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Abstract. In this paper we prove the sharp distortion estimates for the quasi-
conformal mappings in the plane, both in terms of the Riesz capacities from non
linear potential theory and in terms of the Hausdorff measures.

1. Introduction

A K-quasiconformal mapping is an orientation preserving homeomorphism φ : Ω →
Ω′ between domains Ω, Ω′ ⊂ Rn that belongs to the Sobolev space W 1,n

loc (Ω; Ω′) and
satisfies the distortion inequality

max
|ξ|=1

|∂ξφ(x)| ≤ K min
|ξ|=1

|∂ξφ(x)| (1.1)

at almost every point x ∈ Ω. If K = 1, then φ is indeed a conformal mapping. If
one does not require φ to be a homeomorphism, then we simply say that φ is K-
quasiregular. For more background on these mappings, see the monograph [AIM09].

In the planar setting (n = 2), Astala’s Theorem [Ast94] solved the long stand-
ing Gehring-Reich conjecture on the area distortion of quasiconformal mappings,
namely

|φ(E)| ≤ CK |E|1/K , (1.2)

where φ : Ω → Ω′ is a conveniently normalized K-quasiconformal mapping between
planar domains, and E is a measurable subset of Ω. Other related questions, like
the optimal integrability and the sharp Hausdorff dimension distortion, were solved
as a consequence of (1.2). In particular, one has

1

dim φ(E)
− 1

2
≤ 1

K

(
1

dim E
− 1

2

)
. (1.3)

Furthermore, in [Ast94] it was shown that equality can be attained for some sets E
and mappings φ.

In the last years renewed interest has arisen in connection with these questions,
and deep advances have been made, improving the above inequality in several di-
rections. The sharp quasiconformal distortion of Hausdorff contents Mt, 0 < t < 2,
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was obtained by Lacey, Sawyer and Uriarte-Tuero [LSUT]. They showed that if E
is contained in some ball B, 0 < t < 2, and t′ = 2Kt

2+(K−1)t
, then

Mt′(φ(E))

diam(φ(B))t′ ≤ C(K)

( Mt(E)

diam(B)t

) t′
Kt

, (1.4)

which in particular proves the following implication about the corresponding Haus-
dorff measures Ht:

Ht(E) = 0 ⇒ Ht′(φ(E)) = 0. (1.5)

This extends (1.3), and answers in the affirmative a conjecture by Astala [Ast94].
Previously, in [ACM+08], the particular case t′ = 1 had been solved. In any case,
notice that from (1.4) it is not clear if Ht′(φ(E)) < ∞ whenever Ht(E) < ∞.

The optimal quasiconformal distortion of analytic capacity has also been a topic
of deep research (see for instance [Ast94] or [ACM+08]). In a recent joint work of
Tolsa and Uriarte-Tuero [TUT09], it is shown that, for K > 1,

γ(φ(E)) ≤ CK

(
Ċ 2K

2K+1
, 2K+1

K+1
(E)

)K+1
2K

, (1.6)

where Ċα,p is the classical Riesz capacity of nonlinear potential theory (see (2.1)),
and γ denotes the analytic capacity. This estimate has remarkable consequences
in the determination of removable sets for bounded K-quasiregular mappings. For
the holomorphic case, see [Tol03] and [Dav98]. To get (1.6), the authors first show
a sharp bound for the distortion of a Hausdorff content Mh (see [TUT09, Lemma
2.11]), where h is a gauge function which is not invariant under translations. As a
matter of fact, it turns out that Riesz capacities can be recovered as a supremum
of Hausdorff contents Mh with h running within some precise class. This allowed
the authors to prove a second estimate, now concerning quasiconformal distortion
of Riesz capacities. More precisely, for each q > 1, they showed that

Ċ 1
q
,q(φ(E)) ≤ CK,q Ċα,p(E)

K+1
2K (1.7)

where p = 1 + 2K
K+1

(q − 1) and 2 − αp = 2
K+1

. Note that the left hand side is a
1-dimensional quantity for every q > 1.

In the present paper, we extend (1.7) to all other indices α, p and obtain a gen-
eral version for the quasiconformal distortion of all Riesz capacities.

Theorem 1.1. Let 1 < q < ∞ and 0 < βq < 2. Let t′ = 2− βq, and t be such that

1

t
− 1

2
= K

(
1

t′
− 1

2

)
.
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Let E ⊂ C be compact, and let φ : C → C be a K-quasiconformal map. If E is
contained in a ball B, then

Ċβ,q(φ(E))

diam(φ(B))t′ ≤ C(β, q, K)

(
Ċα,p(E)

diam(B)t

) t′
Kt

(1.8)

where

p = 1 +
Kt

t′
(q − 1) and 2− αp = t.

The constant in (1.8) depends only on β, q, K.

This result follows by combining some of the ideas from [TUT09] with others from
[LSUT]. Following this approach, in Lemma 4.4 below one obtains distortion esti-
mates in terms of the h-contents Mh, with h of the form h(B(x, r)) = rt ε(B(x, r)),
with 0 < t < 2 and ε(·) satisfying some appropriate conditions. This result extends
[TUT09, Lemma 2.11] (which only dealt with the case t′ = 1). Theorem 1.1 is a
direct consequence of the distortion estimates in terms of h-contents.

A second main result that we establish, using the h-contents Mh, is the follow-
ing distortion theorem involving Hausdorff measures.

Theorem 1.2. Let 0 < t < 2 and denote t′ = 2Kt
2+(K−1)t

. Let φ : C → C be K-

quasiconformal. For any ball B and any compact set E ⊂ B, we have

Ht′(φ(E))

diam(φ(B))t′ ≤ C(K)

( Ht(E)

diam(B)t

) t′
Kt

. (1.9)

In particular, if Ht(E) is finite, then also Ht′(φ(E)) is finite.

Notice that (1.9) is the estimate that one gets replacing Hausdorff contents by Haus-
dorff measures in (1.4). This result may seem somewhat surprising, because in the
arguments used in [LSUT] (and in [ACM+08] in the case t′ = 1) to prove (1.4) it is
essential that one works with Hausdorff contents, and not with Hausdorff measures:
for instance, many estimates in [LSUT] and [ACM+08] involve some packing condi-
tions which hold for Hausdorff contents but not for Hausdorff measures.

Let us remark that Theorem 1.2 was proved in [Tol09]. However, since this re-
sult follows using the distortion estimates for h-contents in Lemma 4.4, X. Tolsa has
preferred to include this in the present paper (see Section 7).

An immediate corollary of Theorem 1.2 is the following.

Corollary 1.3. Let E ⊂ C be compact and φ : C→ C a K-quasiconformal map. If
Ht(E) is σ-finite for some 0 < t < 2, then Ht′(φ(E)) is σ-finite for t′ = 2Kt

2+Kt−t
.
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As usual, the letters c, C denote constants (often, absolute constants) that may
change at different occurrences, while constants with a subscript, such as C1, retain
their values. The notation A . B means that there is a positive constant C such
that A ≤ CB, and A ' B means that A . B . A.

2. Measures, gauge functions and Hausdorff contents

2.1. Strategy for the proof of Theorem 1.1. To motivate the introduction of
the h contents below, we will describe the main ideas in the proof of Theorem 1.1.
Recall that the homogeneous Riesz capacity Ċα,p is defined as

Ċα,p(E) = inf{‖g‖Lp(C); g ∈ Lp(C), Iα ∗ g ≥ χE}, (2.1)

where Iα(z) = 1
|z|2−α is the usual planar Riesz kernel of order α. Further, by Wolff’s

Theorem (see for instance [AH96]), it turns out that

Ċα,p(E) ' sup{µ(E); supp(µ) ⊂ E, Ẇ µ
α,p(z) ≤ 1 ∀z ∈ C}

where

Ẇ µ
α,p(z) =

∫ ∞

0

(
µ(B(z, r))

r2−αp

)p′−1
dt

t

is the homogeneous Wolff potential of µ. In this paper, we prove that Ċα,p(E)
coincides with the following supremum of generalized Hausdorff contents, modulo
multiplicative constants:

Ċα,p(E) ' sup

{
Mh(E) : h(x, r) = r2−α p ε(x, r), ε ∈ G2,

∫ ∞

0

(
h(x, r)

r2−α p

)p′−1
dr

r
≤ 1

}

(see Subsection 2.4 for the definition of G2). Then the problem is reduced to see how
quasiconformal mappings distort the generalized Hausdorff contentsMh whenever h
is an admissible gauge function for Ċα,p. In particular, to each finite Borel measure µ
with bounded Wolff potential, we can associate a gauge function h = hµ admissible
for the Riesz capacity. Actually, in the supremum above one may restrict to such
gauge functions hµ. This fact is very useful because the Hausdorff measures Hhµ

and contents Mhµ can be seen as regularized versions of µ, whence easier to work
with. Such gauge functions were already introduced in [TUT09], but for the reader’s
convenience we recall their definition and main properties in the next subsections.

2.2. The gauge functions hµ,a,t. Let 0 < t < 2 and a > 0 be fixed parameters.
We consider the function

ψa,t(x) =
1

|x|t+a + 1
, x ∈ C. (2.2)
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Given a compactly supported finite Borel measure µ, let us define for every ball
B = B(x, r) the gauge function

h(x, r) = hµ,a,t(x, r) = hµ,a,t(B) =

∫
ψa,t

( |x− y|
r

)
dµ(y). (2.3)

Now, for our fixed a, t, set

ε(x, r) = εµ,a,t(x, r) =
hµ,a,t(x, r)

rt
=

1

rt

∫
ψa,t

(y − x

r

)
dµ(y), (2.4)

so that hµ,a,t(x, r) = rt εµ,a,t(x, r). One should view t as a dimensional parameter,
while the role of a is to provide enough decay at ∞ of ψa,t. Notice that, by con-
struction, µ(B) ≤ 2 hµ,a,t(B), and that hµ,a,t(B) can be seen as a smooth version of
µ(B). Similarly, εµ,a,t(B) is a kind of smooth substitute of the t-dimensional density
θt

µ(B) = µ(B)/r(B)t. One of the advantages of εµ,a,t(x, r) over θt
µ(B(x, r)) is that,

for C = 2a,
εµ,a,t(x, 2r) ≤ Cεµ,a,t(x, r)

for any x and r > 0, which fails in general for θt
µ(x, r). Analogously, we have

hµ,a,t(x, 2r) ≤ C hµ,a,t(x, r),

for C = 2at, while µ(B(x, r)) and µ(B(x, 2r)) may be very different.

