k-1} \subset Q_J^n(z)$, $R \cap L$ contains three intervals having endpoints in two distinct $P(Q_{K,j}^{n+k})$ and having length at least $\frac{c_2}{2}\sigma_{n+k}$. Since there are 4^{k-1} distinct $Q_K^{n+k-1} \subset Q_J^n(z)$, we obtain at least $3 \cdot 4^{k-1}$ pairwise disjoint intervals of length at least $\frac{c_2}{2}\sigma_{n+k}$ and furthermore, for $k > j$ these intervals are disjoint from the $3 \cdot 4^{j-1}$ intervals having endpoints in distinct $P(Q_{K'}^{n+j})$. The sum of the lengths of all these intervals is not larger than $\sqrt{2} \operatorname{diam}(Q_{J}^{n}(z)) \leq$ √ $2 c_1 \sigma_n$. Thus (3.4) follows.

Set

$$
a_n = \frac{1}{4^{2n} \sigma_n^2}
$$

and for each positive integer p

$$
S = S(p) = \{n : 2a_n \ge \text{Max}_{1 \le j \le p} a_{n+j}\}.
$$

We need the following reformulation of Lemma 2.

Lemma 3. There exist a large positive integer $p = p(c_1, c_2)$ and a small positive number $\eta =$ $\eta(a_1, p)$ such that if $n \in S(p)$ then

$$
\beta_n(z) \ge \eta. \tag{3.5}
$$

Proof of Lemma 3. If $\beta_n(z) \leq \delta \frac{\sigma_{n+p}}{\sigma_n}$ $\frac{n+p}{\sigma_n}$ and $n \in S(p)$, then by Lemma 2

$$
\frac{1}{\sqrt{2}} p 4^n \sigma_n \le \sum_{k=1}^p 4^{n+k} \sigma_{n+k} \le \frac{4 c_1}{c_2} 4^n \sigma_n,
$$

which gives an upper bound on p. If p is chosen to be larger than $\sqrt{2} \frac{4 c_1}{c_2}$ $\frac{c_1}{c_2}$, then

$$
\beta_n(z) \ge \delta \frac{\sigma_{n+p}}{\sigma_n} \ge \delta a_1^p \equiv \eta,
$$

whenever $n \in S(p)$.

The next lemma gives a relation between $\beta_n(z)$ and $c_\mu^2(z)$. See [P] for further results of this type. Assume from now on that p and η are given by Lemma 3.

Lemma 4. If $\beta_n(z) \geq \eta$, then

$$
\iint\limits_{F_n} \frac{1}{R(z, w, \zeta)^2} d\mu(w) d\mu(\zeta) \ge \frac{\epsilon_0}{4^{2n} \sigma_n^2},
$$

where

$$
F_n = F_n(z) = \{(w_1, w_2) \in Q_J^n(z) : | w_j - z | \ge \frac{\eta}{8} \sigma_n, j = 1, 2\}
$$

and ϵ_0 is a positive constant depending on η .

Proof of Lemma 4. Take a point b_1 in $Q_J^n(z)$ such that $|b_1 - z| \ge c_2 \sigma_{n+1}$. By (1.5) and the definition of η we then have $|b_1 - z| \geq \eta$. Let L be the line through z and b_1 . Since $\beta_n(z) \geq \eta$ there is a point $b_2 \in Q_J^n(z)$ such that the distance from b_2 to L is larger than $\frac{\eta}{2}$. Let B_j denote the disc centered at b_j of radius $\frac{\eta}{8}$. It is then clear that for some positive number ϵ_1 depending on η we have

$$
\mu(B_j) \ge \frac{\epsilon_1}{4^n}, j = 1, 2,
$$

and

$$
R(z, w_1, w_2) \le \epsilon_1^{-1} \sigma_n, w_j \in B_j, j = 1, 2.
$$

Thus

$$
\iint\limits_{B_1\times B2}\frac{1}{R(z,w,\zeta)^2}\ d\mu(w)d\mu(\zeta)\geq \frac{\epsilon_1^4}{4^{2n}\sigma_n^2},
$$

which proves the lemma. \Box

The next lemma shows that if $\sum a_n < \infty$ then $n \in S = S(p)$ for many values of n. Recall that $a_n = \frac{1}{4^{2n}}$ $\frac{1}{4^{2n}\sigma_n^2}$.

