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A Geometric Proof of the L? Boundedness
of the Cauchy Integral on Lipschitz Graphs

Mark S. Melnikov and Joan Verdera

1 Introduction

In this paper we give a new proof of the L? boundedness of the Cauchy integral on
Lipschitz graphs (and chord-arc curves). Our method consists in controlling the Cauchy
integral by an appropiate square function measuring the curvature of the graph. The
square function is then estimated via a Fourier transform computation.

Let T = {(x,y) € R? : y = A(x)} be the graph of a Lipschitz function A defined
on the real line. Then A is locally absolutely continuous and A’ is bounded. The Cauchy

integral of f € L2(I" is

Cf(z) = limJ fle) de, zel] (1)
=0 )jzpne C— 2

where d¢ = d{;r. The almost everywhere existence (with respect to arclength) of the limit
in (1) is a deep result, which in fact is a consequence of [? estimates, via standard real-
variable methods. Thus, instead of considering the principal value integral (1), one looks
at the truncated Cauchy integral

J’ () dc — J f(zy)(1 +1iA’(y))

li—zl>e 6= Z 2 -z>e  Z2Y) = z(x)

where I' has been parametrized by z(x) = x+1A(x). Neglecting the bounded factor 1 +1iA’(y)

)

and slightly modifying the domain of integration, one is led to consider the truncated
operators

fly)

— dy, fel2([R), €>0.
ly—x|>e¢ Z(y) — Z(X)

Ccflx) = J
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Theorem. For some constant C depending only on ||A’|| ., one has
o0

JOO |Cef(x)|? dx < CJ [f(x)[* dx. (2)

—0Q —0Q

O

Calderon proved inequality (2) when ||A’||« is sufficiently small [C], and Coifman,
McIntosh, and Meyer settled the general case some years later [CMM]. Since then, many
other proofs of (2) have been found (see [CJS], [D], [J], [Mul], and [S]). In this paper we add
a new proof to the list. In our opinion, the geometric idea behind it is interesting in its

own right, and we believe that it should have other applications.

2 The proof

Our first task is to find a good expression for [, |C.(x1)|?, x1 being the characteristic func-

tion of the interval I. Clearly,

J |CelxD)? = J Ce(x1) () Celx)(x) dx
I I

1 1
= —— dxdydt, 3
JJJTE zly) — z(x) Z{t) — z(x) Xy (3)

where T, = {(x,y,t) € I¥ : [y — x| > ¢ and |t — x| > ¢}. The triple integral in (3) is not

symmetric, either in the domain or in the kernel. To symmetrize the domain, set
Se={xy,t)elP:ly—x|>c¢ [t—x|>cand|t—y| > e}

We claim that

1 1
J |Ce(x1)I? =JJ'J ——— dxdy dt + O(|I)). (4)
I s, zly) — z(x) z(t) — z(x)

The claim follows from the inequalities

1
dxdyd C|I j=1,2 5
Jﬂu 2ty — 200 [2(0 — 26 A=A =12 )

where
Uy ={xy,) eB:ly—x|>e [t—x| >2eand [t —y| < e}
and

Ueo={x,y,) eBily—x|>e e<|t—x| <2eand|t—y|< e}
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-2

On U, the integrand in (5) is not greater than ¢ “. Hence (5) is obvious for j = 2. For

j =1, the triple integral in (5) can be estimated by the iterated integral

2
——— dy dtdx.
J'I Jlt—x>2£ Jy—t<£ It —x|?

Therefore, (5) holds also for j = 1.
To symmetrize the kernel in (4), we permute the position of the three variables in

all possible ways, and we get

1 1
6| |C.x)? = m — | dx;dxpd
JI |Celxl Se ; zXo(2) — z(Xo(1)) z(xo(3) — z(Xe(1) a0

+ O([1)), (6)

where the sum is taken over the six permutations of the set {1, 2, 3}.
We need now two lemmas. The first computes the kernel of the triple integral in

(6), and the second provides an estimate for the integral.