To avoid technicalities we will assume that µ has no atoms (i.e. no point masses).
This implies that hµ,a,t(x, r) → 0 ar r → 0, for all x ∈ C.

2.3. The measures Hh and the contents Mh. Let B denote the family of all
closed balls contained in C, and let ε : B → [0,∞) be any function defined on B.
We set ε(x, r) = ε(B(x, r)), and we define h(x, r) = ε(x, r) rt. We assume that

lim
r→0

h(x, r) = 0 for all x ∈ C.

We introduce the measure Hh following Carathéodory’s construction (see [Mat95],
p.54): given 0 < δ ≤ ∞ and a set F ⊂ C,

Hh
δ (F ) = inf

∑
i

h(Bi),

where the infimum is taken over all coverings F ⊂ ⋃
i Bi with balls Bi with radii

smaller that δ. Finally, we define

Hh(F ) = lim
δ→0

Hh
δ (F ).

The above limit exists, because Hh
δ (F ) is a non-increasing function of δ. For δ = ∞,

we obtain the h-content, and we simply write Mh(E) = Hh
∞(E). Recall also that

Hh is a Borel regular measure (see [Mat95]), although it is not a “true” Hausdorff
measure. It is clear that Mh(F ) ≤ Hh(F ). On the other hand, the implication

Mh(F ) = 0 ⇒ Hh(F ) = 0
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also holds if the function r 7→ h(x, r) is non-decreasing for all x ∈ F . This is the
case, for instance, if h = hµ,a,t for a certain measure µ.

Lemma 2.1. For any Borel set A, we have

µ(A) ≤ 2Mhµ,a,t(A).

Proof. Given any η > 0, consider a covering A ⊂ ⋃
i Bi by balls so that

∑
i

hµ,a,t(Bi) ≤Mhµ,a,t(A) + η.

Since µ(Bi) ≤ 2hµ,a,t(Bi), we have

µ(A) ≤
∑

i

µ(Bi) ≤ 2
∑

i

hµ,a,t(Bi) ≤ 2Mhµ,a,t(A) + Cη.

¤

2.4. The families G1 and G2. . We say that the function ε : B → [0,∞) belongs
to G1 if there exists a constant C2 such that

C−1
2 ε(x, r) ≤ ε(y, s) ≤ C2 ε(x, r) (2.5)

whenever |x− y| ≤ 2r and r/2 ≤ s ≤ 2r. Note that (2.5) also holds with a different
constant C2 if one assumes |x − y| ≤ Cr and C−1r ≤ s ≤ Cr, by applying (2.5)
finitely many times. It is easy to check that every εµ,a,t belongs to G1, due to the
properties of the function ψa,t.

It was noticed in [TUT09] that if ε ∈ G1 then Frostman’s Lemma holds for Mh,
where h(x, r) = rt ε(x, r):

Lemma 2.2. If ε ∈ G1 and h(x, r) = rtε(x, r), then Frostman’s Lemma holds for
Mh. That is, given a compact set F ⊂ C, then Mh(F ) > 0 if and only if there
exists a non-trivial Borel measure ν supported on F such that ν(B) ≤ h(B) for any
ball B. Furthermore, we can find ν so that ν(F ) ≥ c−1Mh(F ).

The proof is almost the same as the one of the usual Frostman’s Lemma (for in-
stance, see [Mat95], p.112), taking into account the regularity properties of the gauge
functions h ∈ G1.

Now we introduce the class G2. For each fixed 0 < t < 2, the class G2 = G2(t)
consists on functions ε = ε(x, r) such that

∑

k≥0

2−k(2−t) ε(x, 2kr) ≤ C3 ε(x, r), for all x ∈ C, (2.6)

for certain constant C3 > 0. Notice that (2.6) is equivalent to saying that
∫ ∞

r

ε(x, s)

s2−t

ds

s
≤ C3

ε(x, r)

r2−t
,
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or in terms of h(x, r) = rt ε(x, r),
∫ ∞

r

h(x, s)

s2

ds

s
≤ C3

h(x, r)

r2
.

Observe that this estimate does not hold for the area, that is, for h(x, r) = r2,
neither for gauges h too close to r2, like h(r) = r2 log 1

r
.

Lemma 2.3. Let a > 0, α, β > 0 and m = min(α, β). If α 6= β, then for all x > 0
we have ∑

k≥0

2−βk

(
2−kx

)α
+ 1

≤ C

xm + 1
, (2.7)

with C depending only on α, β. As a consequence, if µ is a finite Borel measure,
then εµ,a,t ∈ G2(t) whenever 0 < a < 2− t.

Proof. The estimate (2.7) is just a numerical inequality which can be proved by
splitting the sum according to whether 2−kx ≥ 1 or 2−kx < 1, and then approxi-
mating the denominator inside the sum by 2−kx in the first case and by 1 in the
second, for instance. We skip the details. To deal with the last statement, we just
have to combine (2.7) with the definitions above to get

∞∑

k=0

εµ,a,t(x, 2kr)

2(2−t)k
= r−t

∞∑

k=0

hµ,a,t(x, 2kr)

22k
= r−t

∫ ∞∑

k=0

2−2k ψa,t

(
2−k |z − x|

r

)
dµ(z)

≤ C r−t

∫
ψa,t

( |z − x|
r

)
dµ(z) = C r−t hµ,a,t(x, r) = C εµ,a,t(x, r),

where (2.7) was used with α = t + a, β = 2 (hence m = t + a). In particular,
εµ,a,t ∈ G2(t). ¤
Remark 2.4. If a = 2− t, then we cannot ensure that εµ,a,t ∈ G2(t). Indeed, if we
set α = β in the left hand side (2.7), then one gets a worse estimate. One easily
checks that in this case,

∑

k≥0

2−αk

(
2−kx

)α
+ 1

' 1

α

log(1 + xα)

xα + 1
,

with absolute constants. Hence a logarithmic term appears, which implies that
∞∑

k=0

εµ,2−t,t(x, 2kr)

2(2−t)k
= r−t

∫ ∞∑

k=0

2−2k

(
2−k |z−x|

r

)2

+ 1
dµ(z)

' r−t

∫
1(

|z−x|
r

)2

+ 1
log

(
1 +

( |z − x|
r

)2
)

dµ(z)

and so we cannot infer that εµ,2−t,t ∈ G2(t).
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2.5. Behavior of G1 and G2 under quasiconformal mappings. Need will arise
of evaluating gauge functions h = h(B(x, r)) = rt ε(x, r) on sets that are not nec-
essarily balls. To do this, given an arbitrary bounded set A ⊂ C, let B a ball with
minimal diameter that contains A. Then we set

ε(A) = ε(B).

If may happen that B is not unique, but this does not cause any harm. In this
case, for definiteness, we can define ε(A) as the infimum of the values ε(B) over all
balls B with minimal diameter containing A. Analogously, if h(x, r) = rt ε(x, r), we
define h(A) as the infimum the h(B)’s.
Our next objective consists in showing that if φ is a K-quasiconformal planar home-
omorphism and 0 ≤ d ≤ 1, then the function defined by

ε(B) = εµ,a,t(φ(B))d

for any ball B ⊂ C, also belongs to G1 ∩ G2. In fact, because of the geometric
properties of quasiconformal mappings and the smoothness of ψa,t, it is easily seen
that ε satisfies (2.5). To show that (2.6) also holds requires some more effort.

Lemma 2.5. Let εµ,a,t be as above, and let φ : C → C be a K-quasiconformal
mapping. For every d > 0 and K ≥ 1 there exist two positive constants C = C(K, d)
and C1 = C1(k, d) such that

∑
j≥0

εµ,a,t(φ(B(x, 2jr)))d

2bj
≤ C(K, d) εµ,a,t(φ(B(x, r)))d (2.8)

whenever 0 < a < C1b. In particular, if b = 2− t and a is chosen small enough, the
function ε defined by ε(B) = εµ,a,t(φ(B))d for any ball B, belongs to G1 ∩ G2(t).

Proof. Set dj = diam(φ(B(x, 2jr))). We have

S =
∑
j≥0

εµ,a,t(φ(B(x, 2jr)))d

2bj
'

∑
j≥0

εµ,a,t(B(φ(x), dj))
d

2bj

.
∑

k≥0

∑

j:d02k≤dj<d02k+1

εµ,a,t(B(φ(x), 2kd0))
d

2bj
.

