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Abstract

We review various motives for considering the problem of estimating the Cauchy
Singular Integral on Lipschitz graphs in the L2 norm. We follow the thread that
led to the solution and then describe a few of the innumerable applications and
ramifications of this fundamental result. We concentrate on its influence in complex
analysis, geometric measure theory and harmonic measure.
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1 Introduction

In 1982 Coifman, McIntosh and Meyer proved that the Cauchy Singular Integral on a
Lipschitz graph is L2 bounded with respect to arc length on the curve [CMM]. This is a
deep result, simple to state, elegant, direct. In spite of its apparently specialized nature, it
lies at the core of subtle important problems in PDE, and complex and harmonic analysis.
It had resisted several attempts, devised by excellent mathematicians, to discover a way
to the proof. The story begins with Calderón and his first commutator, which he proved
to be L2 bounded in 1965 [C1]. It continues when an important breach was opened in
1977 by Calderón himself, who showed the estimate assuming that the Lipschitz graph
has uniformly small slopes everywhere [C2]. This triggered a general mobilisation for the
definitive assault, successfully achieved by Coifman, McIntosh and Meyer.

The impact of the CMcM (Coifman-McIntosh-Meyer) Theorem has been impressivily
gigantic in a variety of areas, like PDE in Lipschitz domains, Kato square root problem,
harmonic measure, complex analysis, singular integrals in non-homogeneous spaces and
many more. The plan of this paper is, in the first place, to describe how the Russian
School (Privalov, Vitushkin) walked the path to the walls of the CMcM Theorem. Their
motivation was very different from Calderón’s, which has been explained very clearly in
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various excellent expositions [M1, M2, S], and closer to my personal mathematical inter-
ests. Then I will describe some of the fantastic realms the magic key provided by CMcM
opens the way: Painlevé’s problem, semi-additivity of analytic capacity, rectifiability, har-
monic measure and many others. The exposition does not aim at completeness, which is
practically impossible in a short paper, and is very personal in all of its aspects.

Let A : R→ R be a Lispchitz function with Lipschitz constant

‖A‖Lip = sup
x 6=y

|A(y)− A(x)|
|y − x|

and let Γ = {(x,A(x)) : x ∈ R} be its graph. The Cauchy Singular Integral is

(1) C(f)(z) = p. v.

∫
Γ

1

z − w
f(w) dw, z = x+ iA(x),

where the principal value

p. v.

∫
Γ

1

z − w
f(w) dw = lim

ε→0

∫
w∈Γ:|w−z|>ε

1

z − w
f(w) dw.

exists a.e. with respect to arc length on the graph for f smooth with compact support,
by an elementary argument.

Then the “key that opens all doors”, in the words of Y.Meyer, is the following inequal-
ity

Theorem. There exists a constant C depending only on ‖A‖Lip such that

(2) ‖C(f)‖L2(Γ) ≤ C ‖f‖L2(Γ), f ∈ L2(Γ).

We are implicitly stating that one first shows the inequality for f ∈ C∞0 (Γ) and then
applies the standard machinery to show that the principal value integral in (1) exists a.e.
for each function in L2(Γ) and the L2 estimate (2) holds.

There is another equivalent expression for the Cauchy Singular Integral. Since for
w(y) = y+iA(y) one has dw = (1+iA′(y)) dy, incorporating the bounded factor 1+iA′(y)
into f(y + iA(y)), on can consider the equivalent operator

C(f)(x) = p. v.

∫
Γ

1

x− y + i(A(x)− A(y))
g(y) dy

= lim
ε→0

∫
|y−x|>ε

1

x− y + i(A(x)− A(y))
g(y) dy,

where now g(y) = f(y + iA(y))(1 + iA′(y)) with f ∈ C∞0 (Γ). The set of g is dense in
L2(R) and the inequality to be proven is

(3) ‖C(g)‖L2(R) ≤ C ‖g‖L2(R).
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In the first formulation the ambient space is the Lipschitz graph and the measure arc
length on the graph, which is clearly doubling (the measure of a ball centred at a of
radius 2r is less than a constant times the measure of the ball with the same center and
radius r). In the second formulation the ambient space is R and the underlying measure
the familiar one dimensional Lebesgue measure. The main obvious difficulty for (3) is
that the kernel is not of convolution type, except for A linear (in which case you get
a multiple of the Hilbert transform), and therefore the Fourier transform seems to be a
forbidden tool. In spite of this there is a proof of (3) that relies on a reduction to a Fourier
transform computation [MV].

The problem is truly beautiful and challenging. One feels immediately (and naively)
that one can try something. I remember myself considering polygonal graphs and trying
to make estimates depending only on the biggest slopes. At another time I tried to
emulate Loomis [L] and I found myself making calculations with linear combinations of
point masses. In both occasions I did not get anywhere.

2 The fifties: Privalov

Let Γ be a closed rectifiable Jordan curve enclosing a bounded domain D. Privalov was
interested in non-tangential limits of the Cauchy integral of a integrable function with
respect to arc length on Γ. The Cauchy Integral of such an f is defined on C \ Γ by

C(f)(z) =
1

2πi

∫
Γ

1

w − z
f(w) dw, z /∈ Γ.

One would like to take non-tangential limits of C(f)(z) at points a ∈ Γ where a tangent
exists, that is, limits when the variable z approaches the point a either from D or from the
exterior, but is constrained to remain in a double sided cone K(a) with axis the normal
line to Γ at a and some fixed aperture. One writes

C(f)+(a) = lim
K(a)∩D3z→a

C(f)(z),

and
C(f)−(a) = lim

K(a)∩Dc3z→a
C(f)(z),

whenever these limits exist. There is a third operator involved, the Singular Cauchy
Integral, defined in terms of principal values, provided they exist, namely

C(f)(a) =
1

2πi
p. v.

∫
Γ

1

w − a
f(w) dw, a ∈ ∂D.

Privalov was interested in deciding whether the limits above are defined a.e. with respect
to arc length on Γ. He proved in [P] that, given f ∈ L1(Γ), at arc length almost all points
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of Γ the existence of one of these limits implies the existence of the other two and one has
the classical Plemelj − Sohotski formulas

C(f)+(a) = C(f)(a) +
1

2
f(a),

C(f)−(a) = C(f)(a)− 1

2
f(a),

C(f)+(a)− C(f)−(a) = f(a).

Privalov did not mention in his book any connection with L2 estimates for the Cauchy
Singular Integral, in spite of the fact that the reduction of the a.e. existence of these
limits to Calderón’s Theorem on L2 estimates on Lipschitz graphs with small constant is
rather easy. Havin showed in 1965 [H] that for the a.e. existence problem one can reduce
the case of integrable functions to that of continuous functions. Much later Dynkin
modified slightly Havin’s argument to make the reduction from a general rectifiable curve
to a Lipschitz curve with small constant. The interested reader will find more details in
Dynkin’s excellent survey in the Encyclopedia of Mathematics [Dy, p. 216].

Therefore one is led to questions about L2 boundedness by issues concerning a.e.
existence of certain limits. It is somehow odd that the problem was not pushed by the
Russian school to the very heart of the matter, namely, inequality (2).

3 The sixties: Vitushkin

In the sixties the problem of uniform rational approximation was very popular in the
United States, Canada and the Soviet Union. Given a compact set K and a continu-
ous function f on K one would like to know under which conditions f can be uniformly
approximated on K by rational functions with poles off K, or, equivalently (by Runge’s
Theorem), by functions analytic on neighbourhoods of K. Assume that f has been ex-
tended to a continuous function on C. Then Vitushkin proved in a remarkable paper [Vi]
that a necessary and sufficient condition for the approximability of f by rational functions
without poles on K is that there exists a function ω(δ), δ > 0, tending to 0 with δ, such
that for each open square Q of side length δ one has

(4)

∣∣∣∣∫
∂Q

f(z) dz

∣∣∣∣ ≤ ω(δ) γ(Q \K).

Here γ is a set function, called analytic capacity, introduced by Ahlfors in [A]. To under-
stand better the above inequality it is necessary to devote some lines to γ. The analytic
capacity of a compact set E is

(5) γ(E) = sup |h′(∞)|,
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where the supremum is taken over all bounded analytic functions h on C \ E satisfying
the normalization condition |h(z)| ≤ 1, z /∈ E. If F is any set then γ(F ) is the supremum
of γ(E) on compact sets E ⊂ F. It is straightforward that γ(E) = 0 if and only if
E is removable for bounded analytic functions, so that γ quantifies the notion of non-
removability for H∞. For example, the analytic capacity of a disc B(a, r) of center a and
radius r is exactly the radius. Painlevé proved that a set of zero Hausdorff length is
removable and it is not difficult to argue that a set of Hausdorff dimension greater than 1
is non-removable. There are inequalities in terms of γ that quantify the above statements,
namely

CβH
β
∞(E)

1
β ≤ γ(E) ≤ H1

∞(E), 1 < β,

where Hβ
∞ stands for β-dimensional Hausdorff content. Ahlfors asked in [A] for geometric

characterizations of removability, and this has been called since then the Painlevé problem.
At that time papers were written without a list of references, so that no paper by Painlevé
was mentioned by Ahlfors. I believe that Ahlfors himself was the first to ask for geometric
characterizations of H∞ removability. He wrote “I have not been able to push the solution
so far”. Tolsa found the solution in [T2], 54 years after Ahlfors’ paper, building on hard
brilliant work by the previous generations. In particular, the proof is rooted in the ground
of the magic key (1).

Let us discuss Vitushkin’s condition (4). If Q ⊂ K then the right hand side of (4)
vanishes and f is analytic on the interior of K by Morera’s theorem. If Q does not intersect
K then (4) is trivially satisfied with ω the modulus of continuity of f (substract from f
its value at the center of Q). Thus the condition really involves squares that intersect
∂K and should be viewed as a weak analyticity condition for f on the boundary of K.
It can be easily seen that (4) implies Mergelyan’s theorem : if the complement of K is
connected then any continuous function on K, analytic on its interior, can be uniformly
approximated on K by holomorphic polynomials.

