A Geometric Proof of the L² Boundedness of the Cauchy Integral on Lipschitz Graphs

Mark S. Melnikov and Joan Verdera

1 Introduction

In this paper we give a new proof of the L^2 boundedness of the Cauchy integral on Lipschitz graphs (and chord-arc curves). Our method consists in controlling the Cauchy integral by an appropiate square function measuring the curvature of the graph. The square function is then estimated via a Fourier transform computation.

Let $\Gamma = \{(x, y) \in \mathbb{R}^2 : y = A(x)\}\$ be the graph of a Lipschitz function A defined on the real line. Then A is locally absolutely continuous and A' is bounded. The Cauchy integral of $f \in L^2(\Gamma)$ is

$$
Cf(z) = \lim_{\varepsilon \to 0} \int_{|\zeta - z| > \varepsilon} \frac{f(\zeta)}{\zeta - z} d\zeta, \qquad z \in \Gamma, \tag{1}
$$

where $d\zeta = d\zeta_{\Gamma}$. The almost everywhere existence (with respect to arclength) of the limit in (1) is a deep result, which in fact is a consequence of L^2 estimates, via standard realvariable methods. Thus, instead of considering the principal value integral (1), one looks at the truncated Cauchy integral

$$
\int_{|\zeta-z|>\epsilon}\frac{f(\zeta)}{\zeta-z}\,d\zeta=\int_{|z(y)-z(x)|>\epsilon}\frac{f(z(y))(1+i\mathcal{A}'(y))}{z(y)-z(x)}\,dy,
$$

where Γ has been parametrized by $z(x) = x + iA(x)$. Neglecting the bounded factor $1 + iA'(y)$ and slightly modifying the domain of integration, one is led to consider the truncated operators

$$
C_{\varepsilon}f(x)=\int_{|y-x|>\varepsilon}\frac{f(y)}{z(y)-z(x)}\,dy,\qquad f\in L^2(\mathbb{R}),\quad \varepsilon>0.
$$

Received 22 May 1995. Communicated by Michael Christ. **Theorem.** For some constant C depending only on $\|A'\|_{\infty}$, one has

$$
\int_{-\infty}^{\infty} |C_{\varepsilon} f(x)|^2 dx \le C \int_{-\infty}^{\infty} |f(x)|^2 dx.
$$
 (2)

 \Box

Calderôn proved inequality (2) when $\|A'\|_\infty$ is sufficiently small [C], and Coifman, McIntosh, and Meyer settled the general case some years later [CMM]. Since then, many other proofs of (2) have been found (see [CJS], [D], [J], [Mu], and [S]). In this paper we add a new proof to the list. In our opinion, the geometric idea behind it is interesting in its own right, and we believe that it should have other applications.

2 The proof

Our first task is to find a good expression for $\int_I |C_\varepsilon(\chi_I)|^2$, χ_I being the characteristic function of the interval I. Clearly,

$$
\int_{I} |C_{\varepsilon}(\chi_{I})|^{2} = \int_{I} C_{\varepsilon}(\chi_{I})(x) \overline{C_{\varepsilon}(\chi_{I})}(x) dx
$$
\n
$$
= \iiint_{T_{\varepsilon}} \frac{1}{z(y) - z(x)} \frac{1}{z(t) - z(x)} dx dy dt,
$$
\n(3)

where $T_{\epsilon} = \{(x, y, t) \in I^3 : |y - x| > \epsilon \text{ and } |t - x| > \epsilon\}.$ The triple integral in (3) is not symmetric, either in the domain or in the kernel. To symmetrize the domain, set

$$
S_\epsilon=\{(x,y,t)\in I^3: |y-x|>\epsilon,\, |t-x|>\epsilon \text{ and } |t-y|>\epsilon\}.
$$

We claim that

$$
\int_{I} |C_{\varepsilon}(\chi_{I})|^{2} = \iiint_{S_{\varepsilon}} \frac{1}{z(y) - z(x)} \frac{1}{z(t) - z(x)} dx dy dt + O(|I|).
$$
 (4)