For each j ≥ 0 we have

dj

d0

=

j∏
i=1

di

di−1

=

j∏
i=1

diam(φ(B(x, 2ir)))

diam(φ(B(x, 2i−1r)))
≤ C(K)j = 2C2j,

with C2 depending on K. Thus, for j, k such that d02
k ≤ dj < d02

k+1,

2j ≥
(dj

d0

)1/C2 ' 2k/C2 .
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Since the number of js such that d02
k ≤ dj < d02

k+1 depends only on K, we obtain

S .
∑

k≥0

∑

j:d02k≤dj<d02k+1

εµ,a,t(B(φ(x), 2kd0))
d

2C1bk
≤ C

∑

k≥0

εµ,a,t(B(φ(x), 2kd0))
d

2C1bk
,

with C1 = 1/C2.
First we consider the case d = 1: from Lemma 2.3, if 0 < a < C1b, we infer that

∑

k≥0

εµ,a,t(B(φ(x), 2kd0))

2C1bk
=

∑

k≥0

1

2(t+C1b)kd t
0

∫
1( |φ(x)− y|

2kd0

)t+a

+ 1

dµ(y)

. 1

d t
0

∫
1( |φ(x)− y|

d0

)t+a

+ 1

dµ(y)

= εµ,a,t(B(φ(x), d0)) . εµ,a,t(φ(B(x, r))), (2.9)

and so we are done in this case.
If d > 1, we set

S .
(∑

k≥0

εµ,a,t(B(φ(x), 2kd0))

2
C1
d

bk

)d

. εµ,a,t(φ(B(x, r)))d,

by (2.9), replacing C1 there by C1/d (and thus assuming now that 0 < a < C1

d
b).

When 0 < d < 1 we use Hölder inequality, with p = 1/d:

∑

k≥0

εµ,a,t(B(φ(x), 2kd0))
d

2C1bk
≤

(∑

k≥0

εµ,a,t(B(φ(x), 2kd0))

2C1bk

)d(∑

k≥0

1

2C1bk

)1/p′

≤ C

(∑

k≥0

εµ,a,t(B(φ(x), 2kd0))

2C1bk

)d

.

If we plug in this inequality the estimate obtained in (2.9), then (2.8) follows.
The fact that ε defined by ε(B) = εµ,a,t(φ(B))d for any ball B belongs to G2(t)

is a consequence of the definition of G2(t) in (2.6) and the estimate (2.8), choosing
b = 2− t and 0 < a < C1b. ¤

3. Weighted bounds for the Beurling transform

3.1. The weight ω and the Beurling transform. In this section, 0 < t < 2 is
fixed. We will prove weighted estimates for the Beurling transform. To describe the
class of weights we refer to, let P = {Pi}N

i=1 be a family of dyadic squares such that
3Pi ∩ 3Pj = ∅ if i 6= j, and satisfying the h-packing condition

∑
P∈P:P⊂Q

h(P ) ≤ Cpack h(Q) for every dyadic square Q. (3.1)
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Here, h(x, r) = rt ε(x, r) is any gauge function with ε ∈ G2. Then the weights we
are interested in are precisely the following:

ω =
∑
P∈P

h(P )

`(P )2
χP . (3.2)

These weights already appeared in [LSUT] in the particular case ε(x, r) ≡ 1. It is
easy to see that if P = ∪N

i=1Pi, then ω belongs to A1,P , the local A1 Muckenhoupt
class. That is, for every square Q ⊂ C,

ω(Q)

`(Q)2
≤ C ω(x), for almost every x ∈ P ∩Q. (3.3)

Indeed, let Q be a square containing x ∈ Pi such that `(Q) ≥ `(Pi). We have
ω(Q) ≤ C h(Q) because of the packing condition on the squares from P , and then

using that ε ∈ G2 we infer that h(x,r)
r2 ≤ C h(x,s)

s2 if s ≤ r, and thus

ω(Q)

`(Q)2
≤ C

h(Q)

`(Q)2
≤ C

h(Pi)

`(Pi)2
= C ω(x).

If `(Q) < `(Pi), then it is also clear that (3.3) holds. From (3.3) we obtain that if
M is the classical Hardy-Littlewood maximal operator, then

Mω(x) ≤ C ω(x) for almost every x ∈ P. (3.4)

Let Mω be the centered Hardy-Littlewood maximal function with respect to the
ω measure. That is,

Mωf(x) = sup
r>0

1

ω(Q(x, r))

∫

Q(x,r)

f(y) ω(y) dm(y),

where Q(x, r) stands for the square centered at x with side length 2r, and m denotes
the planar Lebesgue measure. It is well known that Mω is of weak type (1, 1) and
strong type (p, p), for 1 < p ≤ ∞, with respect to the measure ω. From the following
lemma it turns out that the same is also true for M :

Lemma 3.1. Let ω be as above. There exists some constant C such that

Mf(x) ≤ C Mωf(x) for f ∈ L1
loc(P ) and x ∈ P .

As a consequence, M is of weak type (1, 1) and strong type (p, p), 1 < p ≤ ∞, with
respect to ω.

Proof. Let f ∈ L1
loc(P ) and Q a square containing x ∈ Pi. Consider the minimal

square Q′ centered at x containing Q. Since `(Q′) ' `(Q), using (3.3) we get

1

m(Q)

∫

Q

|f | dm . 1

m(Q′)

∫

Q′
|f | dm

.
infy∈Q′∩P ω(y)

ω(Q′)

∫

Q′
|f | dm ≤ 1

ω(Q′)

∫

Q′
|f |ω dm ≤ Mωf(x).

Thus Mf(x) ≤ C Mfω(x) and the lemma follows. ¤
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Recall that the Beurling transform of a function f : C→ C is given by

Sf(z) =
−1

π
p.v.

∫

C

f(ξ)

(z − ξ)2
dm(ξ).

The ε-truncated Beurling transform is

Sεf(z) =
−1

π

∫

|z−ξ|>ε

f(ξ)

(z − ξ)2
dm(ξ),

and the maximal Beurling transform, S∗f(z) = supε>0 |Sεf(z)|.

Proposition 3.2. Let P be a family of dyadic squares as above, and set P =
⋃N

i=1 Pi.
If ε ∈ G2 and ω is the weight defined by (3.2), then the Beurling transform is bounded
in Lp(ω), for 1 < p < ∞, and of weak type (1, 1) with respect to ω. That is,

‖S(fχP )‖Lp(ω) ≤ C ‖f‖Lp(ω) for all f ∈ Lp(ω), (3.5)

and

‖S(fχP )‖L1,∞(ω) ≤ C‖f‖L1(ω) for all f ∈ L1(ω), (3.6)

for some C > 0 depending on p and Cpack.

It is possible to prove the estimate (3.5) (which, for p = 2, is the one needed in
connection with quasiconformal distortion) by an appropriate modification of the
arguments of [LSUT]. However we have preferred to follow a new approach: first
we will show the following weak type inequality, which is stronger than (3.6):

‖S∗(fχP )‖L1,∞(ω) ≤ C‖f‖L1(ω) for all f ∈ L1(ω). (3.7)

Then, by means of a good lambda inequality, we will deduce that the maximal
Beurling transform is bounded in Lp(ω), for 1 < p < ∞, that is

‖S∗(fχP )‖Lp(ω) ≤ C ‖f‖Lp(ω). (3.8)

Clearly, (3.5) follows from this estimate. We prove (3.7) in the next lemma.

Lemma 3.3. We have

ω ({z ∈ C : |S∗f(z)| > λ}) ≤ C

λ
‖f‖L1(ω)

for every f ∈ L1(ω) and λ > 0.

Proof. We have

ω {z ∈ C : |S∗f(z)| ≥ λ} =
∑

i

ω {z ∈ Pi : |S∗f(z)| ≥ λ}

≤
∑

i

ω

{
z ∈ Pi : |S∗(fχ2Pi

)(z)| ≥ λ

2

}
+

∑
i

ω

{
z ∈ Pi : |S∗(fχC\2Pi

)(z)| ≥ λ

2

}

= A + B.
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For A we simply use the boundedness of S∗ : L1 → L1,∞ with respect to Lebesgue
measure,

A =
∑

i

ω
{

z ∈ Pi : |S∗(fχ2Pi
)(z)| ≥ λ

2

}

=
∑

i

h(Pi)

`(Pi)2

∣∣∣
{

z ∈ Pi : |S∗(fχ2Pi
)(z)| ≥ λ

2

}∣∣∣

≤ 2‖S∗‖L1→L1,∞
∑

i

h(Pi)

`(Pi)2

1

λ

∫
|fχ2Pi

| dm

= 2‖S∗‖L1→L1,∞
‖f‖L1(ω)

λ

because the squares 3Pi are disjoint and ω coincides with the Lebesgue measure

times h(Pi)
`(Pi)2

on every Pi. For the remaining term, denoting the center of Pi by zi,

one has

B =
∑

i

ω

{
z ∈ Pi : |S∗(fχC\2Pi

)(z)| ≥ λ

2

}

≤ 2

λ

∑
i

∫

Pi

|S∗(fχC\2Pi
)(z)| dω(z)

≤ 2

λ

∑
i

∫

Pi

∑

j 6=i

∫

Pj

|f(ξ)|
|ξ − z|2 dm(ξ) dω(z)

≤ C
2

λ

∑
j

(∑

i6=j

ω(Pi)

|zj − zi|2
) ∫

Pj

|f(ξ)| dm(ξ).

Using the h-packing condition (3.1) and the G2 condition for h, we get

∑

i 6=j

ω(Pi)

|zj − zi|2 =
∞∑

k=2

∑

i:zi∈2kPj\2k−1Pj

h(Pi)

|zi − zj|2 ≤ C

∞∑

k=2

∑

i:Pi⊂2k+1Pj

h(Pi)

(2k`(Pj))2

= C

∞∑

k=2

1

(2k`(Pj))2

∑

i:Pi⊂2k+1Pj

h(Pi) ≤ C

∞∑

k=2

h(2kPj)

(2k`(Pj))2
≤ C

h(Pj)

`(Pj)2
,

where we used the fact that if zi ∈ 2kPj, then Pi ⊂ 2k+1Pj (because 3Pi ∩ 3Pj = ∅).
Thus,

B ≤ C

λ
‖f‖L1(ω).

The claim follows since both A, B are bounded by constant multiples of 1
λ
‖f‖L1(ω).

