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Abstract:

We show that for planar Cantor sets analytic capacity is a bilipschitz invariant.

1. Introduction.

Let E ⊂ C be a compact plane set. The analytic capacity of E is

γ(E) = sup{|f ′(∞)| : f ∈ A(E, 1)}

where

A(E, 1) = {f : f is analytic on C \ E, f(∞) = 0 and sup
C\E

|f(z)| ≤ 1}

and f ′(∞) = limz→∞ zf(z). Then γ(E) > 0 if and only if A(E, 1) contains a non-constant function

[G2]. A homeomorphism

T : E → T (E)

is bilipschitz if T and T−1 satisify Lipschitz conditions

1
K
|z − w| ≤ |T (z)− T (w)| ≤ K|z − w| (1.1)

for all z, w ∈ E. This paper is concerned with the

Conjecture. If T is bilipschitz, then

γ(T (E)) ≤ C(K)γ(E),

where C(K) depends only on the constant K in (1.1).

Because f ◦ T and f are seldom both analytic this conjecture may look foolhardy, but it has

some supporting evidence. First, let N(E) be the Newtonian capacity of E, which we define by

N(E) = sup
{

µ(E) : µ Borel, µ > 0, sup
z

∫

E

dµ(w)
|z − w| ≤ 1

}
. (1.2)

Then γ(E) ≥ N(E) because

f(z) =
∫

E

dµ(w)
z − w

∈ A(E, 1)
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for all µ in (1.2), and it is clear from the definition (1.1) that

N(T (E)) ≤ KN(E).

Second, suppose E has finite one dimensional Hausdorff measure Λ1(E) < ∞. Then by a deep

theorem of David [D], γ(E) = 0 if and only if Λ1(E∩Γ) = 0 for every rectifiable curve Γ. Therefore,

γ(T (E)) = 0 if and only if γ(E) = 0

when Λ1(E) < ∞. If the rectifiable curve Γ satisfies an Ahlfors condition:

A−1r ≤ Λ1(Γ ∩D(z, r)) ≤ Ar, z ∈ Γ, 0 < r ≤ diam(Γ),

then it is well known that for all E ⊂ Γ,

C(A)−1Λ1(E) ≤ γ(E) ≤ C(A)Λ1(E),

and therefore

γ(T (E)) ≤ C(A,K)γ(E),

because T (Γ) is a rectifiable curve that also satisfies an Ahlfors condition. However, we do not

have the preceding inequality with constant C(K) independent of the curve Γ; indeed, that would

be equivalent to the full conjecture.

Here we establish the conjecture for the Cantor sets with Λ1(E) = ∞ that were studied in [E],

[G2], [M] and especially [MTV] and for their bilipschitz images. Let E be a compact set of the

form

E =
∞⋂

n=0

En, (1.3)

En =
⋃

|J|=n

Qn
J , (1.4)

where J = (j1, j2, . . . , jn) is a multiindex of length |J | = n with jk ∈ {1, 2, 3, 4} and where

Qn+1
J,jn+1

⊂ Qn
J

for all n and J . We assume there are constants

0 < a1 < a2 < 1/2
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and

c1, c2 > 0

and a sequence σ = (σn) such that σ0 = 1 and

a1 ≤ σn+1

σn
≤ a2, (1.5)

diam(Qn
J) ≤ c1σn (1.6)

and

dist(Qn
J , Qn

J′) ≥ c2σn, J 6= J ′. (1.7)

A paradigm for the set E is obtained by letting Qn
J be a square of side σn with sides parallel

to the axes and requiring that Qn+1
J,j , j = 1, 2, 3, 4, be the four corner subsquares of Qn

J . In this case

E is the square Cantor set E(σ) from [MTV], where it was proved that

C−1
(∑ 1

42nσ2
n

)−1/2

≤ γ(E(σ)) ≤ C
(∑ 1

42nσ2
n

)−1/2

with constant C independent of σ.

Now it is clear from (1.6) and (1.7) that if the sets E and E′ are defined by (1.3) and (1.4) for

the same sequence (σn), then

T (E ∩Qn
J(E)) = E′ ∩Qn

J(E′) (1.8)

defines a bilipschitz map from E onto E′ with constant K = K(c1, c2). In particular, (1.3) - (1.7)

describe all bilipschitz images of the Cantor set E(σ).

Theorem. If E is defined by (1.3), (1.4), (1.5), (1.6) and (1.7), then there is constant

C = C(c1, c2, a1, a2)

such that

C−1
(∑ 1

42nσ2
n

)−1/2

≤ γ(E) ≤ C
(∑ 1

42nσ2
n

)−1/2

.

Corollary. There is a constant C = C(K, a1, a2) such that

C−1γ(E) ≤ γ(T (E)) ≤ Cγ(E)
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whenever E is a Cantor set E(σ) and T is a bilipschitz map on E satisfying (1.1) with constant K.

The Corollary follows immediately from the Theorem and the above discussion.