In fact, there is a close relative of γ, called continuous analytic capacity, that is more
tightly connected to approximation issues than γ. The continuous analytic capacity α(E)
of a compact set E is the supremum in (5) taken over analytic functions on C \ E, that
extend continuously to C and satisfy the normalization |h(z)| ≤ 1, z /∈ E. If F ⊂ C,
then α(F ) is the supremum of α(E) over compact subsets E of F. If the function f is
continuous on the plane and analytic on the interior of K, then one has a weaker form of
(4), namely,

(6)

∣∣∣∣∫
∂Q

f(z) dz

∣∣∣∣ ≤ ω(δ)α(Q \ K̊),

where ω is a constant times the modulus of continuity of f. It is easily seen that γ and α
agree on open sets, so that in right hand side of (4) γ(Q\K) can be replaced by α(Q\K).
Then a consequence of (4) is the following striking result [Vi].
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Theorem. For a compact subset K of the plane the following are equivalent.
(i) Every continuous function on K, analytic on its interior, can be uniformly approx-

imated on K by rational functions with poles off K.
(ii) For each open square Q

(7) α(Q \ K̊) ≤ C α(Q \K),

where the constant C is independent of Q.

In Vitushkin’s terminology a singularity of a function f is a point such that in no
neighbourhood of the point f is analytic. In other words, it is a point in the support
of the distribution ∂f. The proof that condition (7) implies the approximation property
on K consists in localizing the singularities of the function to be approximated and then
pushing them off K by (7). Condition (7) is explicit enough to provide several examples of
sets K with the approximation property. For example, if the complement of K has finitely
many components then (7) holds. It also holds if the inner boundary of K is very small.
The inner boundary of K is the set of boundary points which are not in the closure of
a bounded component of the complement of K. Imagine a compact set constructed from
the closed unit disc by deleting a sequence of mutually disjoint open discs accumulating
at the origin. Then the origin is the only point in the inner boundary and property (7)
holds. Vitushkin proved that if these discs accumulate to a Jordan arc of class C1+ε then
(7) still holds, in spite of the fact that the inner boundary is a one dimensional object.
The drawback was that his method did not cover the case ε = 0. The situation was then,
let us say, uncomfortable.

If J denotes the arc, E the union of the boundaries of the deleted discs and Q is an
open square, then

Q \ K̊ = (Q ∩ J) ∪ (Q ∩ E) ∪ (Q \K)

and Vitushkin’s approximation technique gives readily that

α(Q \ K̊) = α((Q ∩ J) ∪ (Q \K)).

6



It is not difficult to show that a set of finite length (one dimensional Hausdorff measure)
has zero continuous analytic capacity. Thus the following conjecture arises.

Semiadditivity of α. There exist a constant C such that

α(K1 ∪K2) ≤ C (α(K1) + α(K2)) ,

for all compact sets K1 and K2.

This, of course, implies that the approximation property holds if the inner boundary
is a C1 arc and even if it is a rectifiable arc. There is an analog of the semiadditivity
conjecture for analytic capacity.

It turns out that both forms of semiaddivity were proved to hold true many years
later by Tolsa in [T2] and [T3] using sophisticaded methods based essentially on a special
form of the T (b) theorem, which is a close descendant of the CMcM theorem. Again,
as we said when referring to the solution of Painlevé’s problem, Tolsa’s results depend
on previous subtle, outstanding work by other mathematicians (David, Jones, Nazarov,
Melnikov, Mattila, Treil, Volberg and others).

One fact worth mentioning is that the smoothness barrier Vitushkin found when ap-
plying his methods was C1 (or the Lipschitz condition for that matter). The analogy with
Calderón’s Lipschitz graph problem is not only formal. It is the same kind of obstruction.
The context is not so transparent as with the graph, but it was rather clear in the eighties
that both issues were intimately related [V1].

To close this section I would like to mention a wonderful result of Mazalov [Mz]. He
proved that for any compact K each continuous function f on K satisfying the equation

∂
2
f = 0 on K̊ can be uniformly approximated on K by functions of the type r0(z)+z r1(z),

where r0 and r1 are rational functions with poles off K. Thus there is no capacitary

restriction on the approximation property for the operator ∂
2
, which turns out to be

universal. This is due to the fact that the fundamental solution of ∂
2
, which is z/πz,

is bounded. The main ingredient of the proof, besides a deep elaboration of Vitushkin’s
techniques, is an intricate clever construction of a Lipschitz graph which allows the use
of the magic key (1).

4 Big pieces of Lipschitz graphs and the Denjoy con-

jecture

In the mid eighties I went to Madrid for two consecutive years to listen to Yves Meyer,
who had been invited there to lecture. I remember these lectures very vividly, because he
was talking about results which seemed to me of the utmost importance for what I was
trying to do. Also because the speaker was superb, always clear, a soft, contained, but
perceptible passion permeating the exposition.
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I learnt there that a student of his, by the name of Guy David, had shown that
rectifiable curves Γ for which the Cauchy Integral is L2(Λ) bounded, Λ being arc length
on the curve, were those satisfying the Ahlfors condition

Λ(B(z, r)) ≤ C0 r, z ∈ Γ, 0 < r < diam(Γ),

where C0 a positive constant independent of z and r. The inequality from below C−1
0 r ≤

Λ(B(z, r)) is automatic, because Γ is a curve. Thus the Ahlfors condition is indeed
equivalent to

(8) C−1
0 r ≤ Λ(B(z, r)) ≤ C0 r, z ∈ Γ, 0 < r < diam(Γ),

which is now called the AD (Ahlfors-David) condition. The proof of David’s theorem,
extremely elegant, consists in finding a “big piece” of a Lipschitz graph inside each ball
centered at a point on the curve. More precisely, for each ball B = B(a, r), a ∈ Γ, there
exists a Lipschitz graph G = GB, possibly rotated, with Lipschitz constant controlled
by C such that Λ(B(a, r) ∩ Γ) ≥ C−1 Λ(B(a, r)), where C depends only on C0. The
graph is constructed by applying the rising sun Lemma. On GB the Cauchy Integral is
L2 bounded with respect to Λ with a constant depending only on the Ahlfors constant.
This situation is ideal for a good λ inequality, which completes the argument [D1]. In
fact, the local Lipschitz graph can be taken so that ‖A′‖∞ is as small as desired by a
recursive reasoning. Thus the 1982 CMcM Theorem can be reduced to Calderón’s 1977
small Lipschitz constant theorem.

What interested me a lot at that time is that David’s theorem implies a quantitative
version of the Denjoy conjecture. Denjoy believed that he could show that a compact
subset of a rectifiable curve of positive length is non-removable for H∞. Actually his
argument worked only for the line, whence the conjecture.

In terms of analytic capacity, the Denjoy conjecture states that a compact set of
positive length in a rectifiable curve has positive analytic capacity. We will see now that,
given a curve satisfying the AD condition (8), there exists a constant c depending only
on the AD constant C0 such that

(9) γ(K) ≥ cΛ(K), K compact ⊂ Γ.

This is a quantitative solution of the Denjoy conjecture, which depends on the L2 estimate
for the Cauchy Integral. This fact, together with a reduction argument to Lipschitz graphs
with small constant, explains why the Denjoy conjecture was a consequence of Calderón’s
1977 result. Apparently Calderón was not aware at that time that he had solved the
Denjoy conjecture and Donald Marshall wrote a short note (I remember a footnote : “not
intended for publication”) to describe the argument via the Garabedian H2 description
of analytic capacity [Ga]. Later on a much more direct and suggestive way of obtaining
(9) emerged, which I would like to discuss now.
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Since the length measure on an Ahlfors curve satisfies the doubling condition (the
measure of the double concentric ball is not greater than a constant times the measure
of the ball) standard CZ(Calderón-Zygmund) theory goes through to show the weak-type
(1, 1) inequality for finite measures µ supported on Γ:

(10) Λ{z ∈ Γ : |C(µ)(z)| > t} ≤ C ‖µ‖, t > 0,

where

C(µ)(z) = p. v.

∫
Γ

1

z − w
dµ(w), z ∈ Γ.

As in classical CZ theory, one can get an Lp inequality, 1 < p < 2, from (10) by inter-
polating with the L2 estimate; then by duality one reaches the full range 1 < p < ∞.
One even manages to have an L∞ − BMO estimate. But for (9) one needs to end up
with functions with bounded Cauchy Integral. It turns out that this can be achieved by
dualizing the weak-type inequality (10), which sounds surprising at first glance, because
apparently nobody knows the dual of L1,∞. That a weak-type inequality can be dualized
was first discovered by N.X. Uy, a former student of Garnett, who proved that a compact
set of positive area in the plane is non-removable for Lipschitz holomorphic functions [U].
Later Davie and Oksendal found a slightly stronger, more convenient way of expressing
the dual statement [DO]. What they proved in half a page, via an ingenious duality
argument based on Hahn-Banach, is that the weak-type inequality yields the following
statement, which is indeed equivalent to (10).

Lemma. Given a compact subset K of Γ, there exist a measurable function h supported
on K, 0 ≤ h ≤ 1, such that Λ(K) ≤ 2

∫
h dΛ and

|C(h dΛ)(z)| ≤ C, for each z /∈ K,

and for Λ almost all z ∈ Γ. The constant C is comparable to that of (10).

The function C(h dΛ) is holomorphic and bounded off K and the derivative at ∞ is∫
h dΛ, which gives readily (9). Therefore a non constant bounded holomorphic function

off K has been identified (provided K has non zero length). Peter Jones has asked about
a constructive argument for the existence of such a function. I heard once a statement
about the fact the the Hahn-Banach theorem for separable Banach spaces is already
constructive. But anyway I understand Peter Jones’ quest.