Lemma 1 [M]. Given three pairwise distinct points z;, z;, and z3 in the plane, we have

y ! 1 _( 4S(z1, 22, z) )2
Zo(2) — Zo(1) Zo(3) — Zo(1) lzo — 21| |zg — z1] |22 — 23] )

o

where S(z;, 23, z3) is the area of the triangle with vertices at z;, z,, and zs. O

By elementary geometry, the quantity

45(z1,29, 23)

clz1,2g,23) =
|z2 — 21 |23 — 21| |22 — 23|

turns out to be equal to R™!, where R is the radius of the circle passing through z;, z;,
and z3, and also equal to
2 sin oy . .
oz 1# ],
where oy; is the angle, in the triangle determined by z;, zz, and z3, opposite to the side
ziz;. In some geometry textbooks, c(z,z3,23) is called the Menger curvature associated
to the points z;, z5, z3. (See [BM, p. 361] for a reference to the original paper by Menger
in which c(zy, z, z3) was first introduced.) A notion of “curvature of a measure” involving

c(z1,z2,23) was considered in [M] in connection with analytic capacity.

Proof of Lemma 1. Seta=2z; —z; and b = z3 — z;. A simple computation gives

( 1 1 1 ) la|?|b|? — Re(ab)?
e\ — + — - — ]| = 2 )
ab bb-a@ b-aa lal?[bl?|b — al?

from which Lemma 1 follows readily. ]
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Using the formula
S(z1,22,2z3) = |(x2 — x1)(ys — Y1) — (x3 — x1)(y2 — y1ll, (7)

where x; = Rel(z;), y; = Iml(z), j =1, 2,3, one gets
Aly) — Alx) B Alt) — Alx)
y—x t—x
t-vy

c(zlx), z(y), z(t)) < 2

Lemma 2. Let a be a locally absolutely continuous function on the real line such that

a’ € L%(R). Then

aly) —al) alt) —ak)\?

J J J Y dx dy dt = «||d||3, (8)
—00 J—00 J—00 t_y

for some numerical constant o. O

Proof. Introducing new variables h =y —x and k =t — x and applying Plancherel in x,

one shows that the triple integral in (8) is equal to

eieh 1 eitk _ 1 2

S R &Eh &k e
|a’(&)]” d& dh dk
J'foojfool[foo h-_k
et —1 eV 12
o0 o0 -
:na/nﬁj J u V| dqudv,
o0 J—oo u-—v

where u = &h and v = &k.
If E(uw) = (e — 1)/iu, then the above double integral is

2

du dt,

(> r‘” ‘E(qut)—E(u)
t

J—00 J—00

which, by Plancherel and the identity E= 27X(0,1), turns out to be
1 2 00 1
dédt=2n J J

—00 JO

2

i
¢ dE. dt.

ettt — 1

J E@©)?
J—=00 J—00

That the last integral is finite follows from the fact that the integrand can be estimated
by 4t2 if |t| > 1 and by a constant times &2 if |t| < 1. [ |
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Corollary. For some universal constant C, one has, for each interval I,
J J J c?(zlx), zly), z(t)) dx dy dt < C|A|A|1]. 9)
1Jrlr

O

Proof. Given I = [«, ], consider the first-degree polynomial Pi(x) = A(x) + Ajlx — «),
where A} = (1/|I])) [; A’ = (A(B) — Alx))/(p — «), and set a = (A — Py)x;. Then the left-hand
side of (9) is not greater than

Aly) — Ak Al —AK) 2

4JH y-x tox dx dy dt
1JiJi t—y
aly) —alx)  alt) - alx) 2
o0 o0 o0
54J J J y-x tox dx dy dt
—00 J—00 J—00 t—-vy
= 4u(A" = ADxil3 < 16| A4 111, n

Remark. Thereader should compare the last inequality with [Ch, Proposition 16, p. 32],

in which an essentially equivalent estimate for the 3's of P. Jones is discussed.