The claim follows from the inequalities

$$
\iiint_{\mathrm{U}_{\varepsilon,j}} \frac{1}{|z(y)-z(x)|\, |z(t)-z(x)|} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}t \leq C|I|, \qquad j=1,2,\tag{5}
$$

where

$$
U_{\epsilon,1}=\{(x,y,t)\in I^3: |y-x|>\epsilon,\, |t-x|>2\epsilon \text{ and } |t-y|<\epsilon\}
$$

and

$$
U_{\epsilon,2}=\{(x,y,t)\in I^3: |y-x|>\epsilon, \ \epsilon<|t-x|<2\epsilon \text{ and } |t-y|<\epsilon\}.
$$

On $U_{\epsilon,2}$ the integrand in (5) is not greater than ϵ^{-2} . Hence (5) is obvious for j = 2. For $j = 1$, the triple integral in (5) can be estimated by the iterated integral

$$
\int_I \int_{|t-x|>2\varepsilon} \int_{|y-t|<\varepsilon} \frac{2}{|t-x|^2} dy dt dx.
$$

Therefore, (5) holds also for $j = 1$.

To symmetrize the kernel in (4), we permute the position of the three variables in all possible ways, and we get

$$
6\int_{I} |C_{\varepsilon}(\chi_{I})|^{2} = \iiint_{S_{\varepsilon}} \left(\sum_{\sigma} \frac{1}{z(x_{\sigma(2)}) - z(x_{\sigma(1)})} \frac{1}{z(x_{\sigma(3)}) - z(x_{\sigma(1)})} \right) dx_{1} dx_{2} dx_{3} + O(|I|),
$$
\n(6)

where the sum is taken over the six permutations of the set $\{1, 2, 3\}$.

We need now two lemmas. The first computes the kernel of the triple integral in (6), and the second provides an estimate for the integral.

Lemma 1 [M]. Given three pairwise distinct points z_1 , z_2 , and z_3 in the plane, we have

$$
\sum_{\sigma}\frac{1}{z_{\sigma(2)}-z_{\sigma(1)}}\frac{1}{\overline{z_{\sigma(3)}-z_{\sigma(1)}}}=\left(\frac{4S(z_1,z_2,z_3)}{|z_2-z_1|\,|z_3-z_1|\,|z_2-z_3|}\right)^2,
$$

where $S(z_1, z_2, z_3)$ is the area of the triangle with vertices at z_1 , z_2 , and z_3 .

 \Box

By elementary geometry, the quantity

$$
c(z_1, z_2, z_3) \equiv \frac{4S(z_1, z_2, z_3)}{|z_2 - z_1 | z_3 - z_1 | | z_2 - z_3|}
$$

turns out to be equal to R^{-1} , where R is the radius of the circle passing through z_1 , z_2 , and z_3 , and also equal to

$$
\frac{2\sin\alpha_{ij}}{|z_i-z_j|}, \qquad i\neq j,
$$

where α_{ij} is the angle, in the triangle determined by z_1 , z_2 , and z_3 , opposite to the side z_1z_1 . In some geometry textbooks, $c(z_1, z_2, z_3)$ is called the Menger curvature associated to the points z_1, z_2, z_3 . (See [BM, p. 361] for a reference to the original paper by Menger in which $c(z_1, z_2, z_3)$ was first introduced.) A notion of "curvature of a measure" involving $c(z_1, z_2, z_3)$ was considered in [M] in connection with analytic capacity.

Proof of Lemma 1. Set $a = z_2 - z_1$ and $b = z_3 - z_1$. A simple computation gives

$$
\text{Re}\left(\frac{1}{ab}+\frac{1}{b(\overline{b}-\overline{a})}-\frac{1}{(b-a)\overline{a}}\right)=2\left(\frac{|a|^2|b|^2-\text{Re}(a\overline{b})^2}{|a|^2|b|^2|b-a|^2}\right),
$$

from which Lemma 1 follows readily.

П

Using the formula

$$
S(z_1, z_2, z_3) = |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|, \tag{7}
$$

.

where $x_i = \text{Re}(z_i)$, $y_i = \text{Im}(z_i)$, $i = 1, 2, 3$, one gets

$$
c(z(x),z(y),z(t)) \leq 2\left|\frac{\displaystyle \frac{A(y)-A(x)}{y-x}-\frac{A(t)-A(x)}{t-x}}{t-y}\right|
$$

Lemma 2. Let a be a locally absolutely continuous function on the real line such that $\alpha' \in L^2(\mathbb{R}).$ Then

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\frac{a(y) - a(x)}{y - x} - \frac{a(t) - a(x)}{t - x}}{t - y} \right)^2 dx dy dt = \alpha \|a'\|_2^2,
$$
 (8)

for some numerical constant α .