How did Uy prove the existence of a non linear holomorphic Lipschitz function off a
compact set of positive area ? He dualized the weak inequality with respect to planar
Lebesgue measure for the Beurling transform B. He obtained a non zero bounded mea-
surable function h supported on the compact set K such that B(h) is also bounded. Then
he set f = C(h dA) and he was done, because ∂f = h and ∂f = B(h) are both bounded
and hence f is a Lipschitz function on the plane, analytic off K but not on K. It is the

9



same argument that leads to (9). I took advantage of Uy’s theorem to settle the problem
of C1 approximation by rational functions in [V0].

It was clear to me at that time that the study of the Cauchy Integral as a CZ singular
operator would play a decisive role in the understanding of analytic capacity, but I could
not imagine to what extent. Further progress into this direction was provided by Yves
Meyer in his lectures in Madrid the second year.

5 David, Journé and Semmes : T(1) and T(b)

The success with the Cauchy Integral led naturally to consider the following question.
Let K(x, y) be a kernel defined off the diagonal of Rn satisfying the usual growth and
smoothness conditions of CZ theory:

|K(x, y)| ≤ C

|x− y|n
, x 6= y,

|∇K(x, y)| ≤ C

|x− y|n+1
, x 6= y.

Let us restrict attention, to simplify matters, to antisymmetric kernels : K(y, x) =
−K(x, y). Consider the truncations

Tε(f)(x) =

∫
|x−y|>ε

K(x, y) f(y) dy, x ∈ Rn, ε > 0,

which are well defined for f in Lp(Rn), 1 ≤ p < ∞. We would like to find a necessary
and sufficient condition so that the operator T is bounded on L2(Rn), namely, so that

(11)

∫
|Tε(f)(x)|2 dx ≤ C

∫
|f(x)|2 dx, f ∈  L2(Rn), ε > 0,

with C independent of f and ε. The preceding inequality for f = χB, B a ball, is

(12)

∫
B

|Tε(χB)(x)|2 dx ≤ C |B|, ε > 0,

where |E| stands for the Lebesgue measure of E. The part of the integral off the ball
satisfies the required inequality, as standard reasoning shows. It is not immediate, but
simple, to define Tε(1) (or T (1), for that matter) as a distribution modulo constants,
that is, as a continuous functional on the space of compactly supported smooth functions
with zero integral. A classical argument derives from (12) that Tε(1) is in BMO(Rn),
with norm independent of ε. There is a small difficulty here related to the fact that the
truncated kernel χ|x−y|>ε(x, y)K(x, y) does not satisfy the smoothness condition involving
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the gradient, which is overcome by remarking that it satisfies Hormander’s condition,
uniformly in ε. One can also conclude that T (1) ∈ BMO(Rn) without appealing to
truncations. Two former students of Meyer, David and Journé, proved the converse. Guy
David says that Meyer suggested the use of paraproducts to complete the proof. The
T (1)-Theorem reads as follows.

Theorem (David and Journé). The operator T is bounded on L2(Rn) if and only if
T (1) is in BMO(Rn).

This can also be formulated by saying that (11) and (12) are equivalent. The outcome
is that to check that an operator with standard antisymmetric kernel is L2(Rn) bounded
one only has to check the action of the operator on the function 1. This is an extremely
powerful fact, as shown by the following examples.

The first Calderón commutator is

(13) C1f(x) =

(
AH

d

dx
−H d

dx
A

)
(f) = p.v.

∫ ∞
−∞

A(y)− A(x)

(y − x)2
f(y) dy,

where A is a Lipschitz function on the real line and H the Hilbert transfom. Calderón’s
PDE motivation for tackling the problem of the L2(R) boundedness of the first com-
mutator has been explained in several nice expository articles [C1], [M1] and [M2]. His
celebrated proof was based on complex analytic methods involving the Hardy space H1

on the upper half plane. Now the first commutator applied to the function 1 turns out to
be, after an integration by parts,

p.v.

∫ ∞
−∞

A(y)− A(x)

(y − x)2
dy = p.v.

∫ ∞
−∞

1

(y − x)
A′(y) dy = −H(A′)(x),

which is a BMO(R) function because the Hilbert transform maps L∞(R) into BMO(R).
The T (1)−Theorem yields immediately the L2(R) boundedness of the first commutator.

Commuting with multiplication by A several times leads the n-th order commutator,
whose kernel is (A(y−A(x))n

(y−x)n+1 . Coifman and Meyer had devoted a lot of energy for proving the

sharpest possible L2(R) estimates for the higher order commutators, employing Fourier
analysis methods [CM]. The hope was to prove the Lipschitz graph Theorem in full
generality. The action of the n-th commutator on the function 1 is precisely the action
on the (n − 1)-th commutator on A′. Thus successive applications of the T (1)-Theorem
lead to L2(R) estimates for the n-th commutator with constant of the form Cn‖A′‖n∞,
with C a numerical constant. This gives the Lipschitz graph Theorem for small Lipschitz
constant, the famous Calderón’s result of 1977. The reason is that one can expand the
Cauchy kernel on the graph in terms of those of higher order commutators

1

x− y + i(A(x)− A(y))
=
∞∑
n=0

(−i)n (A(x)− A(y))n

(x− y)n+1
.
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Hence the series of the corresponding operators can be summed up if C‖A′‖∞ < 1.
The main drawback with the T (1)-Theorem at that time was that it could not be

applied to get a proof of the magic key (1), just because you could not compute T (1).
Instead by Cauchy’s Theorem you see immediately that

C(1 + iA′)(x) = p. v.

∫
Γ

1

x− y + i(A(x)− A(y))
(1 + iA′(y)) dy = 0.

Thus the bounded function b := 1 + iA′ is mapped into the BMO(R) function “0” and it
is far from being zero, because Re b = 1.

David, Journé and Semmes proved an extension of the T (1)- Theorem in which the
function 1 is replaced by a bounded function b which satisfies a non-triviality condition
called para-accretivity. This means, in the n-dimensional context described before, that∣∣∣∣ 1

|B|

∫
B

b(x) dx

∣∣∣∣ ≥ c > 0, for all balls B.

The T (b)-Theorem is the following.

Theorem (David, Journé and Semmes). The operator T is bounded on L2(Rn) if
and only if T (b) is in BMO(Rn) for some bounded para-accretive function b.

Accretivity refers to the property Re b(x) ≥ δ > 0, x ∈ Rn, obviously stronger than
para-accretivity. The T (b)-Theorem applied to b = 1 + iA′ yields the Lipschitz graph
Theorem in full generality.

The T (b)-Theorem is stated and proved by David, Journé and Semmes on spaces of
homogeneous type and for kernels not necessarily antisymmetric. The underlying eu-
clidean space is replaced by a metric space and the Lebesgue measure by a Borel doubling
measure. One example of space of homogenous type is an Ahlfors regular curve with
length as underlying measure. However, one cannot apply T (b) to Ahlfors regular curves,
because the para-accretivity condition fails for the most natural candidate, namely, the
unit tangent vector. This is due to the fact that the curve may intersect itself. The big
pieces idea remains a fundamental contribution. T (b) can be still applied to chord-arc
curves.

Let us say a few words about a more recent and simpler proof ([CJS] and [D1b]).
There are two steps.

First you assume T (b) = 0 and borrow ideas from the most basic wavelet, the one
leading to the Haar basis. You construct a Haar basis adapted to b and you check that
the off diagonal entries of the matrix of T in this basis decay rapidly to 0. This gives
boundedness via Schur’s Lemma.

The second step consists in finding an explicit operator P bounded on L2(Rn), called
paraproduct, with the property that P (b) = β, where β is a given function in BMO(Rn).
The paraproduct P has a kernel satisfying the usual growth conditions of CZ Theory, but
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smoothness fails. However, one still has the relevant consequences of smoothness that
allow to get L2(Rn) boundedness. Let P be the paraproduct associated with β = T (b).
Since (T −P )(b) = 0 one concludes from the first part of the proof that T −P is bounded.
On the other hand, P is bounded by contruction and so the proof is complete.

It will become clear later on that dealing with analytic capacity requires to get rid
of the doubling condition and still have a T (b)-Theorem. That this can be done is a
great success story that I will sketch briefly, but not in the next section, which is devoted
to Menger curvature, a device that connects the analysis of the Cauchy Integral to the
geometry of the triangle.

6 The first commutator controls the Cauchy Integral

It is very thrilling to read Meyer’s expositions on the sequence of events that lead from L2

boundedness of the first commutator to that of the Cauchy Integral on Lipschitz graphs
[M1] and [M2]. Let us review this briefly. Calderón proved that the first commutator is
bounded in L2(R) in 1965 using complex variable methods and the Lusin area function
in [C1]. The Cauchy Integral was out of reach at that time. Coifman and Meyer started
working in the late seventies on L2 estimates for higher order commutators by real vari-
ables methods. They achieved outstanding results but not sharp enough to reach the
Cauchy Integral. In 1977 Calderón proved the estimate on graphs with small Lipschitz
constant and finally Coifman, McIntosh and Meyer got the full result in 1982. Applica-
tions to PDE on domains with C1 boundary started immediately after the small constant
theorem [FJR] and after the full result the flow of applications in PDE grew exponentially
[Ke]. In particular, the solution of Kato square root problem in dimension 2 [KM] was
achieved.

It is shown in [V4] that, indeed, the Cauchy Integral is controlled by the first commu-
tator. In other words, the 1965 result of Calderón plus the H1−BMO duality imply the
1982 CMcM Theorem. This is surprising and, in a certain sense, a manifestation of the
irony that pervades life. The first proof of an important result is rarely the best, or the
shortest. People go on working on the theme, new ways of facing the problem and new
connections arise, new paths to the summit are discovered. All this activity enlivens the
subject, clarifies the results, makes them more accessible. I would like to explain how one
can prove L2 boundedness of the first commutator and the Cauchy Integral in a relatively
short way.