¤
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Proof of the boundedness of S∗ in Lp(ω), for 1 < p < ∞. Our goal here is to
obtain the following good lambda inequality,

ω

(
{z : S∗f(z) > 10λ,Mωf(z) ≤ γλ}

)
≤ C γ ω

(
{z : S∗f(z) > λ}

)
, (3.9)

for every λ > 0, and some γ small enough. Recall that Mω denotes the centered
Hardy-Littlewood maximal function with respect to the ω measure. By standard
arguments, the preceding estimate implies that

‖S∗f‖Lp(ω) ≤ Cp‖Mωf‖Lp(ω),

for 0 < p < ∞. Since Mω is bounded in Lp(ω) for p > 1, this implies that S∗ is
bounded in Lp(ω), 1 < p < ∞.
To get (3.9), let us denote Ωλ = {S∗f > λ}, and let

Ωλ =
∞⋃

j=1

Qj

be a Whitney decomposition of Ωλ. That is,
∑

j χ10Qj
≤ C, and for every j we have

that 100Qj ⊂ Ωλ but 1000Qj * Ωλ. Let Qj be a fixed Whitney cube, and assume
that there exists zj ∈ Qj such that Mωf(zj) ≤ γλ (otherwise there is nothing to
prove). Let tj ∈ C \ Ωλ a closest point to Qj in C \ Ωλ. Let B = B(tj, c0`(Qj)) be
a ball centered at tj and such that 10Qj ⊂ B. We can decompose

f = f χB + f χC\B.

For every z ∈ Qj, the truncated singular integral Sε(fχB)(z) can be written as the
sum of two terms,

Sε(fχB)(z) =

∫

|t−z|≥ε

f(t) χB∩3Bj
(t)

(t− z)2
dm(t) +

∫

|t−z|≥ε

f(t) χB\3Bj
(t)

(t− z)2
dm(t) = I + II,

where Bj = B(zj, `(Qj)). For II, we use that |t− z| ' `(Qj) and Lemma 3.1 to get

II ≤ C

`(Qj)2

∫

B\3Bj

|f(t)| dm(t) ≤ C Mf(zj) ≤ C Mωf(zj) ≤ C γλ, (3.10)

and this is uniform in ε. Therefore, since S∗f(z) ≤ S∗(fχB)(z) + S∗(fχC\B)(z), we
have

ω

({
z ∈ Qj :S∗f(z) > 10λ,Mωf(z) ≤ γλ

})

≤ ω

(
{z ∈ Qj : S∗(fχB)(z) > 2λ,Mωf(z) ≤ γλ}

)

+ ω

( {
z ∈ Qj : S∗(fχC\B)(z) > 8λ,Mωf(z) ≤ γλ

})
= A + B.

(3.11)



14 K. ASTALA, A. CLOP, X. TOLSA, I. URIARTE-TUERO, AND J. VERDERA

Choosing γ so that Cγ < 1 in (3.10), we get that

A ≤ ω

( {
z ∈ Qj : S∗(fχB∩3Bj

)(z) > λ, Mωf(z) ≤ γλ
} )

.

On the other hand, by Lemma 3.3,

ω
{S∗(fχB∩3Bj

)(z) > λ
} ≤ C

λ
‖fχB∩3Bj

‖L1(ω) ≤ C Mωf(zj) ω(B ∩ 3Bj)

λ
.

Therefore

A ≤ C γ ω(B ∩ 3Bj) ≤ C γ ω(7Qj). (3.12)

To estimate B, notice that, for z ∈ Qj,

∣∣Sε(fχC\B)(z)− Sε(fχC\B)(tj)
∣∣ ≤

∫

C\B
|f(t)|

∣∣∣∣
1

(t− z)2
− 1

(t− tj)2

∣∣∣∣ dm(t)

≤ C `(Qj)

∫

C\B

|f(t)| |t− z+tj
2
|

|t− z|2 |t− tj|2dm(t)

≤ C `(Qj)

∫

C\B

|f(t)|
|t− zj|3dm(t)

≤ C `(Qj)

∫

C\3Bj

|f(t)|
|t− zj|3 dm(t)

≤ C Mf(zj) ≤ C Mωf(zj).

The next to the last step above follows as usually after decomposing into dyadic
annuli. Since B ⊃ B(z, 3`(Qj)), to compute S∗(fχC\B)(z) = supε>0 |Sε(fχC\B)(z)|
it suffices to take ε > 3`(Qj). Therefore

|Sε(fχC\B)(tj)− Sε(f)(tj)| =
∣∣∣∣∣
∫

|t−tj |>ε

f(t) χB(t)

(t− tj)2
dm(t)

∣∣∣∣∣

≤ C

`(Qj)2

∫

|t−tj |>ε

|f(t)|χB(t)dm(t)

=
C

`(Qj)2

∫

ε<|t−tj |<c0`(Qj)

|f(t)| dm(t)

≤ C

`(Qj)2

∫

|t−zj |≤2c0`(Qj)

|f(t)|dm(t) ≤ C Mf(zj).

Summarizing, we get

|Sε(fχC\B)(z)|
≤ |Sε(fχC\B)(z)− Sε(fχC\B)(tj)|+ |Sε(fχC\B)(tj)− Sεf(tj)|+ |Sεf(tj)|
≤ CMωf(zj) + |Sεf(tj)|.
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Therefore, if z belongs to
{
z : S∗(fχC\B)(z) > 8λ,Mωf(z) ≤ γλ

}
, we get that

8λ < |S∗(fχC\B)(z)| ≤ CMωf(zj) + |S∗f(tj)| ≤ Cγλ + λ.

because tj /∈ Ωλ. In particular, back to (3.11), for small enough γ we must have
B = 0. Now, with the help of (3.12) we get

ω

(
{z ∈ Qj : S∗f(z) > 10λ,Mωf(z) ≤ γλ}

)
≤ C γ ω(7Qj).

Since the squares 7Qj have bounded overlap, summing in j we obtain

ω

(
{z : S∗f(z) > 10λ,Mωf(z) ≤ γλ}

)
≤ C γ ω ({z : S∗f(z) > λ}) ,

which is (3.9). ¤

4. Quasiconformal distortion of h-contents

4.1. Conformal outside. Let φ be a K-quasiconformal mapping on C, and let
ε0 ∈ G1. Consider the associated gauge function h0(x, r) = rt ε0(x, r), for a fixed
0 < t < 2.

For every x ∈ C and r > 0, denote

ε(x, r) = ε0(φ(B(x, r)), h(x, r) = rt ε(x, r),

and suppose that ε ∈ G2. This fact is crucial in this subsection.

Let now P = {Pi} be a finite family of dyadic squares, with disjoint triples, and
satisfying the packing condition

∑
P∈P:P⊂Q

h(P ) ≤ Cpack h(Q) for every dyadic square Q. (4.1)

If we introduce the weight

ω =
∑
P∈P

h(P )

|P | χP '
∑
P⊂P

ε(P )

`(P )2−t
χP

then it follows from Proposition 3.2 that the Beurling transform is bounded in L2(ω),

‖S(fχP )‖L2(ω) ≤ ‖S‖L2(ω) ‖f‖L2(ω)

and the norm ‖S‖L2(ω) depends only on the packing constant Cpack. Therefore there
exists a number δ > 0, depending only on Cpack, such that

1 ≤ K < 1 + δ ⇒ K − 1

K + 1
‖S‖L2(ω) < 1. (4.2)
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In establishing quasiconformal distortion estimates for the h-contents we need to
normalize the mappings. A very convenient normalization is obtained by requiring
that φ is conformal outside the unit disk and has the development

φ(z) = z +O(1/z), |z| > 1.

We call such φ as principal quasiconformal mapping.

Lemma 4.1. Let φ, ε0, ε,P , ω be as above and suppose moreover that the quasi-
conformal mapping φ is principal and conformal outside P =

⋃
P∈P P . Then we

have ∑
P∈P

h0(φ(P )) ≤ C
∑
P∈P

h(P ),

for some constant C = C(K) > 0.

Proof. First of all, by the definition of ε0 on arbitary sets, we see that

h0(φ(Pi)) = inf
φ(Pi)⊂B

h0(B) = inf
φ(Pi)⊂B(x,r)

rt ε0(x, r) ' diam(φ(Pi))
t ε(Pi),

with constants that only depend on K. Thus, by Hölder’s inequality we get
∑

i

h0(φ(Pi)) ≤ CK

∑
i

diam(φ(Pi))
tε(Pi)

≤ CK

(∑
i

diam(φ(Pi))
2`(Pi)

t−2ε(Pi)
)t/2(∑

i

`(Pi)
tε(Pi)

) 2−t
2

= CK

(∑
i

diam(φ(Pi))
2 ω(Pi)

`(Pi)2

)t/2(∑
i

ω(Pi)
) 2−t

2
=: CK At/2 ω(P )

2−t
2 .