Combining (6), Lemma 1, and (9), we obtain
J ICc(xnI? < ClTl, (10)
I

for each interval I, with C = C(||A’]|c0)-

Notice that (10) is equivalent to saying that C.(1) € BMO(R), with BMO-norm
bounded independently of €. The T1-Theorem [DJ] now concludes the proof of (2). However,
with a little more effort we can avoid appealing to the T1-Theorem. Let b be a real function

in L°°(I). It is easily seen that

2J IC.(b)2 +4Rej C.(b)C.x)b

I I

- m ¢2(2(x), z{y), () blylb(t) dx dy dt + O(bI2 |T)).
Se

Then, by (9) and (10),

1/2
J IC.O) < CllbllwlT]2 (j |c£<b)|2> T CIbIZ I,
1 I
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and thus [, |C.(b)|* < C|blI%|1|. Hence

1/2
J 1C.(b)] < (J |Ce(b)|2) 1Y < Cllbllul1l,
I 1

and this easily implies that C. boundedly sends L*(R) into BMO(R) and H!(R) into L}(R),
with bounds independent of ¢. By interpolation we finally get (2). [ ]

3 Chord-arc curves

A (locally) rectlﬁable curve " passing through oo is said to be a chord-arc curve prov1ded
the length (ab) < (1 + ¢)]a — b|, for some positive constant ¢ and all a, b € ', where ab
denotes the arc contained in I" joining a and b. In terms of the arclength parametrization

z(t) of T', the chord-arc condition is
[t —s| < (14 c)|z(t) — z(s)], t, s e R. (11)

The L2 boundedness of the Cauchy integral on a chord-arc curve is equivalent to

the following.

Theorem. If

f(s)d
Cf(t) =J sy czm), e s o,
|s—t|>¢ Z(S) - Z(t)
then
J |Cf(t)2 dt < CJ If(t)]? dt,
for some C = C(I') independent of ¢. O

Using (7) and (11), one gets

z{t) —z(s)  z(u) —z(s)

t—s u-—=:

clz(t), z(s), z(w) < C
t—u

and thus, by Lemma 2 and localization,
J J J c2(z(t), z(s), z(w)) dt ds du < C|I|, for any interval I.
1JiJi

The proof of the theorem is now completed as in Section 1.

Acknowledgments

Both authors were partially supported by grant DGICYT PB93-0863. Thanks are due to M. Christ

for some useful comments on the first version of the paper.



L2 Boundedness of the Cauchy Integral on Lipschitz Graphs 331

References

[BM] L. M. Blumenthal and K. Menger, Studies in Geometry, Freeman, San Francisco, 1970.

[C] A. P. Calderdn, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat.
Acad. Sci. U.S.A. 74 (1977), 1324-1327.

[Ch] M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conf. Ser. in Math. 77,
Amer. Math. Soc., Providence, 1990.

[CJS]  R.R. Coifman, P. W. Jones, and S. Semmes, Two elementary proofs of the L? boundedness
of the Cauchy integral on Lipschitz curves, J. Amer. Math. Soc. 2 (1989), 553-564.

[CMM] R.R.Coifman, A. McIntosh, and Y. Meyer, L'integral de Cauchy définit un operateur borné
sur L2 pour les courbes lipschitziennes, Ann. of Math. (2) 115 (1982), 361-387.

[D] G. David, Opérateurs integraux singuliers sur certaines courbes du plan complexe, Ann.
Sci. Ecole Norm. Sup. (4) 17 (1984), 157-189.

[DJ] G. David and J. L. Journe, A boundedness criterion for generalized Calderén-Zygmund
operators, Ann. of Math. (2) 120 (1984), 371-397.

[J1 P. W. Jones, “Square functions, Cauchy integrals, analytic capacity, and harmonic measure”
in Harmonic Analysis and Partial Differential Equations, Lecture Notes in Math. 1384,
Springer-Verlag, Berlin, 1989, 24-68.

[M] M. S. Melnikov, Analytic capacity: Discrete approach and curvature of measures, to ap-
pear in Mat. Sh.

[Mul] T. Murai, A Real Variable Method for the Cauchy Transform, and Analytic Capacity, Lec-
ture Notes in Math. 1307, Springer-Verlag, Berlin, 1988.

[S] S. Semmes, Square function estimates and the T(b) Theorem, Proc. Amer. Math. Soc. 110

(1990), 721-726.

Department of Mathematics, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona,

Spain