Let us start with the first commutator. The kernel is

K(x, y) =
A(y)− A(x)

(y − x)2
.

The truncations of the first commutator are

C1,ε(f)(x) =

∫
|y−x|>ε

K(x, y)f(y) dy, x ∈ R, ε > 0.

13



Given an interval I, we have∫
I

C1,ε(χI)
2(x) dx =

∫
I

∫
Iε(x)

∫
Iε(x)

K(x, y)K(x, z) dy dz dx

=

∫∫∫
Sε

K(x, y)K(x, z) dx dy dz +O(|I|),

where
Iε(x) = {t ∈ I : |t− x| > ε}

and
Sε = {(x, y, z) ∈ I3 : |y − x| > ε, |z − x| > ε, |z − y| > ε}.

This can be shown readily by splitting the triple integral on I × Iε(x)× Iε(x) as the sum
of three triple integrals over

Uε = {(x1, x2, x3) ∈ I3 : |x1 − x2| ≤ ε, |x3 − x1| > 2ε, |x3 − x2| > ε},

Vε = {(x1, x2, x3) ∈ I3 : |x1 − x2| ≤ ε, ε < |x3 − x1| ≤ 2ε, |x3 − x2| > ε}

and Sε respectively.
Note that the integrand in the triple integral over Sε is already symmetric in y and z.

If we interchange x by y, and x by z, we get two new different expressions for
∫
I
C1,ε(χI)

2.
Therefore

(14)

∫
I

C1,ε(χI)
2(x) dx =

1

3

∫∫∫
Sε

S(x, y, z) dx dy dz +O(|I|)

where
S(x, y, z) = K(x, y)K(x, z) +K(y, x)K(y, z) +K(z, y)K(z, x).

A straightforward computation yields

S(x, y, z) =


A(y)− A(x)

y − x
− A(z)− A(x)

z − x
z − y


2

,

which is a non-negative quantity. Therefore we have expressed the L2 norm on the left
hand side of (14) in terms of a non-negative kernel, which allows us to avoid the fine
cancellation effects which lie at the heart of CZ theory.

A beautiful simple Fourier transform estimate gives the following lemma.
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Lemma. If a is a locally integrable function with derivative a′ ∈ L2(R), then

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣∣∣∣
a(y)− a(x)

y − x
− a(z)− a(x)

z − x
z − y

∣∣∣∣∣∣∣∣
2

dx dy dz = c0

∫ ∞
−∞
|a′(x)|2 dx,

c0 being a numerical constant.

The next step is to localize the L2 identity above to the interval I that was given.
This is a kind of technique one uses often when working with BMO. Indeed, in the next
inequality the BMO norm of A′ shows up naturally.

Apply the lemma to the function a = χI(A − PI), where PI(x) = A′I(x − α) + A(α),
A′I = 1

|I|

∫
I
A′, I = (α, β). The result is

∫∫∫
I3


A(y)− A(x)

y − x
− A(z)− A(x)

z − x
z − y


2

dx dy dz ≤ C

∫
I

|A′ − A′I |2 ≤ C‖A′‖2
∞|I|,

and thus

(15)

∫
I

|C1,ε(χI)|2 ≤ C(1 + ‖A′‖2
∞)|I|, for all intervals I.

If one is willing to apply the T (1)-Theorem, the proof is complete. Otherwise, there
is a simple way of avoiding T (1) and reducing the estimate to the H1 − BMO duality
([MV]).

Before confronting the Cauchy Integral on a Lipschitz graph let us pause to discuss the
relation between the Cauchy kernel and Menger curvature, which is the main contribution
of Melnikov to the subject. He was trying to find an analog for analytic capacity of the
transfinite diameter description of logarithmic capacity. In dealing with the many finite
sums that appeared he found the following identity.

Lemma. Given three distinct points z1, z2 and z3 in the plane, one has

(16)
∑
σ

1

(zσ(2) − zσ(1))(zσ(3) − zσ(1))
= R(z1, z2, z3)−2,

where the sum is over all permutations of {1, 2, 3} and R(z1, z2, z3) is the radius of the
circle through z1, z2 and z3.
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I tried to find an explanation to (16) and I failed. There is no explanation: it is only a
straightforward computation. But I learnt a way of interpreting (16). If one considers the
Cauchy Integral C (in the p. v. sense) with respect to the discrete measure δz1 + δz2 + δz3
and one computes ‖C(1)‖2 then one gets

∑
i<j |zi − zj|−2 plus the left hand side of (16)

(see [V4]). This suggest that (16) should be linked to the T (1)-Theorem. The most
surprising feature of (16) is the positivity of the left hand side. Menger had defined many
years before the curvature associated with three points as the inverse of the radius of the
circle through them (see [V4] and [K]).

Let A be a Lipschitz function on R and parametrize its graph by γ(x) = x+iA(x), x ∈
R. The truncated Cauchy Integral is

Cεf(x) =

∫
|y−x|>ε

f(y) dy

γ(y)− γ(x))
, x ∈ R,

Fix an interval I ⊂ R. Then, by standard estimates,∫
I

|Cε(χI)(x)|2 dx =

∫
I

Cε(χI)(x)Cε(χI)(x) dx

=

∫
I

∫
Iε(x)

∫
Iε(x)

dy dz dx

(γ(y)− γ(x))(γ(z)− γ(x))

=

∫∫∫
Sε

dx dy dz

(γ(y)− γ(x))(γ(z)− γ(x))
+O(|I|),

where Iε(x) and Sε are as before. By permutating the positions of the three variables in
the integrand of the right hand side of the preceding formula we get 6 different expressions
for the left hand side. Hence

(17)

∫
I

|Cε(χI)(x)|2 dx =
1

6

∫∫∫
Sε

R−2(γ(x), γ(y), γ(z)) dx dy dz +O(|I|).

By a well known formula in the geometry of the triangle R−1(γ(x), γ(y), γ(z)) can be
written as 4 times the quotient between the area of the triangle determined by γ(x), γ(y)
and γ(z) and the product of the three side lengths. Estimating from below the length of
each side by the length of its projection on the horizontal axis we get

R−1(γ(x), γ(y), γ(z)) ≤ 4

∣∣∣∣∣∣∣∣
A(y)− A(x)

y − x
− A(z)− A(x)

z − x
z − y

∣∣∣∣∣∣∣∣ ,
which shows that the Cauchy Integral is controlled by the first commutator. Therefore it
is bounded on L2(R).

16



It is disappointing that nothing similar to Menger curvature exists for kernels with
homogeneity −d with 1 < d < n in Rn. Instead, if 0 < d < 1 the symmetrization approach
works perfectly well [Pr]. There are still unsolved basic problems for homogeneities with
d larger than 1, although many others have been solved using more sophisticated tools
than symmetrization.

7 David and Semmes : Uniform rectifiability

The question is now : can we describe the measures µ with the property that the Cauchy
Integral is bounded on L2(µ) ? The area measure on the unit disc is such a measure,
but we want to stay in a context where the Cauchy kernel is no better that a genuine
CZ kernel. By homogeneity considerations this amounts to requiring that the measure
satisfies the AD condition

(18) C−1 r ≤ µ(B(z, r)) ≤ C r, z ∈ suppµ, 0 < r < diam(suppµ),

where C a positive constant independent of z and r. Clearly µ is boundedly absolutely
continuous with respect to one dimensional Hausdorff measure H1 restricted to the sup-
port E of µ. One can then forget about µ and inquire about the properties of the closed set
E that guarantee that the Cauchy Integral is L2(H1|E) bounded, provided H1|E satisfies
the AD condition. Of course one can ask similar questions in Rn replacing the Cauchy
kernel by other families of well behaved kernels. For example, one can fix an integer
dimension 1 ≤ d < n and consider the family Kd of odd kernels K satisfying

(19) |∇jK(x)| ≤ C

|x|d+j
, x 6= 0, j = 0, 1, . . .

It can be shown rather easily that if µ is d-dimensional Hausdorff measure on a d-
dimensional Lipschitz graph

{(x1, ..., xd, A(x1, ..., xd)) : (x1, ..., xd) ∈ Rd}

with A : Rd → Rn−d a Lipschitz function, then each operator with kernel in Kd is L2(µ)
bounded. As before, boundedness means uniform boundedness of the truncations

Tε(f)(x) =

∫
|y−x|>ε

K(x− y) f(y) dµ(y), ε > 0, x ∈ Rn, f ∈ L1(µ).

This follows from the CMcM Theorem and the method of rotations if the kernel is homo-
geneous of degree −d. An additional argument is required to get the whole family Kd (see
[DS]). However, it was known that the AD regularity condition (18) is not strong enough
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to give boundedness, even for d = 1. The example is the famous Garnett-Ivanov set en-
dowed with one dimensional Hausdorff measure. Take the unit square Q0 = [0, 1]× [0, 1].
Divide Q0 into 16 squares of side length 1/4 and take the four corner squares that contain
a vertex of Q0. Repeat the process inside each of these 4 squares and then inside the
squares one obtains at each step by this procedure. One gets at the n-th generation 4n

squares Qn,j of side length 1/4n. The set is E = ∩(∪4n

j=1Qn,j). There exists a unique prob-
ability measure µ on E that assigns mass 1/4n to each Qn,j. This measure is a positive
multiple of one dimensional Hausdorff measure on E.

I claim that the Cauchy Integral is not L2(µ) bounded. This can be easily seen via
Menger curvature, which shows again its invaluable power. The reader should be aware
that the corresponding statement in R3 for a self-similar two dimensional Cantor set and
the kernel x/|x|3 is still true, but that one cannot provide a so quick argument because
there is nothing like Menger curvature for kernels of homogeneity −2.