To estimate A, we start by getting from quasisymmetry that

A ≤ CK

∑
i

∫

Pi

J(z, φ) ω(z) dm(z)

Now, as φ is a principal quasiconformal mapping, φ(z)− z = Cg(z), where Cg is the
Cauchy transform of the Neumann series

g =
∞∑

n=0

(νS)n(ν),

and ν(z) = ∂φ(z)
∂φ(z)

whenever ∂φ(z) 6= 0 (otherwise we simply set ν(z) = 0). Since

K < 1 + δ, (4.2) says that the above series converges absolutely in L2(ω) (using the
key fact that supp(ν) ⊂ P by the conformality of φ off P ), and moreover one easily
gets

‖g‖L2(ω) ≤ ‖ν‖∞
1− ‖ν‖∞ ‖S‖L2(ω)

ω(P )1/2.
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Then arguing as in [LSUT] (see also [Ast94])
∑

i

∫

Pi

J(z, φ) ω(z) dm(z) =

∫

P

(
|∂φ(z)|2 − |∂̄φ(z)|2

)
ω(z) dm(z)

=

∫

P

(
1 + |Sg(z)|2 + 2Re (Sg(z))− |g(z)|2) ω(z) dm(z)

≤
(
ω(P ) + ‖S‖2

L2(ω) ‖g‖2
L2(ω) + 2ω(P )

1
2 ‖S‖L2(ω) ‖g‖L2(ω)

)

≤ ω(P )

(
1 +

‖S‖2
L2(ω) ‖ν‖2

∞(
1− ‖ν‖∞ ‖S‖L2(ω)

)2 +
2 ‖S‖L2(ω) ‖ν‖∞

1− ‖ν‖∞ ‖S‖L2(ω)

)

≤ C(K) ω(P ),

by (4.2). Thus, ∑
P∈P

h0(φ(P )) ≤ C(K) ω(P ) = C(K)
∑
P∈P

h(P ),

and so the lemma follows. ¤
4.2. Conformal inside. We will prove now an h-version of [ACM+08, Theorem
2.2]. Here the point is to use quasiconformal mappings that are conformal inside a
finite disjoint union of quasidisks, allowing improved integrability for the gradient
[AN03]. Let us emphasize that no G2 assumption will be needed here.

Theorem 4.2. Let φ : C → C be K-quasiconformal, principal, and conformal
outside D. Assume that Qi ⊂ D are pairwise disjoint K-quasidisks, and that φ is
conformal in Ω = ∪iQi. For a fixed ε0 ∈ G1 and 0 < t < 2, let t′ = 2Kt

2+(K−1)t
and

h0(r) = rt′ε0(x, r). Set

ε(B) = ε0(φ(B))
Kt
t′ and h(r) = rt ε(x, r).

Then

∑
i

h0(φ(Qi)) ≤ C(K, t)

(∑
i

h(Qi)

) t′
Kt

.

Proof. From the quasisymmetry of φ, and the doubling properties of ε0 and ε,

h0(φ(Qi)) = inf
φ(Qi)⊂B

h0(B) = inf
φ(Qi)⊂B(x,r)

rt′ε0(x, r) ' diam(φ(Qi))
t′ ε(Qi)

t′
Kt

with constants that depend only on K. By quasisymmetry again and Hölder’s
inequality, we get

diam(φ(Qi)) ≤ CK

(∫

Qi

J(z, φ) dm(z)

) 1
2

≤ CK

(∫

Qi

J(z, φ)
K

K−1 dm(z)

)K−1
2K

diam(Qi)
1
K
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since the diameter of a quasidisk is comparable to the square root of its area. There-
fore, by Hölder’s inequality and the improved borderline integrability of quasicon-
formal mappings ([AN03]),

∑
i

h0(φ(Qi)) ≤ C(K)
∑

i

diam(φ(Qi))
t′ ε(Qi)

t′
Kt

≤ C(K)
∑

i

(∫

Qi

J(z, φ)
K

K−1 dm(z)

)K−1
2K

t′

diam(Qi)
t′
K ε(Qi)

t′
Kt

≤ C(K)

(∑
i

∫

Qi

J(z, φ)
K

K−1 dm(z)

)K−1
2K

t′ (∑
i

diam(Qi)
t ε(Qi)

) t′
Kt

≤ C(K)

(∑
i

h(Qi)

) t′
Kt

as claimed. ¤

4.3. The main lemma on distortion of h-contents. We are now ready to prove
the main estimate on the distortion of h-contents by quasiconformal mappings with
small distortion.

Lemma 4.3. Let E ⊂ B(0, 1/2) be compact and φ : C → C a principal K-

quasiconformal mapping, conformal on C\D̄. Let ε ∈ G1, and assume that (ε◦φ)
Kt
t′ ∈

G2(t). Set

h(x, r) = rt′ε(x, r)

and

ε̃(x, r) = ε(φ(B(x, r)))
Kt
t′ , h̃(x, r) = rtε̃(x, r).

If δ is as in (4.2) and K < 1 + δ, then

Mh(φ(E)) ≤ C(K)Mh̃(E)
t′
Kt .

Proof. Let us fix η > 0. As in [LSUT] we find a finite family P = {P1, . . . , PN} of
dyadic cubes, with disjoint triples, such that E ⊂ ∪i12Pi and

∑
i

h̃(Pi) ≤ C(Mh̃(E) + η).

Further, we may also assume that the packing condition (4.1) is satisfied, for in-
stance, with constant Cpack = 1, so that δ > 0 in (4.2) is fixed. We now decompose
φ = φ2 ◦φ1, where both φ1, φ2 are principal K-quasiconformal mappings. Moreover,
we require φ1 to be conformal in C \ ∪iPi, and φ2 to be conformal on ∪iφ1(Pi) .
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Now, we note that φ(E) can be covered by the quasidisks φ(12Pi). We can then
estimate the h-content of φ(E) with the help of the quasisymmetry,

Mh(φ(E)) ≤
∑

i

h(φ(12Pi)) ≤ C(K)
∑

i

h(φ(Pi))

= C(K)
∑

i

h(φ2 ◦ φ1(Pi)).

Since φ1 is a global K-quasiconformal mapping, each φ1(Pi) is a K-quasidisk. Hence,
by Lemma 4.2, if we define the new gauge function h0(x, r) = rt ε0(x, r), with

ε0(B) = ε(φ2(B))
Kt
t′ , then we have

∑
i

h(φ2 ◦ φ1(Pi)) ≤ C(K)

(∑
i

h0(φ1(Pi))

) t′
Kt

.

To estimate the sum on the right hand side above, we use Lemma 4.1. Indeed, the

composition ε0 ◦ φ1 = (ε ◦ φ)
Kt
t′ certainly belongs to G1, and by assumption it also

belongs to G2(t). Hence Lemma 4.1 gives us another gauge h1(x, r) = rt ε1(x, r),
with ε1(D) = ε0(φ1(D)), such that

∑
i

h0(φ1(Pi)) ≤ C(K)
∑

i

h1(Pi).

But then

ε1(D) = ε0(φ1(D)) ' ε(φ2 ◦ φ1(D))
Kt
t′ = ε(φ(D))

Kt
t′ = ε̃(D),

so that h1(Pi) ' h̃(Pi). Summarizing,

Mh(φ(E)) ≤ C(K)

(∑
i

h0(φ1(Pi))

) t′
Kt

≤ C(K)

(∑
i

h1(Pi)

) t′
Kt

≤ C(K)

(∑
i

h̃(Pi)

) t′
Kt

≤ C(K)
(
Mh̃(E) + η

) t′
Kt

.

Now letting η → 0, the claim follows. ¤

Our next goal is to remove the smallness assumption K < 1 + δ in the previous
Lemma. This is done by means of a standard factorization argument.

Lemma 4.4. Let 0 < t < 2. Let ε ∈ G1 and set h(x, r) = rt′ε(x, r). Suppose that
for any principal K-quasiconformal mapping ψ : C→ C the function (ε◦ψ)d belongs
to G2 for any t′

Kt
≤ d ≤ 1. Let E ⊂ B(0, 1/2) be compact and φ : C→ C a principal

K-quasiconformal mapping, conformal on C \ D̄. Set

ε̃(x, r) = ε(φ(B(x, r)))
Kt
t′ , h̃(x, r) = rtε̃(x, r).
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Then we have

Mh(φ(E)) ≤ C(K)Mh̃(E)
t′
Kt .

Proof. We factorize φ so that φ = φn◦· · ·φ1, where each φi is a K1/n-quasiconformal
mapping, conformal on C \ φi−1 ◦ · · · ◦ φ1(D). We can further do this so that

K1/n < 1 + δ

for δ as in (4.2). Of course, such an n will depend on K and also on the packing
constant Cpack in (4.1). So we have

E = E0
φ1−→ E1

φ2−→ . . .
φn−1−→ En−1

φn−→ En = φ(E).

We now denote t0 = t, and for 0 ≤ j ≤ n− 1, we take tj so that

1

tj+1

− 1

2
=

1

K
1
n

(
1

tj
− 1

2

)
.

In particular, tn = t′. For any ball B, we also set εn(B) = ε(B), hn(B) = h(B), and
for j = n− 1, n− 2, . . . , 1, 0 let

εj(B) = εj+1(φj+1(B))
K

1
n tj

tj+1 = εj(φj(B))

tj

K1/n tj−1

and

hj(x, r) = rtj εj(x, r).

Note that therefore

ε0(B) = ε1(φ1(B))
K1/nt0

t1 = ε2(φ2 ◦ φ1(B))
K2/nt0

t2 = εn(φ(B))
Kt
t′ = ε̃(B).

By recursively using Lemma 4.3, we have

Mh(φ(E)) = Mhn(En) ≤ C(K)Mhn−1(En−1)
tn

K1/ntn−1

≤ C(K) C(K)
tn

K1/ntn−1 Mhn−2(En−2)
tn

K2/ntn−2

≤ C(K)
1+ tn

K1/ntn−1
+···+ tn

K(n−1)/nt1 Mh0(E0)
tn

K t0

= C(K)
1+(n−1)

(
1− t′

2

)
+ t′

2
K−K1/n

K1/n−1 Mh0(E)
t′

K t .

Now, since Cpack is fixed, we see that the constant above depends only on K. There-
fore we can rewrite this in the following way

Mh(φ(E)) ≤ C(K)Mh̃(E)
t′
Kt

as claimed. ¤
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5. Quasiconformal distortion of Riesz capacities.

The following lemma describes the relationship between Riesz capacities and h-
contents.