Lemma 5. We have

$$
\sum_{n=1}^{\infty} a_n \le 2p \sum_{n \in S} a_n + p M,
$$

where $M = \sup_n a_n$.

Proof of Lemma 5. Set

$$
b_n = \max\{a_j : (p-1)n < j \leq pn\}, \ n = 1, 2, \cdots
$$

Let N be a large integer and let q be the positive integer such that $(p-1)q < N \leq pq$. Denote by G the set of integers n such that $1 \leq n \leq q$ and $2b_n \geq b_{n+1}$. Notice that an index $n \in G$ is good, in the sense that $b_n = a_m$ for some $m \in S$. Let B stand for the set of indexes between 1 and q which are not in G . Since

$$
\sum_{n \in B} b_n \le \frac{1}{2} \sum_{n=0}^{q} b_{n+1},
$$

we have

$$
\sum_{n \in G} b_n \ge \frac{1}{2} \sum_{n=1}^{q} b_n - \frac{1}{2} b_{q+1}.
$$

Therefore

$$
\sum_{n=1}^{N} a_n \le p \sum_{n=1}^{q} b_n \le 2p \sum_{n \in G} b_n + p b_{q+1} \le 2p \sum_{n \in S} a_n + p M,
$$

and the lemma follows by sending $N \to \infty$.

We can now complete easily the proof of (3.2) . Since the domains of integration F_n in Lemma 4 have bounded overlap, we get

$$
c_{\mu}^{2}(z) \ge \frac{\epsilon_{0}}{C} \sum_{n \in S} \frac{1}{4^{2n} \sigma_{n}^{2}},
$$

where C is some constant larger than 1. By Lemma 5 and (2.3) we then have, with another constant $C,$

$$
U_{\mu}(z) \geq \frac{\epsilon_0}{C} \left(\sum_{n \in S} \frac{1}{4^{2n} \sigma_n^2} + M \right) \geq \frac{\epsilon_0}{C} \sum_{n=1}^{\infty} \frac{1}{4^{2n} \sigma_n^2}.
$$

 \Box

Acknowledgements: J.Garnett was supported in part by NSF Grant DMS-0070782. J.Verdera was supported in part by grants 2001-SGR-00431, BFM2000-0361 and a fellowship from "Programa de Movilidad, MECD".

REFERENCES

[D] G. David, Unrectifiable 1-sets have vanishing analytic capacity, Rev. Mat. Iberoamericana 14 (1998), 369-479.

[E] V. Ya. Eiderman, Hausdorff Measure and capacity associated with Cauchy potentials, Math.Notes 63(1998), 813-822.

[G1] J. Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 21 (1970), 696-699. 4, 1970.

[G2] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297, Springer-Verlag, 1972.

[J] P. W. Jones, Square functions, Cauchy integrals, analytic capacity and harmonic measure, Harmonic Analysis and Partial Differential Equations (J. Garcia-Cuerva, ed.), Lecture Notes in Math. 1384, Springer-Verlag, (1989), pp. 24-68.

[M] P. Mattila, On the analytic capacity and curvature of some Cantor sets with non-σ-finite length, Publ. Math. 40 (1996), 195-204.

[MTV] J. Mateu, X. Tolsa and J. Verdera, The planar Cantor sets of zero analytic capacity and the local T(b)-Theorem, to appear in Journal of the Amer.Math.Soc.

[P] H.Pajot, Notes on analytic capacity, rectifiability, Menger curvature and the Cauchy Operator, to appear in Springer Lecture Notes .

[T1] X. Tolsa, On the analytic capacity γ_+ , Indiana Univ. Math. J. 51 (2) (2002), 317-344.

[T2] X. Tolsa, Painleve's problem and the semiadditivity of analytic capacity, to appear in Acta Math.

[V] J. Verdera, On the T(1)-Theorem for the Cauchy integral, Ark. Mat. 38 (2000), 183-199.

DEPARTMENT OF MATHEMATICS, UCLA, LOS ANGELES, CALIFORNIA 90095 E-mail address: jbg@math.ucla.edu

DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA, 08193 BELLATERRA (BARCELONA), SPAIN

E-mail address: jvm@mat.uab.es