Proceeding as in the previous section we obtain the analog of (17)

(20)

∫
|Cε(µ)(z)|2 dµ(z) =

1

6

∫∫∫
Sε

R−2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) +O(‖µ‖),

where
Sε = {(z, w, ζ) ∈ E3 : |z − w| > ε, |z − ζ| > ε and |w − ζ| > ε}.

If the Cauchy Integral were bounded on L2(µ) the left hand side above would be not
greater that a constant times ‖µ‖ and so, letting ε go to 0, we would get that∫∫∫

E3

R−2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) <∞.

That this is false can be shown as follows. Choose inside each Qn,j three different squares
of the next generation, say Qn+1,j1 , Qn+1,j2 and Qn+1,j3 and set

Tn,j = Qn+1,j1 ×Qn+1,j2 ×Qn+1,j3 .

Since the Tn,j are disjoint∫∫∫
E3

R−2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) ≥

∑
n,j

∫∫∫
Tn,j

R−2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) ≥

c

∞∑
n=1

4n∑
j=1

42n 1

43n
=∞.

(21)

The reason why the preceding argument worked is that the set E is very sparse.
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David and Semmes found, at first independently, examples of d-dimensional surfaces
such that kernels in Kd are L2(µ) bounded for µ = Hd, provided (18) holds. In each
case the boundedness could be proved from the “Big pieces of Lipschitz graphs” property
that we described in section 4 in the context of curves. A novelty emerged: Semmes
introduced a new device to prove L2 boundedness, namely what he called a “corona
decomposition”. The terminology comes from Carleson’s original argument in the proof
of the Corona Theorem. To say a few words about that we start by recalling that if
one has a doubling measure on a closed set E then one can define families of subsets of
E, called dyadic squares, which enjoy the familiar properties of the dyadic net in Rn.
A corona decomposition is a partition of the set of dyadic squares in a set of families
of dyadic squares, called trees, on which your set E can be approximated fairly well by
a Lipschitz graph associated with the tree, plus a family of bad squares where such an
approximation does not happen. The family B of bad squares is small in the sense that
it satisfies the Carleson condition∑

B3Q⊂Q0

µ(Q) ≤ C µ(Q0), for each dyadic square Q0.

Also the squares of each tree T are descendants of a top dyadic square Q(T ) and the
family of trees is small, again in a sense made precise by a Carleson condition:∑

Q(T )⊂Q0

µ(Q(T )) ≤ C µ(Q0), for each dyadic square Q0.

There is a mechanism which transports L2 boundedness from the Lipschitz graphs to the
measure µ on E. This is, in a way, a sophisticated alternative of David’s good lambda
method to conclude from the “Big pieces of Lipschitz graphs” property. It turns out
that all operators with kernels in Kd are L2(µ) bounded if and only if you have a corona
decomposition. Sets having corona decompositions are called uniformly rectifiable and can
be described by a huge number of apparently unrelated conditions, some very geometric
(the reader is invited to consult [DS]). One that explains the terminology is this: there is
a large number M and a small number θ such that, given a ball B centered on E, there
exists a subset A of Rd and a bilipschitz mapping f : A → Rn with bilipschitz constant
≤ M with the property that µ(B ∩ f(A)) ≥ θµ(B). This condition implies rectifiability,
and is uniform at all scales and locations. David and Semmes proved that this condition
follows from “Big pieces of Lipschitz graphs” and still implies boundednes of all operators
with kernels in Kd. It is strictly weaker than “Big pieces of Lipschitz graphs” and, in fact,
it is equivalent to having big pieces of sets which have big pieces of Lipschitz graphs.

There is a characterization of uniform rectifiability in terms of the Jones’ numbers,
extremely elegant. The beta number of order 1 associated with the point x and the scale
t is

β1(x, t) = inf
P

1

td

∫
E∩B(x,t)

dist(y, P )

t
dµ(y),
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where the infimum is taken over all affine d-dimensional planes P in Rn. This number
measures the minimal deviation of the set E from a d-dimensional plane around x at the
scale t. Then the following Carleson condition is equivalent to uniform rectifiability:∫ r

0

∫
B(x,r)

β1(y, t)2 dµ(y)
dt

t
≤ C rd, x ∈ E, r > 0.

In fact, the L∞ version of the beta numbers

(22) β(x, t) = inf
P

1

t
sup

y∈E∩B(x,t)

dist(y, P ),

was introduced by Jones to give another proof of the CMcM Theorem [J1].
A difficult problem, presently known as the “David-Semmes problem”, was left open

in [DS]: is the L2 boundedness of Cauchy kernel (n = 2 and d = 1) or of the vector valued
Riesz kernel x/|x|d+1 for 1 ≤ d < n in Rn sufficient to guarantee uniform rectifiability ?
A first positive answer was given for d = 1 and all n in [MMV] using Menger curvature.
Almost 20 years later Nazarov, Tolsa and Volberg solved the problem for d = n− 1 in a
formidable paper [NToV1], which surmounts enormous difficulties and ends up with an
application of the maximum principle. The problem is still open for integer dimensions in
the range 1 < d < n−1, because nobody has found a way of getting around the maximum
principle.

Uniform rectifiability is an extremely useful, natural, intrinsic notion that brings to-
gether the contributions of Carleson on the Corona Theorem and those of the CZ school
via Littlewood-Paley theory. The corona decomposition makes a bridge between Geome-
try and Analysis. At the core, again, is the magic key (1).

8 Back to analytic capacity: Vitushkin’s conjecture

Vitushkin conjectured in his famous 1967 paper we have mentioned before that, for a
compact set, the property of having zero analytic capacity was equivalent to being Besi-
covitch irregular (or purely unrectifiable), that is, having projections of zero length in
almost all directions (almost all measured with respect to arc length on the unit circle).

In this form Vitushkin’s conjecture was disproved by Mattila by means of a funny
argument which did not allow one to decide which direction was false [Ma1]. He proved
that pure unrectifiability is not conformally invariant while H∞ removability clearly is.
Later on clever constructions showed that a set may have positive analytic capacity and
still project in zero length in almost all directions [JM], [JMu]. But these sets did not have
finite length (one dimensional Hausdorff measure) and so the reformulation of Vitushkin’s
conjecture in which one assumes a priori that the set has finite length remained open.
For sets of finite length Besicovitch had proven that pure unrectifiability is equivalent to
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intersecting any rectifiable curve in a set of zero length, which, by the way, explains the
terminology. Now, if a compact set intersects a rectifiable curve in a set of positive length,
then it also intersects a Lipschitz graph with little Lipschitz constant in a set of positive
length. Thus the 1977 theorem of Calderón shows that the analytic capacity of the set is
positive.

It remained the other direction, that is, proving that if a set has positive analytic
capacity then there is a rectifiable curve that intersects the set in positive length. This
looks absolutely scary. How can you construct a rectifiable curve that intersects a given
set in a set of positive length? Peter Jones had introduced in 1987 the beta numbers to
estimate the Cauchy Integral on Lipschitz graphs [J1] . He then realized that the beta
numbers could be used to define a geometric square function characterizing compact sets
through which a rectifiable curve can pass [J2]. Given a dyadic square Q of side length
l(Q) set

βE(Q) = inf
L

1

l(Q)
sup

z∈E∩3Q
dist(z, L),

where the infimum is over all straight lines L. Then 2βE(Q) l(Q) is the width of the
narrowest strip that contains E ∩ 3Q.

Theorem (P. Jones, 1990). Let E be a compact subset of the plane. Then there exists
a rectifiable curve Γ such that E ⊂ Γ if and only if∑

Q dyadic

βE(Q)2 l(Q) <∞.

The idea for proving Vitushkin’s conjecture is the following. Let E be a given set
of finite length. Then E carries a natural finite measure, the one dimensional Hausdorff
measure restricted to E, which we call µ. If one can show from the fact that E has
positive analytic capacity that the Cauchy integral is L2(µ) bounded on a subset F of E
of positive length, then one can hope that, by using Menger curvature and relating it to
the beta numbers, F can be shown to be a subset of a rectifiable curve. This was proved in
1996 in [MMV] under the additional assumption that the set E is AD regular. That this
scheme was plausible was suggested by a previous result of Christ [Ch], who proved the
boundedness of the Cauchy Integral on a subset of positive length under the assumption
that the length measure on E is doubling. Christ could not go farther because at that
time Menger curvature had not yet entered the scene. The reader may consult [Pa] about
the Cauchy Integral, beta numbers and rectifiability.

At this point the question was: how could one get rid of the AD regularity assumption,
if CZ theory had only been developed on spaces of homogeneous type? The reader should
transport herself to 1996. X.Tolsa was a graduate student at Barcelona and not a word
had been said on non-doubling CZ theory. I strongly believed that it would have been
extremely useful for the understanding of analytic capacity to decide whether or not the
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T (1)-Theorem should hold for a not necessarily doubling measure satisfying the linear
growth condition µ(B(a, r)) ≤ C r, a ∈ C, 0 < r (which is a necessary condition for
L2(µ) boundedness if µ has no atoms). Tolsa succeeded in proving the non-doubling
T (1)-Theorem for the Cauchy Singular Integral, which became part of his thesis [T1],
and simultaneously Nazarov, Treil and Volberg, who had heard about the problem from
another source, proved the same result for much more general kernels [NTV1].

After that the situation was the following : the scheme for the proof of Vitushkin’s con-
jecture was set up and non-doubling CZ theory was rapidly developing, often overcoming
frightening difficulties posed by non-homogeneity. Then combining two formidable pa-
pers [DM] and [D2] Vitushskin’s conjecture was finally proved. One constructed families
of special sets replicating the grid of dyadic squares in Rn only under the linear growth
hypothesis, and a special “ad hoc” non-homogeneous T (b)-Theorem was shown to hold,
which provided a piece F of positive length on which the Cauchy Integral was L2(µ)
bounded. Then the Menger curvature of the length measure on F turned out to be finite.
This implied rectifiability by a theorem proved by David in the plane and extended to
several dimensions by Léger [Le]. In this last step a corona type decomposition played a
central role, as well as the beta numbers, which were finally responsible for landing on
rectifiability. See the survey [D3] for an agile presentation of the main ideas.