2. Proof of Theorem.

The proof of the theorem depends on some exciting recent work of Tolsa [T1] and [T2]. Define

the maximal function of a postive Borel measure µ as

Mµ(z) = sup
r

µ(B(z, r))
r

where B(z, r) = {w : |w − z| < r}. Let R(z, w, ζ) be the radius of the circle through z, w and

ζ ∈ C. Then R(z, w, ζ)−1 is called the Menger curvature of the triple (z, w, ζ). Define the pointwise

Menger curvature of µ at z as

c2
µ(z) =

∫ ∫
1

R(z, w, ζ)2
dµ(w)dµ(ζ),

and as in [V] define the Menger Potential of µ by

Uµ(z) = Mµ(z) + cµ(z).

Then the results we need from Tolsa [T1] and [T2] can be expressed as two inequalities:

γ(E) ≥ C1 sup
{
µ(E) : sup

z∈E
Uµ(z) ≤ 1

}
, (2.1)

and

γ(E) ≤ C2 inf
{
µ(E) : inf

z∈E
Uµ(z) ≥ 1

}
(2.2)

with absolute constants C1 and C2. Let E satisfy the hypothesis of the Theorem and define µ = µE

by

µ(Qn
J ∩ E) = 4−n.

Then for all z ∈ E

Mµ(z) ' sup
n

1
4nσn

. (2.3)

with constants depending only on c2. Note that Mµ(z) = ∞ is possible for all z ∈ E.
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The main difficulty in proving the Theorem comes from the obvious fact that a bilipschitz

mapping may transform triples with positive Menger curvature into triples with zero curvature.

For example the vertices of an equilateral triangle of side length 1 may be mapped into three

collinear points. In the next example we will see that this may happen at all scales and locations,

at least on a set of Hausdorff dimension less than 1.

Define a Cantor set as follows. Start with the interval [0, 1] and take 4 subintervals of length

1/5 forming three equal gaps in [0, 1]. Perform the same operation on each of these 4 intervals

obtaining at the second step 16 intervals of length 1/25. Proceeding inductively we obtain at the

n-th step 4n intervals Qn
J of length 5−n. Then (1.3) and (1.4) define a Cantor set E associated to

the sequence σn = 5−n. Define another Cantor set E′ with the same sequence by starting with

the unit square, taking 4 corner squares of side length 1/5 at the first step and then proceeding

inductively. As we pointed out before, there is a bilipschitz mapping T from E onto E′ satisfying

(1.8). Therefore the measure µ = µE is transformed into the measure µ′ = µE′ . Notice that

c2
µ(z) = 0, z ∈ E, but c2

µ′(z) = ∞, z ∈ E′, as shown in [T1]. Nevertheless, it can be easily seen that

Uµ(z) = ∞ for all z ∈ E and Uµ′(z) = ∞ for all z ∈ E′.

We start with the first lemma.

Lemma 1. If E satisfies (1.3), (1.4), (1.5), (1.6) and (1.7), then

c2
µ(z) ≤ C(c1, c2)

∞∑
n=1

1
42nσ2

n

.

Note that by (2.1), (2.3) and Lemma 1,

γ(E) ≥ C ′(c1, c2)
(∑ 1

42nσ2
n

)−1/2

,

which gives the leftmost inequality in the Theorem.

Proof of Lemma 1. The argument is from Mattila [M], and depends only on the trivial estimate

1
R(z, w, ζ)

≤ 2
|z − w| . (3.1)

By symmetry we have

c2
µ(z) = 2

∫∫

|ζ−z|≤|w−z|

1
R(z, w, ζ)2

dµ(ζ)dµ(w) .

Set

An = {(ζ, w) : |ζ − z| ≤ |w − z| and σn ≤ |w − z| < σn−1},
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for n ≥ 1. Then clearly

2
∫∫

|ζ−z|≤|w−z|

1
R(z, w, ζ)2

dµ(ζ)dµ(w) ≤ C +
∞∑

n=1

∫∫

An

8
|w − z|2 dµ(ζ)dµ(w)

≤ C

∞∑
n=1

1
42nσ2

n

.

¤

To prove the reverse inequality it is enough by (2.2) to show that

Uµ(z) ≥ C(
∑ 1

42nσ2
n

)
1
2 , (3.2)

for all z ∈ E.

Take z ∈ E. For each n define Qn
J(z) as the Qn

J such that z ∈ Qn
J and following [J] define the

Jones number

βn(z) = inf
{ supw∈Qn

J
(z) dist(w, L)

σn
: L is a line

}
.

Thus 2βnσn is the width of the narrowest strip containing Qn
J(z) and βn is small if the inequality

reverse to the trivial estimate (3.1) fails on Qn
J(z).

Lemma 2. Let δ = c2

2
√

2
. If

βn(z) ≤ δ
σn+p

σn
, (3.3)

for some p ≥ 1, then
p∑

k=1

4n+kσn+k ≤ 4 c1

c2
4nσn. (3.4)

Proof of Lemma 2. By the definition of βn there is a rectangle R ⊃ Qn
J(z) such that Qn

J(z) meets

each of the four sides of R and such that the smallest side of R has length 2βnσn. Let P denote

the orthogonal projection onto the midline L of R. By (1.7), the definition of δ and trigonometry

we have for j 6= k

dist(P (Qn+1
J,j ), P (Qn+1

J,k )) ≥ c2

2
σn+1.