Proof. Introducing new variables $h = y - x$ and $k = t - x$ and applying Plancherel in x, one shows that the triple integral in (8) is equal to

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \frac{\frac{e^{i\xi h} - 1}{\xi h} - \frac{e^{i\xi k} - 1}{\xi k}}{h - k} \right|^2 |a'(\xi)|^2 d\xi dh dk
$$

$$
= ||a'||_2^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \frac{\frac{e^{iu} - 1}{u} - \frac{e^{iv} - 1}{v}}{u - v} \right|^2 du dv,
$$

where $u = \xi h$ and $v = \xi k$.

If $E(u) = (e^{iu} - 1)/iu$, then the above double integral is

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| \frac{E(u+t) - E(u)}{t} \right|^2 du dt,
$$

which, by Plancherel and the identity $\hat{E} = 2\pi \chi_{(0,1)}$, turns out to be

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\hat{E}(\xi)|^2 \left| \frac{e^{i\xi t} - 1}{t} \right|^2 d\xi dt = 2\pi \int_{-\infty}^{\infty} \int_{0}^{1} \left| \frac{e^{i\xi t} - 1}{t} \right|^2 d\xi dt.
$$

That the last integral is finite follows from the fact that the integrand can be estimated by 4t⁻² if $|t| > 1$ and by a constant times ξ^2 if $|t| \leq 1$. \blacksquare

 \Box

 \blacksquare

Corollary. For some universal constant C, one has, for each interval I,

$$
\int_{I} \int_{I} \int_{I} c^{2}(z(x), z(y), z(t)) dx dy dt \leq C ||A'||_{\infty}^{2} |I|.
$$
\n(9)

Proof. Given I = [α , β], consider the first-degree polynomial P_I(x) = A(α) + A_I(x - α), where $A'_1 = (1/|I|) \int_I A' = (A(\beta) - A(\alpha))/(\beta - \alpha)$, and set $\alpha = (A - P_I)\chi_I$. Then the left-hand side of (9) is not greater than

$$
4\int_I \int_I \int_I \left(\frac{\frac{A(y) - A(x)}{y - x} - \frac{A(t) - A(x)}{t - x}}{t - y} \right)^2 dx dy dt
$$

$$
\leq 4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\frac{\frac{a(y) - a(x)}{y - x} - \frac{a(t) - a(x)}{t - x}}{t - y} \right)^2 dx dy dt
$$

$$
= 4\alpha ||(A' - A'_1)\chi_I||_2^2 \leq 16\alpha ||A'||_{\infty}^2 |I|.
$$

Remark. The reader should compare the last inequality with [Ch, Proposition 16, p. 32], in which an essentially equivalent estimate for the β 's of P. Jones is discussed.

Combining (6), Lemma 1, and (9), we obtain

$$
\int_{I} |C_{\varepsilon}(\chi_{I})|^{2} \leq C|I|,
$$
\n(10)

for each interval I, with $C = C(\|A'\|_{\infty})$.

Notice that (10) is equivalent to saying that $C_{\epsilon}(1) \in BMO(\mathbb{R})$, with BMO-norm bounded independently of ε . The T1-Theorem [DJ] now concludes the proof of (2). However, with a little more effort we can avoid appealing to the T1-Theorem. Let b be a real function in $L^{\infty}(I)$. It is easily seen that

$$
2\int_{I} |C_{\varepsilon}(b)|^{2} + 4 \operatorname{Re} \int_{I} C_{\varepsilon}(b) \overline{C_{\varepsilon}(\chi_{I})} b
$$

=
$$
\iiint_{S_{\varepsilon}} c^{2}(z(x), z(y), z(t)) b(y) b(t) dx dy dt + O(||b||^{2}_{\infty} |I|).
$$

Then, by (9) and (10),

$$
\int_{I} |C_{\varepsilon}(b)|^{2} \leq C \|b\|_{\infty} |I|^{1/2} \left(\int_{I} |C_{\varepsilon}(b)|^{2} \right)^{1/2} + C \|b\|_{\infty}^{2} |I|,
$$

330 Melnikov and Verdera

and thus $\int_I |C_\varepsilon(b)|^2 \leq C ||b||_\infty^2 |I|$. Hence

$$
\int_I |C_{\varepsilon}(b)| \leq \left(\int_I |C_{\varepsilon}(b)|^2\right)^{1/2} |I|^{1/2} \leq C \|b\|_{\infty} |I|,
$$

and this easily implies that C_{ε} boundedly sends L $^{\infty}(\mathbb{R})$ into BMO(\mathbb{R}) and H¹(\mathbb{R}) into L¹(\mathbb{R}), with bounds independent of ε . By interpolation we finally get (2).