The proof of Vitushkin’s conjecture was an impressive tour de force that encompassed
many remarkable contributions. The reader should note that most of the tools used were
fabricated in the environment of the CMcM Theorem : T (b), the beta numbers, Menger
curvature, corona decompositions.

It is worthwhile at this point to make a historical remark. The sequence of events
concerning Menger curvature was as follows. First Melnikov discovered the relation be-
tween the Cauchy kernel and Menger curvature (16). Then the author found the proof
of the CMcM Theorem discussed in section 6 in [MV] (see also [V2]). Then with Mattila
we solved the one dimensional David-Semmes problem and the homogeneous Vitushkin’s
conjecture in [MMV] and after that main result of [Me] was proved. In [Me] the other
two papers, which already existed in preprint form, were not mentioned.

Another approach to Vitushkin’s conjecture was devised by Nazarov, Treil and Vol-
berg, just after the David-Mattila proof, but it has never been published in article form
in a journal, for reasons unknown to the author. A draft was circulated at the time and
its contents have been partially presented in the books [Du], [Vo] and [TB]. A recent
version has been uploaded to the ArXiv by the authors [NTV2]. This magnificent paper
has been very influential. For instance, it lead Tolsa to a proof of the semiaddditivity of
analytic capacity and to a solution of Painlevé’s problem. It has also been used in other
deep problems concerning rectifiability.
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9 The semiadditivity of analytic capacity and the

solution of Painlevé’s problem

The NTV(Nazarov-Treil-Volberg) proof of Vitushkin’s conjecture is based on a special
T (b)-Theorem. One has a compact set E of finite length (one dimensional Hausdorff
measure) and positive analytic capacity. Since E is any set with these properties, the
length measure µ on E is not necessarily doubling. The fact that the set has positive
analytic capacity yields easily a complex µ-measurable bounded function b on E with∫
b dµ > 0 and bounded Cauchy Integral. Of course we would like to apply the T (b)-

Theorem, but at least two enemies are barring our way. The first is that for almost all
z ∈ E one has µ(D(z, r)) ≤ C r, r < r0, with C and r0 depending on z, where D(z, r) is
the disc centered at z of radius r. Then, given M > 0 there might be many non-Ahlfors
discs satisfying µ(D(z, r)) > M r. The second enemy is that we do not have the para-
accretivity condition |

∫
D
b dµ| > cµ(D) for all discs D. By essentially taking the union

of the non-Ahlfors discs and the non-para-accretive discs one forms an open set U on
which all bad things happen. Then one ingeniously modifies the Cauchy kernel on U
and through a sophisticated lengthy sequence of clever moves, sometimes hard, one ends
up proving that the modified kernel provides an operator which is bounded on L2(µ).
Since the Cauchy kernel has remained untouched on F = E \ U the Cauchy Integral is a
bounded operator on L2(µ|F ). But one has taken care to ensure that µ(U) is small. Hence
F has positive length and you are done, after remarking that the Menger curvature of µ
restricted to F is finite and applying David-Léger.

One uses several pieces of the well-known tool box, like martingale differences as-
sociated with b, in the spirit of [CJS], Schur’s lemma, Carleson type conditions and a
beautiful probabilistic argument on random grids of standard dyadic squares (which was
first devised in [GJ]).

What is the relation of T (b) with the semiadditivity of analytic capacity ? To have
a glimpse of that we first discuss a variant of analytic capacity, called positive analytic
capacity, defined as

γ+(E) = supµ(E),

where the supremum is taken over all positive measures supported on E such that 1
z
? µ

is a function in L∞(C) with norm less than or equal to 1. Clearly

γ+(E) ≤ γ(E).

To better understand positive analytic capacity set

(23) γop(E) = supµ(E),

where the supremum is over all positive measures supported on E satisfying

(24) µ(D(z, r)) ≤ r, z ∈ C, r > 0,

23



and such that the operator norm of the Cauchy Integral as a bounded operator from L2(µ)
into itself is less than or equal to 1.

It is not obvious, but not difficult, to show that the non-doubling T (1)-Theorem for
the Cauchy Singular Integral yields

γ+(E) ≤ C γop(E).

On the other hand, the fact that standard CZ theory works also in a non-doubling context
plus the Davie-Oksendal dualization method of a weak-type inequality gives easily the
reverse inequality. This is important for semiadditivity. Indeed, take two compact sets
E1 and E2. It is clear from the definition that if µ is an admissible measure for the
supremum defining γop relatively to E1 ∪ E2 then µj = µ|Ej are admissible measures for
Ej. Hence

γop(E1 ∪ E2) ≤ γop(E1) + γop(E2).

Being comparable to a subadditive set function one concludes that γ+ is semiadditive.
Note that this fact is not at all obvious from the definition, the reason being that if one
restricts a positive measure µ such that 1

z
?µ is a function in L∞(C) to a general compact

F ⊂ sptµ is not true any more that 1
z
? µ|F is in L∞(C).

To prove semiadditivity of analytic capacity it remains to show that γ is comparable
to γ+ or, in other words, that there exist a constant C0 such that

(25) γ(E) ≤ C0 γ
+(E), for all compact E ⊂ C.

This is what Tolsa proved in [T1] using the NTV T (b)-Theorem. The proof features
several subtle points, some rather involved, and the remarkable technical power of the
author leaves a deep impression on the reader.

As a corollary one obtains a solution of Painlevé’s problem. If E has positive analytic
capacity then there exists a positive measure µ supported on E with bounded Cauchy
potential. Then µ has linear growth (24) and by (20) finite Menger curvature, namely,

(26)

∫∫∫
R−2(z, w, ζ) dµ(z) dµ(w) dµ(ζ) <∞.

The converse is also true [Me] and is now a straightforward consequence of the non-
doubling T (1)-Theorem for the Cauchy Singular Integral [V3]. If µ is a non-zero positive
measure supported on E satisfying the linear growth condition (24) and (26) then it
follows readily from the T (1)-Theorem that the Cauchy Integral is L2(µ|F ) bounded for
some F with positive µ measure. By CZ theory and Davie-Oksendal the analytic capacity
of E is positive.

Condition (26) has certainly a geometric flavour and consequently, with some generos-
ity, one could say that is a solution to Painlevé’s problem. I asked Tolsa whether (26) was
really a geometric condition in the sense that it was a bilipschitz invariant and his (posi-
tive) answer was the paper [T4]. In fact, whether analytic capacity is, modulo constants,
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a bilipschitz invariant is a question raised by O’Farrell (see, for instance, [DOF], where
the question was whether analytic capacity is a linear invariant, modulo constants).

Inequality (25) has been applied to a number of problems in which analytic capacity
plays a role. See, for example, [ACY] for an extension of Plemelj’s formula.

It is a challenge to describe the main ideas of the proof of (25), because one has to let
technical issues pervade the exposition. Nevertheless, I cannot refrain from mentioning
one of these ideas in a particular case [MTV]. The uninterested reader may proceed
happily to the next section.

In proving (25) one can assume that E is a union of finitely many squares. Let us
consider, as a significant example, the union EN of the 4N squares QN

j , 1 ≤ j ≤ 4N , of
generation N in the construction of the corner quarters Cantor set described in section 7.
The side length of QN

j is 4−N . It is known that γ+(EN) ≈ N−1/2 ([TB, p. 125]). Take a
function f, analytic off EN , with |f(z)| ≤ 1, z /∈ EN and f ′(∞) = γ(EN). Then

f(z) =
1

2πi

∫
∂EN

f(ζ)

z − ζ
dζ, z /∈ EN ,

by Cauchy’s integral formula. Thus f = C(ν), where ν is the complex measure f(ζ) dζ
2πi

.
Our goal is to find a positive measure µ supported on EN , with mass γ(EN), such that the
norm of the Cauchy Singular Integral, as a bounded operator on L2(µ), is bounded by an
absolute constant. Such absolute bound should follow from an application of some kind of
T (b)-Theorem. It is here very tempting to try Christ’s local T (b)-Theorem, which states,
in the present context, that L2(µ) boundedness follows if for each square Qn

j , 1 ≤ j ≤
4n, 1 ≤ n ≤ N, one finds a function bnj , |bnj | ≤ 1, with |C(bjµ)| ≤ 1 off EN , satisfying the
local para-accretivity condition |

∫
Qnj
bnj dµ| ≥ c µ(Qn

j ). In other words, instead of looking

for one global para-accretive bounded b, with bounded C(b dµ), one has the flexibility of
making a local construction (with absolute constants). One starts with the naive choice

dµ =
1

4
γ(EN)ds∂EN .

Given a square Qn
k , 1 ≤ n ≤ N, 1 ≤ k ≤ 4N , one sets, as a first try for bnk ,

(27) βnk =
∑

QNj ⊂Qnk

1

2πi
f(ζ) dζ∂QNj .

It is a simple result, part of Vitushkin’s localization methods, that

(28) |C(βnk )(z)| ≤ A, z /∈ Qn
k ∩ EN ,

for some absolute constant A. But

|βnk | =
∑

QNj ⊂Qnk

1

2π
|f(ζ)| ds∂QNj =

4

γ(EN)

∑
QNj ⊂Qnk

1

2π
|f(ζ)| dµ(ζ),
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which blows up with N because we know that γ(EN)→ 0 as N →∞. One has to modify
the naive approach and the right change is a little subtle manouver.