Then because R ∩ L is connected,

R ∩ L \
4⋃

j=1

P (Qn+1
J,j )
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contains three intervals each having endpoints in two distinct P (Qn+1
J,j ) and each having length at

least c2
2 σn+1.

Similarly, for k = 1, 2, . . . , p and for each Qn+k−1
K ⊂ Qn

J(z), R ∩ L contains three intervals

having endpoints in two distinct P (Qn+k
K,j ) and having length at least c2

2 σn+k. Since there are 4k−1

distinct Qn+k−1
K ⊂ Qn

J(z), we obtain at least 3 · 4k−1 pairwise disjoint intervals of length at least
c2
2 σn+k and furthermore, for k > j these intervals are disjoint from the 3 · 4j−1 intervals having

endpoints in distinct P (Qn+j
K′ ). The sum of the lengths of all these intervals is not larger than

√
2 diam(Qn

J(z)) ≤ √
2 c1 σn. Thus (3.4) follows. ¤

Set

an =
1

42nσ2
n

and for each positive integer p

S = S(p) = {n : 2an ≥ Max1≤j≤p an+j}.

We need the following reformulation of Lemma 2.

Lemma 3. There exist a large positive integer p = p(c1, c2) and a small positive number η =

η(a1, p) such that if n ∈ S(p) then

βn(z) ≥ η. (3.5)

Proof of Lemma 3. If βn(z) ≤ δ
σn+p

σn
and n ∈ S(p), then by Lemma 2

1√
2

p 4nσn ≤
p∑

k=1

4n+kσn+k ≤ 4 c1

c2
4nσn,

which gives an upper bound on p. If p is chosen to be larger than
√

2 4 c1
c2

, then

βn(z) ≥ δ
σn+p

σn
≥ δap

1 ≡ η,

whenever n ∈ S(p). ¤

The next lemma gives a relation between βn(z) and c2
µ(z). See [P] for further results of this

type. Assume from now on that p and η are given by Lemma 3.

Lemma 4. If βn(z) ≥ η, then

∫∫

Fn

1
R(z, w, ζ)2

dµ(w)dµ(ζ) ≥ ε0
42nσ2

n

,

7



where

Fn = Fn(z) = {(w1, w2) ∈ Qn
J(z) :| wj − z |≥ η

8
σn, j = 1, 2}

and ε0 is a positive constant depending on η.

Proof of Lemma 4. Take a point b1 in Qn
J(z) such that |b1 − z| ≥ c2σn+1. By (1.5) and the

definition of η we then have |b1 − z| ≥ η. Let L be the line through z and b1. Since βn(z) ≥ η

there is a point b2 ∈ Qn
J(z) such that the distance from b2 to L is larger than η

2 . Let Bj denote the

disc centered at bj of radius η
8 . It is then clear that for some positive number ε1 depending on η

we have

µ(Bj) ≥ ε1
4n

, j = 1, 2,

and

R(z, w1, w2) ≤ ε−1
1 σn, wj ∈ Bj , j = 1, 2.

Thus

∫∫

B1×B2

1
R(z, w, ζ)2

dµ(w)dµ(ζ) ≥ ε41
42nσ2

n

,

which proves the lemma. ¤

The next lemma shows that if
∑

an < ∞ then n ∈ S = S(p) for many values of n. Recall that

an = 1
42nσ2

n
.

Lemma 5. We have
∞∑

n=1

an ≤ 2p
∑

n∈S

an + p M,

where M = supnan.

Proof of Lemma 5. Set

bn = max{aj : (p− 1)n < j ≤ pn}, n = 1, 2, · · ·

Let N be a large integer and let q be the positive integer such that (p− 1)q < N ≤ pq. Denote

by G the set of integers n such that 1 ≤ n ≤ q and 2bn ≥ bn+1. Notice that an index n ∈ G is

good, in the sense that bn = am for some m ∈ S. Let B stand for the set of indexes between 1 and

q which are not in G . Since
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∑

n∈B

bn ≤ 1
2

q∑
n=0

bn+1,

we have

∑

n∈G

bn ≥ 1
2

q∑
n=1

bn − 1
2

bq+1.

Therefore

N∑
n=1

an ≤ p

q∑
n=1

bn ≤ 2p
∑

n∈G

bn + p bq+1 ≤ 2p
∑

n∈S

an + p M ,

and the lemma follows by sending N →∞. ¤

We can now complete easily the proof of (3.2). Since the domains of integration Fn in Lemma

4 have bounded overlap, we get

c2
µ(z) ≥ ε0

C

∑

n∈S

1
42nσ2

n

,

where C is some constant larger than 1. By Lemma 5 and (2.3) we then have, with another constant

C,

Uµ(z) ≥ ε0
C

(
∑

n∈S

1
42nσ2

n

+ M) ≥ ε0
C

∞∑
n=1

1
42nσ2

n

.
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