Lemma 5.1. Let 1 < p < ∞ and 0 < αp < 2, and let E ⊂ C be compact. Then

Ċα,p(E) ' sup
{Mh(E)

}
(5.1)

where the supremum on the right hand side runs over all gauge functions

h(x, r) = r2−αp ε(x, r)

with ε ∈ G1 and such that
∫ ∞

0

ε(x, r)p′−1

r
dr ≤ 1, x ∈ C. (5.2)

Proof. We will use the characterization of Ċα,p in terms of Wolff potentials (see Sub-

section 2.1). Let us consider a measure µ supported on E and such that Ẇ µ
α,p(x) ≤ 1

for all x ∈ C, and let t = 2 − αp, so that 0 < t < 2. For small enough a > 0, con-
struct hµ,a,t as we did in (2.3). Recall that hµ,a,t belongs to the class G1. By Lemma
2.1, Mhµ,a,t(E) ≥ C µ(E). Decomposing the domain of integration into annuli, for
all x ∈ C we get

∫ ∞

0

εµ,a,t(x, r)p′−1dr

r
=

∫ ∞

0

1

rt(p′−1)

(∫
ψa,t

(y − x

r

)
dµ(y)

)p′−1
dr

r

≤ C
∑

j∈Z
2−t(p′−1)j

(∑

k>j

µ(B(x, 2k))2(t+a)(j−k)
)p′−1

≤ C
∑

j∈Z
2−t(p′−1)j

∑

k>j

µ(B(x, 2k))p′−12(p′−1)(t+a
2
)(j−k),

where we applied Hölder’s inequality for p′ − 1 > 1, and the fact that (c + d)p′−1 ≤
cp′−1 + dp′−1 otherwise. Thus,∫ ∞

0

εµ,a,t(x, r)p′−1dr

r
.

∑

k∈Z
µ(B(x, 2k))p′−1 2−(p′−1)(t+a

2
)k

∑

j<k

2t(p′−1)a
2
j

'
∑

k∈Z
µ(B(x, 2k))p′−1 2−(p′−1)tk . Ẇ µ

α,p(x) . 1. (5.3)

Above we allow constants in the estimates to depend on α, p, t, a, but not on µ.
Therefore, if µ is admissible for Ċα,p(E) then hµ,a,t is admissible for the supremum
in (5.1) and

sup
h

{Mh(E)
} ≥ CMhµ,a,t(E) ≥ C µ(E).

Conversely, let us fix any gauge function h(x, r) = r2−αp ε(x, r) in G1 satisfying (5.2)
and such that Mh(E) > 0. By Lemma 2.2, there exists a measure µ supported on
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E such that

µ(B) ≤ C h(B),

and furthermore, we can choose µ so that µ(E) ≥ CMh(E). But then

Ẇ µ
α,p(x) =

∫ ∞

0

(
µ(B(x, r))

r2−αp

)p′−1
dr

r
≤

∫ ∞

0

ε(x, r)p′−1

r
dr ≤ 1.

Therefore µ is admissible for Ċα,p(E), and Ċα,p(E) ≥ C µ(E) ≥ CMh(E). ¤

Let us remark that we can further restrict the class of admissible functions h in the
above supremum. In fact, it follows from the proof above that

Ċα,p(E) ' sup

{
Mhµ,a,t(E) : supp(µ) ⊂ E,

∫ ∞

0

(
hµ,a,t(x, r)

rt

)p′−1
dr

r
≤ 1

}
, (5.4)

where t = 2−αp, as above. On the other hand, we emphasize the fact that Lemma
5.1 does not hold if we restrict the supremum to gauge functions h invariant under
translations (see [AH96, Remark 5.6.4]). Finally, if condition (5.2) is replaced by

lim
r→0

h(x, r)

r2−αp
= lim

r→0
ε(x, r) = 0 uniformly in x

then we obtain the lower t-dimensional Hausdorff content, which vanishes exactly on
sets having σ-finite t-dimensional Hausdorff measureHt (see [SS62] for more details).

Before proving Theorem 1.1, we need the following auxiliary result.

Lemma 5.2. Let φ : C→ C be a K-quasiconformal mapping, and ε0 ∈ G1. Define
ε1(B) = ε0(φ(B)) for any ball B ⊂ C. For any s > 0 we have

∫ ∞

0

ε1(x, r)s dr

r
≤ C(K, s)

∫ ∞

0

ε0(φ(x), r)s dr

r
.

Proof. We have
∫ ∞

0

ε0(φ(B(x, r)))s dr

r
≤ C(s)

∑

j∈Z
ε0(φ(B(x, 2j)))s.

Denote now rj = diam(φ(B(x, 2j)). We obtain
∑

j∈Z
ε0(φ(B(x, 2j))s =

∑

k∈Z

∑

j:2k≤rj<2k+1

ε0(φ(B(x, 2j))s

.
∑

k∈Z

∑

j:2k≤rj<2k+1

ε0(B(φ(x), rj))
s

. C(K)
∑

k∈Z
ε0(B(φ(x), 2k))s ≤ C(K, s)

∫ ∞

0

ε0(φ(x), r)s dr

r
,



QUASICONFORMAL DISTORTION OF CAPACITIES AND HAUSDORFF MEASURES 23

where we took into account that #{j : 2k ≤ rj < 2k+1} ≤ C(K). This follows easily
from the fact that the moduli of the annuli B(x, 2j+1)\B(x, 2j) is K-quasi-invariant
under φ. ¤

Proof of Theorem 1.1. By standard methods, we may assume that φ is a prin-
cipal quasiconformal mapping, conformal on C \ D̄, and that E ⊂ B(0, 1/2) = 1

2
B

(and so diam(φ(B)) ' 1). We can further assume that Ċβ,q(φ(E)) > 0, since oth-
erwise the statement is obvious. Let a > 0 be small enough, and t′ = 2 − βq. By
(5.4), we can find a finite Borel measure µ supported on φ(E) such that

Ċβ,q(φ(E)) 'Mhµ,a,t′ (φ(E)),

and ∫ ∞

0

(
hµ,a,t′(x, r)

rt′

)q′−1
dr

r
≤ 1

for all x ∈ C. Writing hµ,a,t′(x, r) = rt′ εµ,a,t′(x, r), we proved in Lemma 4.4 that if

h̃(x, r) = rt ε̃(x, r) and ε̃(B) = εµ,a,t′(φ(B))
Kt
t′

then we have the inequality

Mhµ,a,t′ (φ(E)) ≤ C(K)Mh̃(E)
t′
Kt , (5.5)

with a constant C(K) > 0 depending only on K. Furthermore, using our choice

1

p′ − 1
= p− 1 =

Kt

t′
(q − 1) =

Kt

t′
1

q′ − 1
,

together with Lemma 5.2, we get that

∫ ∞

0

(
h̃(x, r)

r2−αp

)p′−1
dr

r
=

∫ ∞

0

ε̃(x, r)p′−1 dr

r
=

∫ ∞

0

εµ,a,t′(φ(B(x, r)))
Kt(p′−1)

t′
dr

r

≤ C

∫ ∞

0

εµ,a,t′(φ(x), r)
Kt(p′−1)

t′
dr

r

= C

∫ ∞

0

εµ,a,t′(φ(x), r)q′−1 dr

r
≤ C

for all x ∈ C. Therefore, by Lemma 5.1, h̃ is admissible for Ċα,p(E), and taking
supremum in (5.5) we get that

Ċβ,q(φ(E)) ≤ C Ċα,p(E)
t′
Kt ,

as desired. ¤
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6. Proof of Corollary 1.3 using Lemma 4.4

Although Corollary 1.3 is an immediate consequence of Theorem 1.2, which will
be proved in next section, we would like to show that it also follows rather easily
from Lemma 4.4.

Suppose that Ht′(φ(E)) is non σ-finite. Then it supports some nonzero measure
µ such that θt′

µ (x) = 0 at µ-a.e. x ∈ φ(E). We can assume θt′
µ (x) = 0 for all x ∈ C,

replacing µ by its restriction to some nice subset if necessary . It is easy to check
that this implies that εµ,a,t′(x, r) → 0 as r → 0, for all x ∈ C (one only has to write
εµ,a,t′(x, r) as a convex combination of µ(B(x, s))/st′ , s ∈ (0,∞)). As in Theorem
1.1, using Lemma 4.4 and Frostman Lemma, we deduce that there exists another
nonzero measure ν supported E such that ν(x, r) ≤ rtε̃(x, r) for all x ∈ C and r > 0,
with

ε̃(x, r) = εµ,a,t′(φ(B(x, r)))
Kt
t′ .

Since φ is continuous, we have

lim
r→0

ε̃(x, r) = lim
r→0

εµ,a,t′(φ(B(x, r)))
Kt
t′ = 0 for all x ∈ C,

which implies that θt
ν(x) = 0 for all x ∈ C. The fact that E supports a nonzero

measure with zero t-density ν-a.e. implies that Ht(E) is non σ-finite. ¤

7. Quasiconformal distortion of Hausdorff measures.

First we need the following technical lemma.

Lemma 7.1. Let 0 < s ≤ 2. Let µ be a finite Borel measure, and let x ∈ C and
θ1 > 0 be such that

µ(B(x, r))

rs
≤ θ1 if 0 < r ≤ δ. (7.1)

Then there exists δ′ > 0, depending only on δ, a, s, θ1 and µ(C), such that

εµ,a,s(x, r) ≤ θ2 if 0 < r ≤ δ′,

with θ2 = C θ1, with C depending only on a, s.

Proof. By the definition of εµ,a,s and ψa,s,

εµ,a,s(x, r) =
1

rs

[∫

|x−y|≤r

+
∑
j≥1

∫

2j−1r<|x−y|≤2jr

]
ψa,s

(y − x

r

)
dµ(y)

≤ C
∑
j≥0

µ(B(x, 2jr))

2j(s+a) rs
.

If 2jr ≤ δ, we use the estimate (7.1). Otherwise, we take into account that

µ(B(x, 2jr))

2js rs
≤ µ(C)

δs
.