Define a new µ by

µ = γ(EN)
ds∂EM

length(EM)

for some M between 1 and N, which has to be chosen. Note that our new µ has support
inside EM , which is larger than EN . Then, in the event that we could show that the
Cauchy Singular Integral, as a bounded operator from L2(µ) into itself, has norm bounded
by an absolute constant we would get γ(EN) = µ(EM) ≤ C0 γ

+(EM). Hence we need
γ+(EM) ≤ C0 γ

+(EN). Since γ+(EN) ≈ N−1/2 it is enough to take M ≥ N/2. Indeed the
right choice, as we will check now, is M = N/2 (assume N even).

Take a new βnk , for 1 ≤ n ≤M and 1 ≤ k ≤ 4n, as in (27) with N replaced by M. We
still have the favourable bound (28) but again the maximum of |βnk | blows up with N. To
modify βnk we first remark that there are simple ways of constructing smooth functions
ϕnj supported on Qn

j such that 0 ≤ ϕnj ≤ 1, |C(ϕnj ds∂Qnj )| ≤ A and
∫
ϕnj ds∂Qnj ≥

1
4n
. One

just dilates and translates a model function on Q0 = [0, 1]× [0, 1]. It is useful in modifying
βnk to preserve the integral on each building piece QM

j , which is ν(QM
j ). Therefore we set

bnk =
∑

QMj ⊂Qnk

ν(QM
j )

ϕMj∫
ϕMj dµ

, 1 ≤ n ≤M, 1 ≤ k ≤ 4n.

Clearly, on the one hand, we have
∫
ϕMj dµ ≥ γ(EN) 1

4M
= µ(QM

j ). On the other hand,
C(χQMj ν) is analytic off QM

j ∩ EN and

|C(χQMj ν)(z)| ≤ A, z /∈ QM
j ∩ EN ,

by Vitushkin’s localization technique. Thus, by definition of analytic capacity,

|ν(QM
j )| ≤ Aγ(QM

j ∩ EN).

Now QM
j ∩ EN is the result of applying N − M = N/2 steps of the construction of

the corner quarters Cantor set, starting from QM
j . Hence, by the homogeneity of analytic

capacity, γ(QM
j ∩EN) = 1/4N/2 γ(EN/2). At this point one should note that we do not know

the precise relation between γ(EN) and γ(EN/2), besides the obvious fact that γ(EN) ≤
γ(EN/2). Assume for a moment that γ(EN/2) ≤ C1 γ(EN), for some large absolute constant
C1 to be chosen later. Then ν(QM

j ) ≤ Aγ(QM
j ∩ EN) ≤ AC11/4M γ(EN) = AC1µ(QM

j ),
which tells us that bnk is bounded by an absolute constant. Note that we have overcome
the main difficulty which appeared in the naive approach we started with.

A standard argument, based on the quadratic decay of each term, allows to control the
supremum norm of the difference C(βnk )−C(bnk) and thus |C(bnk)(z)| ≤ A, z /∈ Qn

k ∩∂EM .
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It remains to check the local para-accretivity condition. Since
∑4M

j=1 ν(QM
j ) = γ(En),

for at least one index k one has |ν(QM
k )| ≥ γ(EN)/4M = µ(QM

j ). For this special k the
construction of the function bnk required by Christ’s local T (b)-Theorem is complete. One
may wonder what one should do for Qn

j with j 6= k. The answer is simple : transport
the function bnk by translation. The conclusion is that in this case (25) follows from an
application of the local T (b)-Theorem.

It remains to deal with the case γ(EN) ≤ C−1
1 γ(EN/2). Proceeding by induction

γ(EN) ≤ C−1
1 γ(EN/2) ≤ C−1

1 C0γ
+(EN/2) ≤ AC−1

1 C0γ
+(EN),

and then it suffices to choose C1 = A.
In the general case of the proof of (25) one also chooses a union of squares containing E,

close enough to E so that γ+ is not altered too much, but far enough so that appropriate
estimates can be carried over. Also the local T (b)-theorem is replaced by the NTV T (b)-
theorem.

What we said for the proof of Vitushkin’s conjecture applies here. The proof of the
semiadditivity of analytic capacity and the solution to Painlevé’s problem are extraordi-
nary results, which were built over previous brilliant work by excellent mathematicians.
The NTV T (b)-theorem makes the connection to the magic key (2). In the next section
we will review applications of L2 estimates to rectifiability.

10 The Cauchy Singular Integral and rectifiability

It is a standard fact in classical (first generation : convolution smooth homogeneous) CZ
theory that after proving the (1, 1) weak-type estimate for the maximal singular integral
of a finite Radon measure, one can readily show the existence of the principal values of
the singular integral of a finite Radon measure a.e. with respect to Lebesgue measure.
This is still true for the Cauchy Singular Integral of a finite Radon measure µ supported
on a rectifiable curve, by the Calderón theorem on Lipschitz graphs with small constant,
as we discussed in section 2 for functions integrable with respect to ds. In other words,
one has the ds a.e. existence of

(29) p. v. C(µ)(z) = lim
ε→0

Cε(µ)(z),

where

Cε(µ)(z) =

∫
|ζ−z|>ε

dµ(ζ)

ζ − z
.

Although the result above is a consequence of L2(ds) estimates on Lipschitz graphs
(with small constant) and thus a great achievement, it is also, in a sense, intuitively
plausible. At a point z0 with a tangent the curve looks symmetric with respect to z0 and
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therefore the oddness of the Cauchy kernel can play a role in cancelling terms in opposite
sides. In the other direction, if the set has finite one dimensional Hausdorff measure and
is irregular in the sense of Besicovitch (like the corner quarters Cantor set of section 7),
then one should think of the set as dispersed irregularly around the point and cancellation
may not occur, thus making problematic the existence of the principal value.

Pertti Mattila discovered, just before the David-Semmes theory of uniform rectifiability
appeared, that the intuition just described is correct [Ma2]. He proved that if a finite
positive Radon measure µ has principal values µ a.e. and the lower density

lim inf
r→0

µD(z, r)

r

is positive µ a.e. then µ is rectifiable in the sense of Federer, namely, lives in a countable
union of rectifiable curves. In particular, if µ is the length measure (one dimensional
Hausdorff measure) on a set E of finite length, then E is rectifiable if and only if the
principal values (29) exist µ a.e. and the lower density is positive.

Some hypothesis on the positivity of density is necessary: if µ is the 2-dimensional
Lebesgue measure on a ball, the principal values do exist a.e. but the measure is not
rectifiable. Mattila’s proof goes by tangent measures, a notion introduced by Preiss to
prove rectifiability from the existence of density (in higher dimensions). The problem of
replacing the positivity of the lower density by that of the upper density remained open.
It was solved in the positive in [T5] using the NTV T (b)-theorem. Indeed, existence of
principal values was replaced by µ a.e. finiteness of the maximal Cauchy Integral

C∗(µ)(z) = sup
ε>0
|Cε(µ)(z)|

and the positivity of the lower density was replaced by the µ a.e. positivity of the upper
density. Under these assumptions µ can be written as the sum of a discrete measure (i.e.,
with countable support) plus a measure absolutely continuous with respect to length on
a countable union of rectifiable curves. The L2 estimates provided by NTV yield, by
the usual path (finite Menger curvature and the David-Léger rectifiability criterion), the
rectifiable curves. In particular, there are no non-zero continuous singular measures µ
on the line with principal values µ a.e. Another beautiful consequence concerns the case
of sets E in the plane with finite length, in which no additional hypothesis on density is
required. It turns out that E is rectifiable if and only if the length measure µ has principal
values µ a.e. or if and only C∗(µ)(z) <∞ µ a.e. This follows from the fact that the upper
density is positive and finite µ a.e. and so the discrete part vanishes.

The main result of [T5] is a general structural theorem for a positive finite Radon
measure µ with the property that the maximal Cauchy Integral is finite µ a.e. Such a
measure can be written as the sum of three measures µ = µd + µr + µ0, where µd is
discrete, µr lives in a countable union of rectifiable curves and is absolutely continuous
with respect to length and µ0 is a sum of a sequence of measures with 0 linear density
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and finite Menger curvature. The measure µ0 can also be described, without mentioning
Menger curvature, as the sum of a sequence of measures of 0 linear density on which
the Cauchy Singular Integral is a bounded operator on L2 of the measure. As far as I
know, there is no extension to higher dimensions, very likely because the proof depends
on symmetrisation arguments of the kind that lead to Menger curvature and those work
only for kernels with homogeneity −α with 0 < α ≤ 1.

In higher dimensions there is an analog of Mattila’s result, due to Mattila and Preiss
[MP], in which the Cauchy kernel is replaced by the vector valued Riesz kernel x/|x|n of
homogeneity −(n−1) (modulo constants, it is the gradient of the fundamental solution of
the Laplacian). Again there is a hypothesis of positivity of the lower density in dimension
n− 1. Tolsa extended that result omitting the lower density requirement. The statement
is as follows.

Let µ be a positive finite Radon measure and let E be the set where the upper density
in dimension n− 1 is positive and finite and, in addition, the principal value of the Riesz
transform exists. In other words, E is the set of x ∈ Rn such that

0 < lim sup
r→0

µB(x, r)

rn−1
<∞ and there exists lim

ε→0

∫
|y−x|>ε

y − x
|y − x|n

dµ(y).

Then E is rectifiable, that is, is contained in a set of the form Z ∪ (∪jSj) where Z has
vanishing (n − 1)-dimensional Hausdorff measure and each Sj is a C1 hypersurface of
dimension n− 1.

In particular, if µ = Hn−1 is (n − 1)-dimensional Hausdorff measure on a set E with
Hn−1(E) <∞, then E is rectifiable if and only if the principal value

lim
ε→0

∫
|y−x|>ε

y − x
|y − x|n

dHn−1(y)

exists Hn−1 a.e. I am mentioning this higher dimensional extension of the planar re-
sult, which is extremely valuable in itself, because of the method of proof. In the plane
one uses Menger curvature and the David-Léger rectifiability criterion. In higher di-
mensions Menger curvature is replaced by sharp estimates of the norm of the Singular
Riesz transform as a bounded operator on the L2 space of the restriction of Hn−1 to an
(n − 1)-dimensional Lipschitz graph. Then these estimates are combined with Corona
type decomposition in the spirit of David-Léger. So we see here in action again the power
of L2 estimates for basic singular integral operators on Lipschitz graphs.