3 Chord-arc curves

A (locally) rectifiable curve Γ passing through ∞ is said to be a chord-arc curve provided the length $(a\overrightarrow{b}) \leq (1+c)|a-b|$, for some positive constant c and all $a, b \in \Gamma$, where \widehat{ab} denotes the arc contained in Γ joining a and b. In terms of the arclength parametrization z(t) of Γ, the chord-arc condition is

$$
|t - s| \le (1 + c)|z(t) - z(s)|, \qquad t, s \in \mathbb{R}.
$$
 (11)

The L^2 boundedness of the Cauchy integral on a chord-arc curve is equivalent to the following.

Theorem. If

$$
C_{\varepsilon}f(t)=\int_{|s-t|>\varepsilon}\frac{f(s)\,ds}{z(s)-z(t)},\qquad f\in L^2(\mathbb{R}),\quad \varepsilon>0,
$$

then

$$
\int_{-\infty}^{\infty} |C_{\epsilon}f(t)|^2 dt \leq C \int_{-\infty}^{\infty} |f(t)|^2 dt,
$$

for some $C = C(\Gamma)$ independent of ε .

Using (7) and (11), one gets

$$
c(z(t), z(s), z(u)) \leq C \left| \frac{\frac{z(t) - z(s)}{t - s} - \frac{z(u) - z(s)}{u - s}}{t - u} \right|,
$$

and thus, by Lemma 2 and localization,

$$
\iint_I \int_I \int_{I} c^2(z(t), z(s), z(u)) dt ds du \le C|I|, \text{ for any interval } I.
$$

The proof of the theorem is now completed as in Section 1.

Acknowledgments

Both authors were partially supported by grant DGICYT PB93-0863. Thanks are due to M. Christ for some useful comments on the first version of the paper.

 \Box

References

- [BM] L. M. Blumenthal and K. Menger, *Studies in Geometry*, Freeman, San Francisco, 1970.
- [C] A. P. Calderôn, *Cauchy integrals on Lipschitz curves and related operators*, Proc. Nat. Acad. Sci. U.S.A. **74** (1977), 1324–1327.
- [Ch] M. Christ, *Lectures on Singular Integral Operators*, CBMS Regional Conf. Ser. in Math. **77**, Amer. Math. Soc., Providence, 1990.
- [CJS] R. R. Coifman, P. W. Jones, and S. Semmes, *Two elementary proofs of the* L² *boundedness of the Cauchy integral on Lipschitz curves*, J. Amer. Math. Soc. **2** (1989), 553–564.
- [CMM] R. R. Coifman, A. McIntosh, and Y. Meyer, *L'integral de Cauchy d´efinit un operateur born´e sur* L² *pour les courbes lipschitziennes*, Ann. of Math. (2) **115** (1982), 361–387.
- [D] G. David, *Op`erateurs integraux singuliers sur certaines courbes du plan complexe*, Ann. Sci. École Norm. Sup. (4) 17 (1984), 157-189.
- [DJ] G. David and J. L. Journè, *A boundedness criterion for generalized Calderôn-Zygmund operators*, Ann. of Math. (2) **120** (1984), 371–397.
- [J] P. W. Jones,"Square functions, Cauchy integrals, analytic capacity, and harmonic measure" in *Harmonic Analysis and Partial Differential Equations*, Lecture Notes in Math. **1384**, Springer-Verlag, Berlin, 1989, 24–68.
- [M] M. S. Melnikov, *Analytic capacity: Discrete approach and curvature of measures*, to appear in Mat. Sb.
- [Mu] T. Murai, *A Real Variable Method for the Cauchy Transform*, *and Analytic Capacity*, Lecture Notes in Math. **1307**, Springer-Verlag, Berlin, 1988.
- [S] S. Semmes, *Square function estimates and the* T(b) *Theorem*, Proc. Amer. Math. Soc. **110** (1990), 721–726.

Department of Mathematics, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain