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Abstract

We show that the boundary of a rotating vortex patch (or V -state, in the termi-
nology of Deem and Zabusky) is C∞, provided the patch is close to the bifurcation
circle in the Lipschitz norm. The rotating patch is also convex if it is close to the
bifurcation circle in the C2 norm. Our proof is based on Burbea’s approach to
V -states.
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1. Introduction

The motion of a two dimensional inviscid incompressible fluid is governed by
Euler equations

⎧
⎨

⎩

∂tv(z, t)+ (v · ∇v)(z, t) = −∇ p(z, t), z ∈ C, t > 0,
div v = 0,
v(z, 0) = v0(z),

(1)



172 Taoufik Hmidi, Joan Mateu & Joan Verdera

where v(z, t) is the velocity field at the point (z, t) ∈ C×R+ and p is the pressure,
which is a scalar function. The operators v · ∇ and div are defined by

v · ∇ = v1∂1 + v2∂2 and div v = ∂1v1 + ∂2v2.

The velocity field v is divergence free because the fluid is incompressible. In dimen-
sion two the vorticity is given by the scalar ω = ∂1v2 − ∂2v1. One can recover the
velocity from the vorticity by means of the Biot–Savart law. Indeed, identifying
v = (v1, v2) with v1 + iv2 and performing a simple calculation, one gets

2∂v = iω, with ∂ := ∂z = 1

2
(∂1 − i∂2).

Since z �→ 1
π z is the fundamental solution of the complex operator ∂ , we get the

Biot–Savart law

v(z, t) = i

2π

∫

C

ω(ζ, t)

z − ζ
dA(ζ ), z ∈ C, (2)

with dA being the planar Lebesgue measure. Taking the curl in the first equation
of the system (1), one obtains the vorticity equation

{
∂tω + v · ∇ω = 0,
ω(z, 0) = ω0(z),

(3)

where ω0 denotes the initial vorticity and v is given by the Biot–Savart law (2).
Equation (3) simply means that the vorticity is constant along particle trajectories.
Under mild smoothness assumptions the Euler system is equivalent to the vorticity
formulation (2)–(3). A convenient reference for these results is [2, Chapter 2].

It is a deep fact, known as the Yudovich Theorem, that the vorticity equation
has a unique global solution in the weak sense when the initial vorticity ω0 lies in
L1 ∩ L∞. See, for instance, [2, Chapter 8]). The solution of (3) is a vortex patch
whose initial condition is the characteristic function of a bounded domain D0. Since
the vorticity is transported along trajectories, we get that ω(z, t) = χDt (z), where
Dt = X (D0, t) is the image of D0 by the flow. Recall that the flow X is the solution
of the nonlinear integral equation

X (z, t) = z +
∫ t

0
v(X (z, τ ), τ ) dτ, z ∈ C, t � 0.

In the special case where D0 is the open unit disc the vorticity is radial, and thus
we get a steady flow. In particular, Dt = D0, t � 0, and the particle trajectories
are circles centered at the origin. A remarkable fact discovered by Kirchoff is that
when the initial condition is the characteristic function of an ellipse centered at
the origin, then the domain Dt is a rotation of D0. Indeed, Dt = ei t
D0, where
the angular velocity 
 is determined by the semi-axes a and b of the initial ellipse
through the formula
 = ab/(a +b)2. See, for instance, [2, p. 304] and [9, p. 232].

A rotating vortex patch or V -state is a domain, D0, such that if χD0 is the initial
condition of the vorticity equation, then the region of vorticity 1 rotates with con-
stant angular velocity around its center of mass, which we assume to be the origin.
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In other words, Dt = ei t
D0 or, which is the same, the vorticity at time t is given
by

ω(z, t) = χD0(e
−i t
z), z ∈ C, t > 0.

Here the angular velocity 
 is a positive number associated with D0.
To the best of our knowledge the ellipse is the only V -state for which a closed

formula is known. Deem and Zabusky [5] wrote an equation for the V -states and
solved it numerically. They found V -states with m-fold symmetry for each integer
m � 2. A domain is said to be m-fold symmetric if it is invariant under a rotation
of angle 2π/m. One may view such a domain as being the union of m leaves, each
of which can be obtained from a given one by rotating it by an angle of the form
p(2π/m), for some integer p. It is extremely interesting to look at the pictures of
m-fold symmetric V -states in [14]; one can see domains with smooth boundaries,
which evolve with certain associated parameters to produce in the limit domains
whose boundaries have corners at right angles.

Burbea [3] gave a mathematical proof of the existence of m-fold sym-
metric V -states using bifurcation from the circle solution. His approach is, in
Aref’s words, elegant and deep [1, p. 346]; it is indeed so. He finds an equa-
tion for the V -states and then uses conformal mapping to rewrite the equation
in a functional analytic framework in which bifurcation theory can be applied.
Unfortunately, the proof has a gap, which occurs when the space to which bifur-
cation theory should be applied is set up. The suggestion made in [3, p. 8] of
using the standard Hardy space does not work. One reason is that the opera-
tor Q( f ) in [3, p. 8] involves one derivative of f , but functions in the Hardy
space do not necessarily have derivatives. Another reason is that one needs a
space which guarantees that small analytic perturbations of the identity in the
space are conformal. A space which fulfils the preceding requirements is the
space of Lipschitz functions. However, for technical reasons, the space of Lips-
chitz functions is not suitable for our purposes and has to be replaced by the
smaller space of functions with first order derivatives satisfying a Hölder con-
dition of order α, 0 < α < 1. The reader will find an exposition of Burbea’s
approach in Section 2 and a complete proof of the existence of m-fold symmetric
V -states in Section 3. It is our impression that this beautiful and striking theorem
deserves to be more widely known than it now appears to be. In section 4 we
prove our main result, which states that if a bifurcated V -state is close enough
to the circle in the Lipschitz sense, then its boundary is of class C∞. We also
show that a bifurcated V -state is convex if it is close enough to the circle in the
C2 norm. There is a dark zone, where the V -state has boundary of class C1+α
for some positive α, but it is not close enough to the circle in which the actual
smoothness properties of the boundary are unknown. Also, the nature of the sin-
gularities of the “limiting” V -states of Wu et al. [14] are not well understood
at all.

We adhere to the convention of denoting by C a constant independent of the
relevant parameters under consideration. The constant may change its actual value
at different occurrences.
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2. Burbea’s Approach to V -States

We begin by deriving an equation for simply connected vortex patches which
have smooth boundaries for all times. Consider two parametrizations of the bound-
ary ∂Dt of the patch at time t , say z(α, t) and η(β, t), and assume that they are
proper in the sense that they establish a homeomorphism between the interval of
definition of the parameters, with the extremes identified, and ∂Dt . Assume, also,
that they are continuously differentiable as functions of the parameter and time.
Then there exists a change of parameters α(β, t) such that η(β, t) = z(α(β, t), t)
for all β and t , and so we have

∂η

∂t
(β, t) = ∂z

∂α
(α, t)

∂α(β, t)

∂t
+ ∂z

∂t
(α, t).

Since ∂z
∂α
(α, t) is a tangent vector to the boundary at the point z(α, t) and ∂α

∂t (β, t)
is a scalar, we conclude that

∂η

∂t
(β, t) · �n = ∂z

∂t
(α, t) · �n, (4)

where �n is the exterior unit normal vector at the point z(α, t) = η(β, t) and the
dot stands for the scalar product in R

2 = C. Thus, the quantity in (4) does not
depend on the parametrization and represents the speed of the boundary in the
normal direction. On the other hand, v(z(α, t), t) · �n is the normal component of
the velocity of a particle which is located at the point z(α, t) at time t . Since the
boundary is advected by the velocity v, we get the equation

∂z

∂t
(α, t) · �n = v(z(α, t), t) · �n, (5)

which describes the motion of the boundary of the patch.
Now we introduce the stream function

ψ(z, t) =
(

1

2π
log | · | × χDt

)

(z). (6)

Clearly, ∂ log |z|2 = 1/z, where ∂ = ∂/∂z. Hence

2i∂ψ(z, t) = i

2π

(
1

z
× χDt

)

(z) = v(z, t)

and

(v · �n)(z(α, t), t) = (∇⊥ψ · �n)(z(α, t), t)

= −(∇ψ · �τ)(z(α, t), t)

= −dψ

ds
(z(α, t), t),

where �τ is the unit tangent vector and s is the arc-length parameter of the curve
∂Dt . Therefore (5) becomes

dψ

ds
(z(α, t)) = −∂z(α, t)

∂t
· �n. (7)
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Assume now that the patch rotates with angular velocity 
. Let z0(α) be a proper
continuously differentiable parametrization of ∂D0 and set z(α, t) = ei
t z0(α),
which is a proper parametrization of ∂Dt . Then

∂z

∂t
(α, t) = i
z(α, t),

and (7) becomes

dψ

ds
(z(α, t), t) = −i
z(α, t) · �n = 
z(α, t) · �τ . (8)

Taking α = s, the arc-length parameter on ∂D0, we obtain

d

ds
|z(s, t)|2 = 2 Re(z(s, t)�τ) = 2z(s, t) · �τ ,

so that, by (8),

dψ

ds
(z(s, t), t) = 


2

d

ds
|z(s, t)|2,

and integrating with respect to s yields, for a certain constant c(t) depending on t ,

ψ(z, t) = 


2
|z|2 + c(t), z ∈ ∂Dt . (9)

Since the steps can be reversed, this is the equation of V -states.
The goal now is to use conformal mappings to “parametrize” V -states. For that,

one needs to modify the preceding equation to get a form more amenable to the use
of analytic functions. Fix t and take derivatives in (9) with respect to s on ∂Dt . We
just get a restatement of (8), that is,

2 Re

(
∂ψ

∂z
(z(s, t), t)z′(s, t)

)

= Re
(

z(s, t)z′(s, t)

)
, (10)

where the ‘prime’ signifies the derivative with respect to s. By the generalized
Cauchy formula (which follows from a direct application of Green–Stokes), one
has

z = 1

2π i

∫

∂Dt

ζ

ζ − z
dζ + 1

π

∫

Dt

dA(ζ )

z − ζ
, z ∈ Dt . (11)

Taking the ∂ = ∂/∂z derivative in (6) and applying (11),

4
∂ψ

∂z
(z, t) = 1

π

∫

Dt

dA(ζ )

z − ζ
= z − 1

2π i

∫

∂Dt

ζ

ζ − z
dζ, z ∈ Dt .

The first identity above implies that z �→ ∂ψ
∂z (z, t) extends continuously to the

closed domain Dt , since the Cauchy integral of a bounded compactly supported
function is quasi-Lipschitz (its modulus of continuity is O(δ| log δ|), δ < 1/2).



176 Taoufik Hmidi, Joan Mateu & Joan Verdera

Thus, the same happens to the Cauchy integral of the function ζ on ∂Dt . Hence
(10) becomes, with λ = 1 − 2
,

Re

(

λzz′(s, t)− 1

2π i

∫

∂Dt

ζ

ζ − z
dζ z′(s, t)

)

= 0, z ∈ ∂Dt ,

where the integral over ∂Dt for z ∈ ∂Dt should be understood as the limit as
w ∈ Dt tends to z of the corresponding integral for w.

Integrating with respect to s on ∂Dt we conclude that, for some constant c(t)
depending on t ,

λ|z|2 + 2 Re
1

2π i

∫

∂Dt

ζ log

(

1 − z

ζ

)

dζ = c(t), z ∈ ∂Dt . (12)

Remember that the origin belongs to Dt and thus, for each ζ ∈ ∂Dt , there exists
a branch of the logarithm of 1 − z/ζ in Dt \ {ζ } taking the value 0 at z = 0.
Also, for each fixed z ∈ ∂Dt , there exists a branch of the logarithm of 1 − z/ζ
in C∞ \ Dt ∪ {z} taking the value 0 at ζ = ∞. Therefore, the integral in (12)
exists for each z ∈ ∂Dt and defines a continuous function on ∂Dt . Later on we will
differentiate this integral with respect to z on ∂Dt .

Notice that Equation (12) is invariant by rotations and dilations. Consequently,
using the fact Dt = ei t
D0 and performing a change of variables, equation (12)
reduces to

λ|z|2 + 2 Re
1

2π i

∫

∂D0

ζ log

(

1 − z

ζ

)

dζ = c, z ∈ ∂D0. (13)

We have used the fact that c(t) does not depend on t since the left hand side of (13)
is independent on the time variable. Equation (13) is Burbea’s equation for simply
connected V -states.

Let us now introduce conformal mappings. Let ED0 = C∞ \ D0 be the exterior
of D0 and E� = C∞ \ � the exterior of the unit disc � = {z : |z| < 1}. Let � be
a conformal mapping of E� onto ED0 , preserving the point at ∞. This mapping
can be expanded in E� as

�(z) = a

⎛

⎝z +
∑

n�0

an

zn

⎞

⎠

for some complex number a. Making a rotation in the independent variable z, we
can assume that a is a positive number; then dilating the domain, we can further
assume that a = 1. Following Burbea we change variables in (13) setting z = �(w)

and ζ = �(τ). Then (13) becomes

λ|�(w)|2 + 2 Re
1

2π i

∫

T

�(τ) log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ = c, w ∈ T. (14)

Recall that we are assuming ∂D0 to have a rectifiable boundary. It is then a classical
result that� can be extended continuously to the unit circle T = {z ∈ C : |z| = 1}
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and the extension is absolutely continuous, so that�′(w) exists for almost allw ∈ T

and the resulting function is in L1(T) (see [10]). Later on, we will work with a �
whose extension to T is of class C1+α(T) so that �′ will be Hölder continuous of
order α on T. To simplify the notation, set

σ(�)(w) = 1

2π i

∫

T

�(τ) log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ, w ∈ T (15)

and

m(�, λ) = 1

2π

∫

T

(λ|�(w)|2 + 2 Re σ(�)(w)) |dw|, (16)

where |dw| denotes the length measure on the circle. Hence (14) is

λ|�(w)|2 + 2 Re σ(�)(w)− m(�, λ) = 0, w ∈ T. (17)

It is more convenient to set�(z) = z + f (z) with f analytic on E� and define the
operator

S( f )(w) = σ(�)(w). (18)

That this is a good point of view is confirmed by the fact that

S(0)(w) = 1

2π i

∫

T

log
(

1 − w

τ

) dτ

τ
= 0, w ∈ T, (19)

because the integrand is analytic on E� and has a double zero at ∞. Thus (17) is
satisfied for �(z) = z and each λ. Now define

F(λ, f )(w) := λ|w + f (w)|2 + 2 Re S( f )(w)− m(I + f, λ), w ∈ T, (20)

where I stands for the identity function. Clearly, Burbea’s equation can be rewritten
as

F(λ, f ) = 0.

One has

F(λ, 0) = 0, λ ∈ R,

which simply says that the disc satisfies Burbea’s equation (13) for each λ.
Burbea’s idea at this point is to apply bifurcation theory in order to prove the
existence of m-fold V -states. In the next section we will apply Crandall–Rabino-
witz’s Theorem, whose original statement in [4, p. 325] is included below for the
reader’s convenience. For a linear mapping, L , we let N (L) and R(L) stand for the
kernel and range of L , respectively. If Y is a vector space and R is a subspace, then
Y/R denotes the quotient space.

Crandall–Rabinowitz’s Theorem. Let X,Y be Banach spaces, V a neighbor-
hood of 0 in X and

F : (−1, 1)× V → Y
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have the properties

(a) F(t, 0) = 0 for any |t | < 1.
(b) The partial derivatives Ft , Fx and Ftx exist and are continuous.
(c) N (Fx (0, 0)) and Y/R(Fx (0, 0)) are one-dimensional.
(d) Ftx (0, 0)x0 /∈ R(Fx (0, 0)), where

N (Fx (0, 0)) = span{x0}.
If Z is any complement of N (Fx (0, 0)) in X, then there is a neighborhood U of
(0, 0) in R × X, an interval (−a, a), and continuous functions ϕ : (−a, a) →
R, ψ : (−a, a) → Z such that ϕ(0) = 0, ψ(0) = 0 and

F−1(0) ∩ U = {(ϕ(ξ), ξ x0 + ξψ(ξ)) : |ξ | < a} ∪ {(t, 0) : (t, 0) ∈ U }.

3. Existence of m-Fold V -States

In this section we will apply Crandall–Rabinowitz’s Theorem to prove the
existence of m-fold V -states for each integer m � 2. For m = 2 one recovers the
Kirchoff ellipses. As a by-product of this formalism we get a Hölderian boundary
regularity result for the V -states which are close to a point of the bifurcation set
{(λ, f ) = ( 1

m , 0),m = 2, 3, . . .}. Later, we will see how to establish the C∞ reg-
ularity of the boundary of these V -states by using hidden smoothing effects of the
nonlinear equation (17). First, we establish the following result.

Theorem 1. Given 0 < α < 1 and m = 2, 3, . . . there exists a curve of m-fold
rotating vortex patches with boundary of class C1+α bifurcating at the circle solu-
tion.

More precisely, there exist a > 0 and continuous functions λ : (−a, a) → R,
ψ : (−a, a) → C1+α(T) satisfying λ(0) = 1/m, ψ(0) = 0, such that the Fourier
series of ψ(ξ) is of the form

ψ(ξ)(w) = a2m−1(ξ)w
2m−1 + · · · + anm−1(ξ)w

nm−1 + · · · , w ∈ T,

and

F(λ(ξ), ξwm−1 + ξψ(ξ)(w)) = 0, ξ ∈ (−a, a).

The mapping

�ξ(z) = z

(

1 + ξ
1

zm
+ ξa2m−1(ξ)

1

z2m
+ · · · + ξanm−1(ξ)

1

znm
+ · · ·

)

is conformal and of class C1+α on C \�, and the complement Dξ of �ξ(C \�)
is an m-fold rotating vortex patch.

The proof of this theorem requires some lengthy work, which will be presented
in several steps. We start by introducing the spaces X and Y , then we will check
all the assumptions of Crandall–Rabinowitz’s Theorem.
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3.1. The spaces X and Y

The choice of the spaces X and Y is a key point, which was overlooked in [3].
Before giving the complete description of these spaces, we first need to recall the
definition of the Hölder spaces Cn+α(
). Let
 be a non-empty open set of R

d and
0 < α < 1. We denote by Cα(
) the space of continuous functions f such that

‖ f ‖Cα(
) := ‖ f ‖L∞ + sup
x �=y∈


| f (x)− f (y)|
|x − y|α < ∞,

where ‖ f ‖L∞ stands for the supremum norm of f on 
. More generally, for a
non-negative integer n the Hölder space, Cn+α(
) consists of those functions of
class Cn whose nth order derivatives are Hölder continuous with exponent α in
.
It is equipped with the norm

‖ f ‖Cn+α(
) = ‖ f ‖L∞ +
∑

|γ |=n

‖∂γ f ‖Cα(
).