One may wonder what happens with the condition of finiteness of the maximal Riesz
transform:

sup
ε>0

∣∣∣∣∫
|y−x|>ε

y − x
|y − x|n

dµ(y)

∣∣∣∣ , x ∈ Rn.

It can be shown [NToV2] that this condition combined with the µ a.e. finiteness of the
upper (n − 1)-dimensional density implies rectifiability of µ, that is, µ has rectifiable
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support and is absolutely continuous with respect to Hn−1. This follows from the deep
difficult main result of [NToV1]: if µ is Ahlfors-David regular of dimension n − 1, then
L2(µ) boundedndess of the Riesz vectorial transform of homogeneity −(n − 1) implies
uniform rectifiability. It is worth mentioning that the preceding statement for Riesz
transforms of integer homegeneity −m with 1 < m < n− 1 seems out of reach presently.

The reader interested in the general theory of rectifiability (and uniform rectifiability)
will find in the literature of the last decade a wealth of elegant criteria, most of them
depending on various square functions with a geometric content. Variants of the beta
numbers play a central role here. There are also interesting square functions built in
terms of local approximations of a measure in terms of “flat” measures. These approxi-
mations are measured in terms of distances in the set of Radon finite measures (distances
of Wasserstein type). The papers [ATT], [Da] and [B] contain relevant results and an
extensive list of references to many other important works, including applications to the
singular sets of solutions of certain PDE.

There are two specially important recent advances involving rectifiability. The first is
the solution of the ε2 conjecture of Carleson by Jaye, Tolsa and Villa [JTV]. The second
is the clarification role played by rectifiability in understanding under which conditions
harmonic measure in Rn is absolutely continuous with respect to Hn−1. This will be briefly
reviewed in the next and last section.

11 The Cauchy and Riesz Singular Integrals and har-

monic measure

Perron devised a general way of solving the Dirichlet problem on a domain Ω in Rn. Given
a continuous function f on ∂Ω, let uf stand for the supremum of subharmonic functions
u on Ω which lie below f at the boundary, namely, such that

lim sup
x→a

u(x) ≤ f(a), a ∈ ∂Ω.

Then uf is harmonic on Ω and, under mild hypotheses on Ω, takes continuously the
boundary values f. Hence uf solves the Dirichlet problem with boundary data f. The
mapping f → uf is linear and, for each fixed x ∈ Ω, f → uf (x) is linear and bounded on
the space of continuous functions on the boundary. By the Riesz representation theorem
this mapping is given by integrating f against a positive Radon measure ωx on ∂Ω :

uf (x) =

∫
∂Ω

f(y) dωx(y), f ∈ C(∂Ω).

The measure ωx is called harmonic measure with pole x. By Harnack’s principle, for
x, y ∈ Ω the measures ωx and ωy are mutually absolutely continuous and so for many
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questions concerning harmonic measure the pole can be kept in the background, so that
one uses the notation ω for ωx.

More than one century ago the Riesz brothers proved that if Ω is a Jordan domain
in the plane with rectifiable boundary, then ω is absolutely continuous with respect to
arc length on the boundary. Since then there has been an enormous amount of work
on relating geometric properties of the boundary with properties of harmonic measure
(see [GM] and [Tr]). Bishop and Jones showed that for a planar simply connected Ω the
conclusion of the F. and M. Riesz theorem holds on a rectifiable piece of the boundary, but
fails for non simply connected domains [BJ]. In higher dimensions the problem becomes
much more complicated. Nevertheless, the relation between ω and the (n−1)-dimensional
Hausdorff measure on the boundary has been clarified recently in a seven authors paper
[A7], which culminates a series of efforts by many people. The result reads as follows.

Let Ω be a domain in Rn and E a subset of ∂Ω with Hn−1(E) <∞. If ω is absolutely
continuous with respect to Hn−1, then ω lives on a countable union of C1 hypersurfaces
of dimension n− 1 (and so ω is rectifiable.) If Hn−1 is absolutely continuous with respect
to ω on E, then E is rectifiable.

I mention this particular result among many others which have been proved in the last
decade, all extremely interesting, because there is a connection with the L2 boundedness of
the Singular Riesz transform (the Cauchy Singular Integral in the plane). The connection
between harmonic measure and the Riesz transform is very simple, but apparently it had
never been explicitly exploited before.

Let us restrict our attention to the plane and, for the sake of convenience, assume that
Ω is the complement in the Riemann sphere of a compact set K and that ω is harmonic
measure with respect to the point at ∞. The gradient of the logarithmic potential of ω
is given by a constant times the conjugate Cauchy integral of ω. This is the connection
between harmonic measure and the Cauchy Integral alluded to before. By standard
properties of harmonic measure one gets the estimate, subtle but not extremely difficult
to prove,

(30) lim sup
ε→0

|Cε(ω)(z)| ≤ C θ∗(z), z ∈ K, ω a.e.

where Cε is the truncated Cauchy Integral and θ∗(z) = lim supr→0 ωD(z, r)/r the upper
linear density. If ω is absolutely continuous with respect to H1 on E ⊂ K, then θ∗ is
finite ω a.e. and, by (30), the maximal Cauchy Integral is finite ω a.e. on E. Therefore the
rectifiability criterion discussed in the previous section applies and concludes the proof
(the statement about absolute continuity of H1 with respect to ω follows easily). Let us
remark that the rectifiability criterion we are applying depends on the NTV T (b) theorem
and in higher dimensions one appeals to the solution of the David-Semmes problem in
codimension 1 [NToV1].
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12 Conclusion

Many things have happened since 1982. In Classical Analysis long-standing open prob-
lems, which looked inaccessible at that time, are now reasonably well understood. New
sophisticated tools and ideas have been introduced to solve them and are now used in
other fields. In particular, the magic key has opened several solid doors and new land-
scapes have been offered to the contemplation of analysts of all tribes. The future is here,
in front of us, and is bringing new challenges, new problems that hopefully will be solved,
following the guidance of our predecessors.
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[Le] J.C. Léger, Menger curvature and rectifiability, Ann. of Math. 149(3) (1999),
831–869.

[L] L.H. Loomis, A note on the Hilbert transform, Bull. Amer. Math. Soc. 52
(1946), 1082–1086.

[K] S. Kass, Karl Menger, Notices of the A.M.S. 43(5) (1996),558–561.

[Ke] C. Kenig, “Harmonic analysis techniques for second order elliptic boundary
value problems”, CBMS Regional Conference Series in Mathematics 83, Amer.
Math. Soc., Providence, Rhode Island, 1994.

[KM] C. Kenig and Y. Meyer, The Cauchy integral on Lipschitz curves and the
square root of second order differential operators are the same, “Recent
Progress in Fourier Analysis (El Escorial, 1983)”, North Holland Math. Stud-
ies 111 (1985), 123–145.

[M] D. E. Marshall, Removable sets for bounded analytic functions, in: “Linear
and Complex Analysis Problem Book”, (V. P. Havin, S. V. Hruscëv and N. K.
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and P. Fernández, Rev. Mat. Iberoamericana, Madrid, 2011, 247–258.

[M2] Y. Meyer, Complex analysis and operator theory in Alberto Calderón’s work,
in “Selected papers of Alberto Calderón with commentary”, 593–606, A.Bellow,
C.E. Kenig and P.Malliavin Editors, Amer. Math.Soc. 2008

[MC] Y. Meyer and R. R. Coifman, “Wavelets, Calderón-Zygmund and multilinear
operators”, Cambridge Studies in Advanced Mathematics 48, Cambridge Univ.
Press, 1997.

[NTV1] F. Nazarov, S. Treil, A. Volberg, Cauchy integral and Calderón-Zygmund op-
erators on nonhomogeneous spaces, Int. Math. Res. Not. 15 (1997), 703–726.

[NTV2] F. Nazarov, S. Treil and A. Volberg, The T (b) theorem on non-homogeneous
spaces that proves a conjecture of Vitushkin, arXiv: 1401.2479, 2014.

[NToV1] F. Nazarov, X. Tolsa and A. Volberg, On the uniform rectifiability of AD-
regular measures with bounded Riesz transform operator: the case of codi-
mension 1, Acta Math. 213:2 (2014), 237–321.

[NToV2] F. Nazarov, X. Tolsa and A. Volberg, The Riesz transform, rectifiability, and
removability for Lipschitz harmonic functions, Publ. Mat. 58:2 (2014), 517–
532.

[Pa] H. Pajot, “Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy
Integral”, Lecture Notes in Math. 1799, Springer-Verlag, Berlin Heidelberg,
2002.

[Pr] L. Prat, Potential theory of signed Riesz kernels: capacity and Hausdorff mea-
sure, Int. Math. Res. Not. 19 (2004), 937–981.

[P] I.I. Privalov, “Boundary properties of analytic functions”, GITTL, Moscow,
1950 (Russian); “Randeigenschaften Analytischer Funktionen”, Deutscher Ver-
lag der Wiss., Berlin 1956 (German).

[S] E. M. Stein, Singular Integrals: the roles of Calderón and Zygmund, Notices
of the A.M.S. 45(9) (1998), 1130–1140.

36



[Tr] T. Toro, Geometric Measure Theory, Recent Applications, Notices of the
Amer. Math. Soc. 66(4) (2019), 471–181.

[T1] X. Tolsa, L2-boundedness of the Cauchy integral operator for continuous mea-
sures, Duke Math. J. 98(2) (1999), 269–304.
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