QUASICONFORMAL DISTORTION OF CAPACITIES AND HAUSDORFF MEASURES 25

So if N denotes the biggest integer such that 2Nr ≤ δ, then

εµ,a,s(x, r) ≤ Cθ1

∑
0≤j≤N

2−ja + C
µ(C)

δs

∑
j≥N+1

2−ja

≤ C

(
θ1 + 2−Na µ(C)

δs

)
≤ C

(
θ1 +

raµ(C)

δs+a

)
.

If we take δ′ small enough so that

(δ′)aµ(C)

δs+a
≤ θ1,

the lemma follows. ¤

Lemma 7.2. Let 0 < t < 2 and set t′ = 2Kt
2+(K−1)t

. Let φ : C → C be a principal

K-quasiconformal mapping, conformal outside the unit disk, and let E ⊂ B(0, 1/2).
Then

Ht′(φ(E)) ≤ C(K)Ht(E)
t′
Kt . (7.2)

Proof. To prove (7.2), we may assume that Ht′(φ(E)) > 0. Because of the estimates
on the upper density of Hausdorff measures (see [Mat95, p.89]), there exists δ > 0
and F ⊂ E compact such that Ht′(φ(F )) ≥ Ht′(φ(E))/2, and

Ht′(φ(E) ∩B(x, r))

rt′ ≤ 5 for all x ∈ φ(F ) and 0 < r ≤ δ. (7.3)

Let us denote µ = Ht′
|φ(F ), and consider the associated gauge function

hµ,a,t′(x, r) = rt′ εµ,a,t′(x, r) =

∫
ψa,t′

( |x− y|
r

)
dµ(y)

where ψa,t′(r) = 1
1+ra+t′ , for a > 0 small enough. Recall that, by Lemma 2.1,

µ ≤ 2Mhµ,a,t′ . Further, we can apply Lemma 4.4 to hµ,a,t′ and εµ,a,t′ (since they
fulfill the required assumptions if a is chosen small enough, by Lemma 2.5), and
then we get

Mhµ,a,t′ (φ(F )) ≤ C(K, t)Mh̃(F )
t′
Kt , (7.4)

where h̃(x, r) = rtε̃(x, r) and

ε̃(x, r) = εµ,a,t′(φ(B(x, r)))
Kt
t′ .

In particular, Mh̃(F ) > 0, and by Frostman’s Lemma, there exists a measure ν,
supported on F , such that

ν(B(x, r)) ≤ h̃(B(x, r)) = rtεµ,a,t′(φ(B(x, r)))
Kt
t′ . (7.5)

Furthermore, we can choose ν so that ν(F ) ≥ CMh̃(F ). It now suffices to show that
εµ,a,t′(φ(B(x, r))) is uniformly bounded for r small enough, as then ν(F ) ≤ CHt(F ).
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From (7.3) and Lemma 7.1 we infer that εµ,a,t′(y, s) ≤ C1 for all y ∈ φ(F ) and
0 < s < δ′, with δ′ = δ′(δ, a, t′, µ(F )), and C1 = C1(a, t′). As a consequence, if
δ′′ > 0 is taken small enough, then

εµ,a,t′(φ(B(x, r)) ≤ C1, for all x ∈ F and 0 < r < δ′′. (7.6)

To see this, first by quasisymmetry

B(φ(x), r1) ⊂ φ(B(x, r)) ≤ B(φ(x), r2) for some r2 ≤ C(K)r1.

Moreover, from the local Hölder continuity of K-quasiconformal mappings,

2r1

diam φ(D)
≤ C(K)

( r

diamD

) 1
K

,

and since φ is conformal on C \ D, |φ(D)| ≤ C(K) |D|. Hence r1 ≤ C(K)r1/K ,
and therefore εµ,a,t′(φ(B(x, r)) ≤ εµ,a,t′(B(φ(x), r2)) ≤ C1 whenever r2 < δ′, which
immediately follows if r < δ′′ = C(K) (δ′)K . This proves (7.6).

From (7.6) and (7.5), we immediately get that

ν(B(x, r)) ≤ C3r
t all x ∈ F and 0 < r < δ′′,

with C3 = C3(K, t, t′). It is easy to check that this implies that Ht(F ) & ν(F ).
Indeed, if F ⊂ ⋃

i Ai, with diam(Ai) ≤ d ≤ δ′′ and Ai ∩ F 6= ∅, we take a ball Bi

centered on F ∩ Ai with radius r(Bi) = diam(Ai) ≤ δ′′ for each i, and then
∑

i

diam(Ai)
t =

∑
i

r(Bi)
t &

∑
i

ν(Bi) ≥ ν(F ),

and so Ht
d(φ(F )) & ν(F ) for all 0 < d < δ′′. Letting d → 0 our claim follows.

Summarizing,

Ht(E) ≥ Ht(F ) ≥ C ν(F ) ≥ CMh̃(F ) ≥ CMhµ,a,t′ (φ(F ))
Kt
t′

≥ C µ(φ(F ))
Kt
t′ ≥ CHt′(φ(F ))

Kt
t′ ≥ CHt′(φ(E))

Kt
t′ .

¤

Proof of Theorem 1.2. The theorem follows from the preceding lemma by stan-
dard arguments in quasiconformal theory. However, for completeness we give the
details. We factorize φ = φ2 ◦ φ1, where φ1, φ2 are both K-quasiconformal maps,
with φ1 principal and conformal on C \ 2B, and φ2 is conformal on φ1(2B). Let
g(z) = dz+b be the linear function that maps the unit disk to 2B (so d = diam(B)).
The function h = g−1 ◦ φ1 ◦ g verifies the assumptions of the main lemma, so that

Ht′(g−1 ◦ φ1(E)) ≤ C(K)Ht(g−1(E))
t′
Kt .
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On the other hand,

Ht′(g−1 ◦ φ1(E)) =
Ht′(φ1(E))

diam(B)t′ , Ht(g−1(E)) =
Ht(E)

diam(B)t
.

Using also quasisymmetry and Koebe’s distortion theorem, we get that diam(φ1(B)) '
diam(φ1(2B)) ' diam(2B) with constants depending only on K. Hence

Ht′(φ(E))

diam(φ1(B))t′ ≤ C(K)

( Ht(E)

diam(B)t

) t′
Kt

. (7.7)

Now, since φ2 is conformal on φ1(2B), by Koebe’s distortion theorem and quasisym-
metry, for each ball B0 contained in B we have

diam(φ2(φ1(B0)))

diam(φ2(φ1(2B)))
' diam(φ1(B0))

diam(φ1(2B))
.

From this estimate and quasisymmetry again, it is straightforward to check that

Ht′(φ1(E))

diam(φ1(B))t′ '
Ht′(φ(E))

diam(φ(B))t′ ,

with constants depending on K, which together with (7.7) yields (1.9). ¤

8. Examples showing sharpness of results

In [UT08, Thm 2.2], an example was constructed of a K-quasiconformal map
φ : C→ C and a compact set E ⊂ D such that diam(E) ' diam(φE) ' 1 and such
that, for 0 < t < 2 and t′ = 2Kt

2+(K−1)t
, Ht(E) ' Ht′(φE) ' 1. In the same paper,

[UT08, Cor 3.5], an example is constructed with the same hypotheses, except that
both Ht(E) and Ht′(φE) are sigma-finite (but infinite.) These prove the sharpness
of Corollary 1.3 and Theorem 1.2.

We will show next that Theorem 1.1 is sharp. This was already shown for the
case β = 2

3
, q = 3

2
in [TUT09, Thm 8.8]. We will follow the scheme in [TUT09] very

closely, repeating some of the arguments from [TUT09] for the convenience of the
reader.

8.1. Basic construction for the subsequent examples. Following the scheme
of [TUT09], we argue as in [UT08]. We assume the reader is familiar with the latter
paper and we will use the notation from it without further reference. The formulae
look slightly nicer if we assume in the construction that εn = 0 for all n, i.e. that we
take infinitely many disks in each step, completely filling the area of the unit disk
D (see equations (2.1), (2.2) and (2.3) in [UT08].) It is not strictly needed to set
in that construction εn = 0 for all n, and we will later indicate the corresponding
formulae if εn > 0 for all n (which is the case in [UT08].) The construction in
[UT08] works as well if we set εn = 0 for all n, the only point that the reader might
wonder about is whether the resulting map is K-quasiconformal. However, this can
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be easily seen by a compactness argument (approximating the desired map by maps
with finitely many circles in each step which are K-quasiconformal and have more
and more disks in each step of the construction).

So we get (see equations (2.5) and (2.6) in [UT08]) a Cantor type set E and a K-
quasiconformal map φ so that a building block in the N -th step of the construction
of the source set E is a disk with radius

sj1,...,jN
=

(
(σ1,j1)

K R1,j1

)
. . .

(
(σN,jN

)KRN,jN

)
, (8.1)

and a building block in the N -th step of the construction in the target set φ(E) is
a disk with radius given by

tj1,...,jN
= (σ1,j1 R1,j1) . . . (σN,jN

RN,jN
) . (8.2)

Now we consider a measure µ supported on φ(E) and its image measure ν = φ−1
∗ µ

supported on E given by splitting the mass according to area. More explicitly,

µ(D) = 1, (8.3)

for any disk B1,j1 = ψi1
1,j1

(
D

)
of the first step of the construction with radius

tj1 = (σ1,j1 R1,j1),

µ(B1,j1) = (R1,j1)
2 , (8.4)

and in general, for any disk Bi1,...,iN
N ;j1,...,jN

= ψi1
1,j1

◦ · · · ◦ ψiN
N,jN

(
D

)
of the N th step of

the construction with radius tj1,...,jN
= (σ1,j1 R1,j1) . . . (σN,jN

RN,jN
),

µ(Bi1,...,iN
N ;j1,...,jN

) = (R1,j1 . . . RN,jN
)2 . (8.5)

Since we took εN = 0 for all N , the total mass of µ is 1 in every step. (If one
prefers to take εN > 0 for all N , the definition should be changed to µ(Bi1,...,iN

N ;j1,...,jN
) =

(R1,j1 . . . RN,jN
)2 ∏∞

n=N+1 (1− εn), and the total mass of µ is renormalized by the
factor

∏∞
n=1 (1− εn) > 0, but otherwise the rest of the construction we are about

to describe works well.)
Since ν is the image measure, for any disk Di1,...,iN

N ;j1,...,jN
= ϕi1

1,j1
◦ · · · ◦ ϕiN

N,jN

(
D

)
=

φ−1(Bi1,...,iN
N ;j1,...,jN

= ϕi1
1,j1

◦ · · · ◦ ϕiN
N,jN

(
D

)
) we get

ν(Di1,...,iN
N ;j1,...,jN

) = (R1,j1 . . . RN,jN
)2 . (8.6)

The following lemma simplifies the computation of the Wolff potentials for the
Cantor type sets just described. It was proved in [TUT09], but we recall it here (as
well as its proof) for the convenience of the reader.

Lemma 8.1. For the Cantor type sets just described (in subsection 8.1), for any
α, p > 0 with αp < 2, and for x ∈ φ(E), the Wolff potentials satisfy

Ẇ µ
α,p(x) '

∑
n

(
µ(B(x, 2n))

2n(2−αp)

)p′−1

'
∑

N :x∈B
i1,...,iN
N ;j1,...,jN

(
µ(Bi1,...,iN

N ;j1,...,jN
)

(tj1,...,jN
)(2−αp)

)p′−1

,
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and analogously for ν, Di1,...,iN
N ;j1,...,jN

and sj1,...,jN
.

Proof. We first introduce some convenient notation. For all multi-indices I =
(i1, ..., iN) and J = (j1, ..., jN), where 1 ≤ ik, jk ≤ ∞ (since we are taking infin-
itely many disks in each step of the construction), we will denote by

PN
I;J =

1

σN,jN

ψi1
1,j1

◦ · · · ◦ ψiN
N,jN

(D) (8.7)

a protecting disk of generation N . Then, PN
I;J has radius

r(PN
I;J) =

1

σN,jN

tj1,...,jN
=

(
σ1,j1 . . . σN−1,jN−1

)
(R1,j1 . . . RN,jN

) .

Analogously, we will write

GN
I;J = ψi1

1,j1
◦ · · · ◦ ψiN

N,jN
(D) (8.8)

to denote a generating disk of generation N , which has radius

r(GN
I;J) = tj1,...,jN

= (σ1,j1 . . . σN,jN
) (R1,j1 . . . RN,jN

) .

Notice that, since all values of σn,jn and Rn,jn are ≤ 1
100

, then µ(GN
I;J) = µ(2GN

I;J),
so we can pretend without loss of generality that the radii tj1,...,jN

are of the form
2k, k ∈ Z.

Now, if r(GN
I;J) . t . r(PN

I;J), and x ∈ φ(E) so that B(x, t) ⊆ PN
I;J , then

µ(B(x, t)) = µ(GN
I;J), so that

∑

n:GN
I;J⊆B(x,2n)⊆P N

I;J

(
µ(B(x, 2n))

2n(2−αp)

)p′−1

is a geometric series with sum comparable, with constants depending on α and p,

to its largest term, namely to

(
µ(GN

I;J )

(tj1,...,jN )
(2−αp)

)p′−1

.

And if r(PN
I;J) . t . r(GN−1

I′;J ′ ), where GN−1
I′;J ′ is the unique generating disk of

generation N − 1 containing PN
I;J , and x ∈ φ(E), so that PN

I;J ⊆ B(x, t) ⊆ GN−1
I′;J ′ ,

then

µ(B(x, t)) . t2(
σ1,j1 . . . σN−1,jN−1

) (
R1,j1 . . . RN−1,jN−1

) (
R1,j1 . . . RN−1,jN−1

)2
,

(8.9)
i.e., the mass that µ assigns to B(x, t) is proportional to its area once GN−1

I′;J ′ is

renormalized to D, but multiplied by the mass that µ assigns to GN−1
I′;J ′ , namely(

R1,j1 . . . RN−1,jN−1

)2
. Hence

∑

n:P N
I;J⊆B(x,2n)⊆GN−1

I′;J′

(
µ(B(x, 2n))

2n(2−αp)

)p′−1
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is dominated by a geometric series (if n appears in the above sum and 2n =
r(GN−1

I′;J′ )

2k

with k > 0, then
(

µ(B(x, 2n))

2n(2−αp)

)p′−1

.
(

µ(GN−1
I′;J ′ )

r(GN−1
I′;J ′ )

(2−αp)

2k(2−αp)

22k

)p′−1

,

and hence the above sum is .
(

µ(GN−1
I′;J′ )

r(GN−1
I′;J′ )

(2−αp)

)p′−1

, with constants depending only

on α and p.) ¤

8.2. Example. In order to see that Theorem 1.1 is sharp, it is useful to recall The-
orem 5.5.1 (b) in [AH96] adapted to our situation (and combined with Proposition
5.1.4):

Theorem 8.2. Let E ⊂ C. Then there is a constant A such that

Ċβ,q(E) ≤ AĊα,p(E) ,

for βq = αp = 2− 2
K+1

= 2K
K+1

, p < q.

Moreover, there exist sets E such that Ċβ,q(E) = 0 but Ċα,p(E) > 0.

Hence it is conceivable that Theorem 1.1 might be strengthened to a statement
of the form

Ċβ,q(φ(E))

diam(φ(B))t′ ≤ C(β, q, K)

(
Ċα̃,p̃(E)

diam(B)t

) t′
Kt

,

for some α̃, p̃ such that α̃p̃ = αp = 2 − t and p̃ > p. The following theorem shows
that the answer to this question is negative.

Theorem 8.3. For any α̃, p̃ > 0 such that α̃p̃ = αp = 2− t and p̃ > p, there exists a
compact E ⊂ C and a K-quasiconformal map φ such that Ċβ,q(φE) > 0 (and hence

Ċα,p(E) > 0, due to Theorem 1.1), but Ċα̃,p̃(E) = 0.

Proof. For E and φ as in Subsection 8.1, notice that by Lemma 8.1, for x ∈ φ(E)

Ẇ µ
β,q(x) '

∑

N :x∈B
i1,...,iN
N ;j1,...,jN

(
µ(Bi1,...,iN

N ;j1,...,jN
)

(tj1,...,jN
)2−βq

)q′−1

=
∑

N :x∈B
i1,...,iN
N ;j1,...,jN

(
(R1,j1 . . . RN,jN

)2

(σ1,j1 . . . σN,jN
R1,j1 . . . RN,jN

)2−βq

)q′−1

.

Since on the one hand E is very “close” to satisfying 0 < Ht(E) < ∞ and
0 < Ht′(φE) < ∞ (see (3.9), (3.10) and (4.5) in [UT08]) and, on the other hand, an
important element in the proof of the semiadditivity of analytic capacity is that the
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potential is “approximately constant” on each scale (see [Tol03]), the above equation
suggests the choice

σN,jN
= (RN,jN

)
2−t
tK dN for all N , (8.10)

where dN ∈ [1, 2] is a parameter to be determined, independent of jN .
If we take

dj =

(
j + 1

j

)δ

, (8.11)

for an appropriate δ > 0 to be chosen later, then for x ∈ φE, we have

Ẇ µ
β,q(x) '

∑
n

{
n∏

j=1

1

(dj)
t′(q′−1)

}
=

∞∑
n=2

1

nt′(q′−1)δ
< ∞, (8.12)

once δ > 0 is appropriately chosen, so that Ċβ,q(φE) > 0 (and hence Ċα,p(E) > 0,
due to Theorem 1.1.)

By Lemma 8.1 and (8.1), for x ∈ E,

Ẇ ν
α̃,p̃(x) '

∑

N :x∈D
i1,...,iN
N ;j1,...,jN

(
ν(Di1,...,iN

N ;j1,...,jN
)

(sj1,...,jN
)2−α̃p̃

)p̃′−1

=
∑

N :x∈D
i1,...,iN
N ;j1,...,jN

(
(R1,j1 . . . RN,jN

)2

[
(σ1,j1 . . . σN,jN

)K (R1,j1 . . . RN,jN
)
]2−α̃p̃

)(p̃′−1)

,

so that, substituting σN,jN
= (RN,jN

)
2−t
tK dN and dj =

(
j+1

j

)δ

we get, for x ∈ E,

Ẇ ν
α̃,p̃(x) '

∑
n

{
n∏

j=1

1

(dj)
tK

}(p̃′−1)

=
∞∑

n=2

1

ntK(p̃′−1)δ
= ∞, (8.13)

once δ > 0 is appropriately chosen, so that Ċα̃,p̃(E) = 0.
In order that both (8.12) and (8.13) be satisfied, it is enough to choose δ > 0 so

that tK(p̃′ − 1)δ ≤ 1 < tK(p′ − 1)δ (since tK(p′ − 1) = t′(q′ − 1), which by the way
implies that, in our example, Ẇ µ

β,q(φx) ' Ẇ ν
α,p(x) for x ∈ E.) Since p̃ > p, this can

be achieved by setting

δ =
1

tK(p̃′ − 1)
.

¤
Let us remark that the above example also gives that Ċγ,r(E) = 0 if γ r < α̃ p̃ =

α p = 2 − t. This due to the fact that there is some constant A independent of E
such that

Ċγ,r(E)1/(2−γr) ≤ A Ċα,p(E)1/(2−αp).

See Theorem 5.5.1 of [AH96].
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