We will also make use of the space C1+α(T), which is the set of continuously
differentiable functions f on the unit circle T whose derivatives satisfy a Hölder
condition of order α, endowed with the norm

‖ f ‖C1+α(T) = ‖ f ‖L∞ +
∥
∥
∥
∥

d f

dw

∥
∥
∥
∥
α

,

where ‖ · ‖α is the usual Lipschitz semi-norm of order α:

‖g‖α = sup
x �=y∈T

|g(x)− g(y)|
|x − y|α .

We define, in a similar way, the spaces Cn+α(T), for each positive integer n and
α ∈]0, 1[. A word on the operator d/dw is in order. Any function f : T → R can
be identified with a 2π -periodic function g : R → R via the formula

f (w) = g(θ), w = eiθ .

Therefore, for a smooth function f we get

d f

dw
= −ie−iθg′(θ).

It will be more convenient in the sequel to work with d/dw instead of d/dθ . Since
they differ only by a smooth factor it really makes no difference. Notice that we
have the identity

d{ f }
dw

= − 1

w2

d f

dw
. (21)

On the other hand, if we denote by C1+α
2π (R) the subspace of C1+α(R) consisting

of 2π -periodic functions, then we can identify C1+α(T) with C1+α
2π (R) and

‖g‖α ≈ ‖ f ‖α.



180 Taoufik Hmidi, Joan Mateu & Joan Verdera

Let C1+α
a (�c) be the space of analytic functions on C∞ \ � whose derivatives

satisfy a Hölder condition of order α up to T. This is also the space of functions in
C1+α(T) whose Fourier coefficients of positive frequency vanish.

The space X is defined as

X =
{

f ∈ C1+α(T); f (w) =
∞∑

n=0

anw
n, w ∈ T, an ∈ R, n � 0

}

, (22)

and coincides with the subspace of C1+α
a (�c) consisting of those functions in

C1+α
a (�c) whose boundary values have real Fourier coefficients. Later on, we will

modify the space X appropriately to get m-fold symmetry, but for now it is simpler
and clearer to work with this X . The reader will understand later why we require
the an to be real. For the time being, we just comment on the geometric meaning
of this requirement. If we set, for f ∈ X,�(z) = z + f (z) and � happens to be
conformal on C∞ \�, then the complement in C∞ of the closure of�(C∞ \�) is
a simply connected domain D symmetric with respect to the real axis. Conversely,
if one starts with a bounded simply connected domain D symmetric with respect
to the real axis and � is the conformal mapping of the complement of the closed
unit disc onto the complement of D, then the coefficients in the expansion of �
as a power series in 1/z are real. Now, if one is given a domain D with an axis
of symmetry containing the origin, after a rotation one can assume that this axis
is the real line. Domains with m-fold symmetry have an axis of symmetry, so it is
not, in fact, restrictive for our purposes to work with functions with real Fourier
coefficients.

Let V stand for the open ball with center 0 and radius 1 in C1+α
a (�c). If f is in V ,

then the function�(z) = z + f (z) is analytic on {z : |z| > 1) and is injective there.
For, by the maximum principle,

∥
∥
∥
∥

d f

dw

∥
∥
∥
∥

L∞(�c)

= sup

{ | f (z)− f (w)|
|z − w| : |z| � 1, |w| � 1, z �= w

}

:= δ < 1,

and hence

|�(z)−�(w)|� |z − w| − | f (z)− f (w)|�(1 − δ)|z − w|, |z|�1, |w|�1.

For f ∈ V define S( f ) as in (15) and (18), where�(z) = z + f (z). The definition
makes sense precisely because � is injective, and thus a branch of the logarithm
of 1 −�(w)/�(τ) can be defined taking the value 1 at ∞ (that is, as τ → ∞), as
we argued after (13). We now define a function F(λ, f ) on R × V by

F(λ, f )(w) = λ|w + f (w)|2 + 2Re S( f )(w)− m(Id + f, λ), (23)

where S( f ) is as in (18) and m(Id+ f, λ) as in (16). This is the function F to which
we will apply Crandall–Rabinowitz’s Theorem.
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We now define the space Y as the subspace of C1+α(T) consisting of real-valued
functions with zero integral and real Fourier coefficients. More precisely,

Y :=
⎧
⎨

⎩
g ∈ C1+α(T) : g(w) =

∑

0 �=n∈Z

anw
n, w ∈ T and an = a−n ∈ R, n > 0

⎫
⎬

⎭
.

(24)

Since we have subtracted the mean in (23), it is clear that F(λ, f ) is a real-
valued function with zero integral. To show that F maps X into Y it remains to
show that F(λ, f ) belongs to C1+α(T) and that its Fourier coefficients are real.

3.2. F(λ, f ) is in C1+α(T)

Since F(λ, f ) has zero integral, its norm in the space C1+α(T) is equivalent
to the Cα(T) norm of its derivative w �→ dF

dw (λ, f )(w). Now, since C1+α(T) is an

algebra, the problem reduces to showing that w �→ dS( f )
dw (w) belongs to Cα(T).

For that, we need to compute the derivative of S( f )(w) with respect to w; this is
done in the next lemma. Recall that � : T → C is bilipschitz (into the image) if,
for a positive constant C , one has

C−1|τ − ω| � |�(τ)−�(ω)| � C |τ − ω|, τ, ω ∈ T.

Lemma 1. For any bilipschitz function � : T → C of class C1(T) we have

d

dw
S( f )(w) = −�′(w)

(
�(w)

2
+ p.v.

1

2π i

∫

T

�(τ)�′(τ )
�(τ)−�(w)

dτ

)

, w ∈ T.

(25)

Proof. The proof of this lemma consists of computing the derivative with respect
to w in the sense of distributions by integrating against a test function on T. When
integrating by parts, we will get −�′(w) times the principal value integral in (25)
plus a “boundary term” −�′(w)�(w)/2, which is due to the fact that the logarithm
in the definition of S( f ) is not continuous on the diagonal.

An alternative argument goes as follows. Bring the integral defining S( f ) on
the C1 Jordan curve � = �(T) to obtain the function

σ(z) = 1

2π i

∫

�

ζ log

(

1 − z

ζ

)

dζ, z ∈ �.

Think ofσ as an analytic function of z ∈ D, the domain enclosed by�. Its derivative
is

− 1

2π i

∫

�

ζ

ζ − z
dζ = −z − 1

π

∫

D

1

ζ − z
dA(ζ ), z ∈ D,

where the identity is the generalized Cauchy formula for the function z. The integral
on D in the right-hand side is a quasi-Lipschitz function, as the Cauchy integral
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of a bounded function, and hence the left-hand side extends continuously up to
the boundary. Call this extension −C(ζ )(z), z ∈ �, where the notation refers to
“boundary values of the Cauchy integral of the function ζ”. By Plemelj’s formula
(see, for example, [11, p. 143]),

C(ζ )(z) = z

2
+ p.v.

1

2π i

∫

�

ζ

ζ − z
dζ. (26)

We conclude that σ is differentiable on� and its derivative with respect to z is given
by minus the expression in (26). Changing variables to return to the unit circle and
applying the chain rule we get (25). ��

Now everything is reduced to checking that the the principal value integral in
(25) satisfies a Hölder condition of order α. This can be done rather easily in at
least two ways. The first consists in considering the operator

T g(w) = p.v.
1

2π i

∫

T

g(τ )

�(τ)−�(w)
dτ, w ∈ T, (27)

and showing that T boundedly maps Cα(T) into itself. This can be achieved by
applying the T (1)− Theorem for Hölder spaces of Wittmann [13, Theorem 2.1,
p.584] (see also [7]). Before we state Witmann’s result, recall that the maximal
singular integral of g is

T ∗(g)(w) = sup
ε>0

∣
∣
∣
∣

∫

T\D(w,ε)

g(τ )

�(τ)−�(w)
dτ

∣
∣
∣
∣ , w ∈ T,

D(w, ε) being the disc centered atw of radius ε. Wittmann’s T (1)-Theorem asserts
in our context that the Cα(T) boundedness of T follows by checking that the kernel
is “standard”, that T ∗(1) is bounded and that the operator T applied to the constant
function 1 lies in Cα(T). That the kernel is standard means, in the situation we are
considering, that

∣
∣
∣
∣

1

�(τ)−�(w)

∣
∣
∣
∣ � C

|τ − w| , τ, w ∈ T (28)

and
∣
∣
∣
∣

d

dw

(
1

�(τ)−�(w)

)∣
∣
∣
∣ � C

|τ − w|2 , τ, w ∈ T, (29)

which are clearly satisfied because � is bilipschitz on its domain. To compute
T (1)(w),w ∈ T, denote by γε, ε > 0, the arc which is the intersection of the
circle centered at w of radius ε and the complement of the open unit disc, with
counter-clockwise orientation. Let Tε be the closed Jordan curve consisting of the
arc γε followed by the part of the unit circle at distance from w not less than ε. We
claim that

T (1)(w) = lim
ε→0

(
1

2π i

∫

Tε

τ − w

�(τ)−�(w)
dτ

τ − w
− 1

2π i

∫

γε

τ − w

�(τ)−�(w)

dτ

τ−w
)

= 1 − 1

2�′(w)
. (30)
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The integral over Tε is 1, since the integrand is analytic as a function of τ on the
exterior of the unit disc, and we have

lim|τ |→∞
τ − w

�(τ)−�(w)
= 1.

The limit as ε → 0 of the integral over γε is

1

�′(w)
lim
ε→0

∫

γε

dτ

τ − w
= π i

�′(w)
,

and so (30) is proven. From the assumption � ∈ C1+α(T) combined with (30) we
obtain that T (1) ∈ Cα(T). From the argument above, it is also clear that T ∗(1) is
bounded on T.

For future reference, we record now the following identity, whose proof is
similar to that of (30) just described,

p.v.
1

2π i

∫

T

�′(τ )
�(τ)−�(w)

dτ = 1

2
. (31)

The second argument for showing that the principal value integral in (25) sat-
isfies a Hölder condition of order α consists in changing variables ζ = �(τ) and
z = �(w) and passing to a principal value integral on the C1+α Jordan curve
� = �(T). The kernel of the operator one obtains is the Cauchy kernel and the
integration is with respect to dζ . This operator sends Cα(�) into itself on curves sat-
isfying a mild regularity assumption called Ahlfors regularity. This can be proved by
standard arguments,so we prefer to omit the lengthly calculations and inequalities
involved.

3.3. Real Fourier Coefficients

We intend to show that if f ∈ X , then F(λ, f ) has real Fourier coefficients.
Let R stand for the space of continuous functions on T with real Fourier coeffi-
cients. We claim that R is an algebra invariant under conjugation and under taking
inverses of functions which vanish nowhere on T. Moreover, if a function in R is
continuously differentiable, then its derivative stays in R. The only non-obvious
fact is the stability under the operation of taking inverses.

Lemma 2. If f ∈ R and f (eiθ ) �= 0 for all real θ , then 1/ f ∈ R.

Proof. Let f (eiθ ) = ∑∞
n=−∞ aneinθ and let ( 1

f )(e
iθ ) = ∑∞

n=−∞ αneinθ be the

Fourier series expansions of f and 1
f . Set αn = bn + icn with bn and cn real. Then

1 = f (eiθ )
1

f (eiθ )
=

∞∑

n=−∞
(a × α)(n)einθ

=
∞∑

n=−∞
((a × b)(n)+ i(a × c)(n)) einθ ,
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and thus

(a ∗ c)(n) = 0, for each integer n. (32)

Here we are using the notation a ∗ b for the convolution of the sequences a =
(an)

∞
n=−∞ and b = (bn)

∞
n=−∞, that is, (a × b)(n) = ∑∞

m=−∞ an−mbm . Let θ �→
g(eiθ ) be the function with Fourier series

∑∞
n=−∞ cneinθ . Then g ∈ L2(T), because

the sequence (αn)
∞
n=−∞ is square summable, and so (cn)

∞
n=−∞ is, too. By (32),

f (eiθ )g(eiθ ) = 0 for almost all θ.Hence g(eiθ ) = 0 for almost all θ , which means
that cn = 0, for all n. Therefore αn = bn is real for all n and 1/ f ∈ R. ��

From the discussion above it is clear that the term λ|�(w)|2 = λ[w +
f (w)][w + f (w)] has real Fourier coefficients if f does. Thus the following lemma
completes the proof that F(λ, f ) has real Fourier coefficients if f ∈ X .

Lemma 3. If f ∈ X, then Re S( f ) has real Fourier coefficients.

Proof. We are going to show that, in fact, S( f ) has real Fourier coefficients. Set

f (w) =
∞∑

n=0

anw
n .

By the Schwarz inequality,

∞∑

n=1

|an| �
( ∞∑

n=1

n2|an|2
)1/2 ( ∞∑

n=1

1

n2

)1/2

� C ‖d f/dw‖L2(T)

� C ‖d f/dw‖L∞(T) < ∞. (33)

Arguing as we did for (19), we conclude that
∫

T

τ log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ = 0

and, consequently, the function S( f ) takes the form

S( f )(w) = 1

2π i

∫

T

f (τ ) log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ.

Thus (33) yields

S( f )(w) =
∞∑

n=0

an
1

2π i

∫

T

τ n log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ, w ∈ T. (34)

Choose A > 1 big enough so that

|�(τ)| � 2‖�‖L∞(T), |τ | = A. (35)
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Since the integrand in (34) is analytic in |τ | > 1, the integral there can be taken on
|τ | = A. Then we can use the expansion

log

(

1 − �(w)

�(τ)

)

= −
∞∑

k=1

1

k

(
�(w)

�(τ)

)k

to obtain

S( f )(w) = −
∞∑

n=0

an

∞∑

k=1

An,k

k
�(w)k, (36)

where

An,k = 1

2π i

∫

T

τ n−k�′(τ )
(

τ

�(τ)

)k

dτ

= 1

2π

∫ 2π

0
τ n−k+1�′(τ )

(
τ

�(τ)

)k

|dτ | (37)

is the Fourier coefficient corresponding to the frequency −(n − k + 1) of the func-
tion τ �→ �′(τ )(τ/�(τ))k . Clearly, τ �→ �(τ)/τ has real Fourier coefficients,
and thus so does τ �→ �′(τ )(τ/�(τ))k , by Lemma 2. Hence An,k is a real number,
so (36) says that S( f ) has real Fourier coefficients. ��

3.4. F is Gateaux Differentiable

We show here that F is Gateaux differentiable, and in the next subsection
we will check that the directional derivatives are continuous. This will show that
F is continuously differentiable on its domain R × V . In proving differentiability
properties of F(λ, f ), we can consider only the first two terms in (20) because the
third, m(I + f, λ), is a mean of these two terms. Denote by G(λ, f ) the sum of the
first two terms in (20).

There is no problem with the partial derivative with respect to λ because the
dependence on λ is linear. We get

DλF(λ, f )(w) = |w + f (w)|2,

which is obviously continuous with respect to f in the topology of X .
Now, take h ∈ X and compute the derivative of G(λ, f ) with respect to f in the
direction h, that is,

D f G(λ, f )(h) = d

dt
G(λ, f + th)∣∣

t=0

= 2λRe(�h)+ 2 Re
d

dt
S( f + th)∣∣

t=0

. (38)
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The computation of d
dt

S( f + th)|t=0 yields the four terms below:

d

dt
S( f + th)∣∣

t=0

(w) = 1

2π i

∫

T

h(τ ) log

(

1 − �(w)

�(τ)

)

�′(τ ) dτ

+ 1

2π i

∫

T

�(τ) log

(

1 − �(w)

�(τ)

)

h′(τ ) dτ

+ 1

2π i

∫

T

�(τ)
h(w)− h(τ )

�(τ)−�(w)
�′(τ ) dτ

+ 1

2π i

∫

T

�(τ)

�(τ)
h(τ )�′(τ ) dτ

:= A( f, h)(w)+B( f, h)(w)+C( f, h)(w)+D( f, h), (39)

where the last identity is the definition of the functions A, B,C and D. Notice that
D is independent of w.
We proceed now to prove that A( f, h) ∈ C1+α(T). For the estimate of the absolute
value of A( f, h)(w), we can assume without loss of generality that w = 1. Com-
puting the derivative of log(1 −�(1)/�(τ))with respect to τ in |τ | > 1 and using
the fundamental theorem of calculus, we see that

log

(

1 − �(1)

�(τ)

)

=−
∫ ∞

1

�(1)�′(tτ)
(�(tτ)−�(1))�(tτ)

τ dt, 1 �= τ, |τ | � 1. (40)

The preceding identity is very useful in estimating the integrals containing a log-
arithmic term, as we will see below. We proceed now to estimate from below the
factors in the denominator of the fraction inside the integral in (40). The function
�(τ)/τ is analytic on C \� and takes the value 1 at ∞. Hence, by the maximum
principle and recalling that f ∈ V , we obtain

1 − ‖ f ‖L∞(T) � |�(τ)|
|τ | � 1 + ‖ f ‖L∞(T), |τ | � 1, (41)

and

|�(τ)−�(1)| � (1 − ‖ f ′‖L∞(T))|τ − 1|, |τ | � 1. (42)

Therefore, by (40)–(42) we get for τ ∈ T\{1},
∣
∣
∣
∣log

(

1 − �(1)

�(τ)

)∣
∣
∣
∣ � |�(1)|‖�′‖L∞(�c)

∫ ∞

1

dt

|�(tτ)−�(1)||�(tτ)|
� (1 + ‖ f ‖L∞(T))(1 + ‖ f ′‖L∞(T))

(1 − ‖ f ‖L∞(T))(1 − ‖ f ′‖L∞(T))

∫ ∞

1

dt

t |tτ − 1| .

We split the interval of integration in the last integral above into three subintervals:
(1, 1 + |τ − 1|), (1 + |τ − 1|, 3) and (3,∞). In the first, we notice that for t � 1
and |τ | = 1 we have the elementary inequality

|tτ − 1| = |t − τ | = |t − τ | � |1 − τ |,
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and so

∫ 1+|τ−1|

1

dt

t |tτ − 1| � 1.

The integral on the second interval can be estimated straightforwardly as follows:

∫ 3

1+|τ−1|
dt

t |tτ − 1| �
∫ 3

1+|τ−1|
dt

t − 1
= log

2

|τ − 1| .

Finally,

∫ ∞

3

dt

t |tτ − 1| �
∫ ∞

3

dt

t (t − 1)
= log

3

2
.

Therefore, collecting the preceding inequalities,

∣
∣
∣
∣log

(

1 − �(1)

�(τ)

)∣
∣
∣
∣ � C( f )(1 + | log |τ − 1||), τ ∈ T, (43)

where C( f ) is a constant depending only on the C1(T) norm of f .
Integration in τ on T readily yields

‖A( f, h)‖∞ � C1( f )‖h‖∞.

The next step is to estimate the uniform norm and the Lipschitz semi-norm of order
α of the function w �→ d

dw A( f, h)(w). As in Lemma 1, one has

d

dw
A( f, h)(w)=−�′(w)

(
h(w)

2
+p.v.

1

2π i

∫

T

h(τ )�′(τ )
�(τ)−�(w)

dτ

)

, w ∈ T,

(44)

and the only difficulty lies in estimating the Cα(T) norm of the principal value inte-
gral. But this has already been done in Section 3.2. Therefore A( f, h) ∈ C1+α(T).

The proof that the term B( f, h) belongs to C1+α(T) is basically the same. The
expression for the derivative is

d

dw
B( f, h)(w) = −�′(w)

(
�(w)h′(w)

2�′(w)
+ p.v.

1

2π i

∫

T

h′(τ )�(τ)dτ
�(τ)−�(w)

)

and one deals with the principal value integral as before, using the operator in (27).
The proof that the term C( f, h) is in C1+α(T) contains a little variation to the

preceding argument. First, we observe that the quotient

h(τ )− h(w)

�(τ)−�(w)
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takes, continuously, the value h′(w)/�′(w) on the diagonal of T. Consequently, in
computing the derivative of C( f, h)(w), no boundary terms will arise, and we get

d

dw
C( f, h)(w) = h′(w) p.v.

1

2π i

∫

|τ |=1

g(τ )

�(τ)−�(w)
dτ

+�′(w) p.v.
1

2π i

∫

T

h(w)− h(τ )

(�(τ)−�(w))2
g(τ ) dτ,

where g(τ ) = �(τ)�′(τ ). The mapping properties of the operator T in (27) take
care of the principal value integral in the first term. We view the principal value
integral in the second term as an operator, U , acting on g. Its kernel is standard,
because� is bilipschitz, and the action of U on the constant function 1 is, as in (30),

U (1)(w) = lim
ε→0

∫

Tε

h(w)− h(τ )

(�(τ)−�(w))2
dτ

+ lim
ε→0

1

2π i

∫

γε

h(τ )− h(w)

τ − w

(
τ − w

�(τ)−�(w)

)2 dτ

τ − w

= h′(w)
2�′(w)2

.

In the integral on Tε, the integrand is analytic on C\� and has a double zero at ∞,
and so the integral vanishes. The limit as ε tends to 0 of the integral on γε is iπ times
the limit as τ tends tow of the quotients inside, that is, h′(w)/�′(w)2. Then U (1) ∈
Cα(T). The previous discussion also gives us that U∗(1) is bounded. Thus one can
apply Wittmann’s T (1)-Theorem (see the paragraph after (27)) and conclude that
U maps Cα(T) into itself. This completes the proof thatw �→ D f F(λ, f )(h)(w) ∈
C1+α(T). On the other hand, it is clear that D f F(λ, f )(h) depends linearly on h.
Therefore F(λ, f ) is Gateaux differentiable at any point (λ, f ) ∈ R × V .

3.5. Continuity of D f F(λ, f )

In this subsection we prove that the mapping D f F(λ, f ) is continuous as a
function of f ∈ V , taking values in the space of bounded linear operators from
X into Y . In particular this shows that F(λ, f ) is continuously differentiable in
the Frechet sense. What one has to do is the following. Fix f ∈ V and show an
inequality of the type

‖D f F(λ, f )(h)− Dg F(λ, g)(h)‖C1+α(T)�C1+α( f )‖ f −g‖C1+α(T)‖h‖C1+α(T),

for g ∈ X close enough to f . Here we denote by C1+α( f ) a constant depending
on the norm ‖ f ‖C1+α . By (38) and (39) this amounts to prove similar inequalities
for A( f, h), B( f, h) and C( f, h) in place of D f F(λ, f ). For instance,

‖A( f, h)− A(g, h)‖C1+α(T) � C1+α( f )‖ f − g‖C1+α(T)‖h‖C1+α(T)

for g ∈ X close to f . We start with the estimate of the uniform norm of the
difference

‖A( f, h)− A(g, h)‖∞ � C1( f )‖ f − g‖C1(T)‖h‖L∞(T). (45)
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To prove the uniform estimate above, it is enough to consider the point w = 1 in
T. Take g ∈ V close to f and set �(τ) = τ + g(τ ), |τ | � 1. We can easily check
that

A( f, h)(1)− A(g, h)(1) = 1

2π i

∫

T

h(τ ) log

(

1 − �(1)

�(τ)

)
(
�′(τ )−� ′(τ )

)
dτ

+ 1

2π i

∫

T

h(τ )� ′(τ )
(

log

(

1 − �(1)

�(τ)

)

− log

(

1 − �(1)

�(τ)

))

dτ

:= I1( f, g)(h)+ I2( f, g)(h). (46)

To estimate the first term I1( f, g)(h) we use (43),

|I1( f, g)(h)| � 1

2π
‖h‖∞‖ f ′ − g′‖∞

∫

T

∣
∣
∣
∣log

(

1 − �(1)

�(τ)

)∣
∣
∣
∣ |dτ |

� C( f )‖h‖∞‖ f ′ − g′‖∞. (47)

To treat the second term I2( f, g)(h), we use the identity (40), which yields

K(τ )=
∫ ∞

1

(
�(1)�′(tτ)

(�(tτ)−�(1))�(tτ)−
�(1)� ′(tτ)

(�(tτ)−�(1))�(tτ)

)

τ dt, τ ∈T\{1},

where

K(τ ) := log

(

1 − �(1)

�(τ)

)

− log

(

1 − �(1)

�(τ)

)

.

By elementary algebraic computations, one gets

K(τ ) =
∫ ∞

1

(�(1)−�(1))�′(tτ)
(�(tτ)−�(1))�(tτ)

τ dt +�(1)
∫ ∞

1

�′(tτ)−� ′(tτ)
(�(tτ)−�(1))�(tτ)

τ dt

+�(1)
∫ ∞

1
� ′(tτ) �(tτ)−�(tτ)

(�(tτ)−�(1))�(tτ)�(tτ)
τ dt

+�(1)
∫ ∞

1

� ′(tτ)
�(tτ)

(
1

�(tτ)−�(1)
− 1

�(tτ)−�(1)

)

τ dt

:=
4∑

j=1

K j (τ ).

Coming back to the identity (40), the first term K1(τ ) takes the form

K1(τ ) = −�(1)−�(1)

�(1)
log

(

1 − �(1)

�(τ)

)

.

It follows, according to (43), that

|K1(τ )| � C1( f )‖ f − g‖L∞(T)(1 + | log |τ − 1||).
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As in the proof of (43), we obtain

|K2(τ )| � |�(1)|‖�′ −� ′‖L∞(�c)

∫ ∞

1

1

|�(tτ)− 1||�(tτ)| dτ

� |�(1)|‖ f ′ − g′‖L∞(T)

∫ ∞

1

1

|�(tτ)− 1||�(tτ)| dτ

� C1( f )‖ f ′ − g′‖L∞(T)(1 + | log |τ − 1||).
Concerning the third term, we write

|K3(τ )| � |�(1)|‖� ′‖L∞(�c)‖�−�‖L∞(�c)

∫ ∞

1

1

|�(tτ)− 1||�(tτ)||�(tτ)| dτ

� C1( f )‖ f − g‖L∞(T)(1 + | log |τ − 1||).
To treat the last term, K4, we use (42)

∣
∣
∣
∣

1

�(tτ)−�(1)
− 1

�(tτ)−�(1)

∣
∣
∣
∣ =

∣
∣
∣
∣

{� −�}(tτ)− {� −�}(1)
(�(tτ)−�(1))(�(tτ)−�(1))

∣
∣
∣
∣

� 4
‖� ′ −�′‖L∞(�c)|tτ − 1|

|tτ − 1|2

� 4
‖ f ′ − g′‖L∞(T)

|tτ − 1| .

Consequently,

|K4(τ )| � C1( f )‖ f ′ − g′‖L∞(T)(1 + | log |τ − 1||).
Therefore,

|K(τ )| � C1( f )‖ f − g‖C1(T)(1 + | log |τ − 1||), τ ∈ T\{1}.
Hence, coming back to the definition of I2( f, g)(h) in (46) and integrating in τ ,

|I2( f, g)(h)| � C1( f )‖ f − g‖C1(T).

Finally,

|A( f, h)(1)− A(g, h)(1)| � C1( f )‖h‖L∞(T)‖ f − g‖C1(T),

which is (45).
Our next task is to estimate the difference

d

dw
A( f, h)(w)− d

dw
A(g, h)(w)

in Cα(T), for g close to f in C1+α(T). The difficult term in the formula for the
derivative of the function A( f, h)(w) in (44) is the principal value integral

I ( f, h)(w) = p.v.
1

2π i

∫

T

h(τ )�′(τ )
�(τ)−�(w)

dτ

= 1

2π i

∫

T

h(τ )− h(w)

�(τ)−�(w)
�′(τ ) dτ + 1

2
h(w)

:= J ( f, h)(w)+ 1

2
h(w). (48)
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Thus, the difference I ( f, h)(w)− I (g, h)(w) is

J ( f, h)(w)− J (g, h)(w) = 1

2π i

∫

T

h(τ )− h(w)

�(τ)−�(w)
(�′(τ )−� ′(τ )) dτ

+ 1

2π i

∫

T

(
h(τ )− h(w)

)
� ′(τ )

(
1

�(τ)−�(w)

− 1

�(τ)−�(w)

)

dτ

:= T1( f, g)(w)+ T2( f, g)(w).

Now we need an estimate for T1( f, g) and T2( f, g) in Cα(T). Both terms have the
form

Tχ(w) =
∫

T

K (w, τ)χ(τ) dτ, χ ∈ L∞(T) (49)

where the kernel K (w, τ) and the function χ are

K (w, τ) = h(τ )− h(w)

�(τ)−�(w)
, χ(τ) = �′(τ )−� ′(τ )

in T1( f, g)(w), and

K (w, τ) = h(τ )− h(w)

�(τ)−�(w)
− h(τ )− h(w)

�(τ)−�(w)
, χ(τ) = � ′(τ )

in T2( f, g)(w).

Lemma 4. Assume that the kernel of the operator T in (49) satisfies

1. K is measurable on T × T and

|K (w, τ)| � C0, w, τ ∈ T.

2. For each τ ∈ T, w �→ K (w, τ) is differentiable in T\{w} and

|∂wK (w, τ)| � C0

|w − τ | , w, τ ∈ T, w �= τ.

Then

|Tχ(w1)− Tχ(w2)| � C‖χ‖L∞C0

(

1 + log
1

|w1 − w2|
)

|w1 − w2|,
w1 �= w2 ∈ T, (50)

for some constant C. In particular, Tχ ∈ Cα(T) for every 0 < α < 1.
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The proof of this lemma is simple and standard. For the details of a similar
result, the reader is referred to [8, p. 419].

To get the desired estimates for T1( f, g) and T2( f, g) we just need to check
that their kernels satisfy the hypothesis of Lemma 4. We deal first with T1( f, g).
From (42) with the point 1 ∈ T replaced by an arbitrary w ∈ T, one readily gets

|K (w, τ)| � C‖h′‖L∞(T), |∂wK (w, τ)| � C‖h′‖L∞(T)|τ − w|−1.

Therefore,

‖T1( f, g)‖Cα(T) � C‖h′‖L∞(T)‖� ′ −�′‖L∞(T)
� C‖h′‖L∞(T)‖ f − g‖C1(T).

To estimate the kernel of T2( f, g) we use (42):

|K (w, τ)| = |h(τ )− h(w)||(�−�)(w)− (�−�)(τ)|
|�(τ)−�(w)||�(τ)−�(w)|

� C‖h′‖L∞(T)‖�′ −� ′‖L∞(T).

The derivative of K (w, τ) with respect to w can also be estimated easily:

|∂wK (w, τ)| � |h′(w)|
∣
∣
∣
∣

1

�(τ)−�(w)
− 1

�(τ)−�(w)

∣
∣
∣
∣

+|h(τ )− h(w)|
∣
∣
∣
∣

�′(w)
(�(τ)−�(w))2

− � ′(w)
(�(τ)−�(w))2

∣
∣
∣
∣

� C‖h′‖L∞(T)‖�′ −� ′‖L∞(T)(1 + ‖�′ +� ′‖L∞(T))
1

|τ − w|
� C1( f )‖h‖C1(T)‖ f − g‖C1(T)

1

|τ − w| .

This gives, according to Lemma 4,

‖T2( f, g)‖Cα(T) � C1( f )‖h‖C1(T)‖ f − g‖C1(T).

Hence, we get

‖I ( f, h)− I (g, h)‖C1+α(T) � C1( f )‖h‖C1(T)‖ f − g‖C1(T)

and, finally, gathering all previous estimates

‖A( f, h)− A(g, h)‖C1+α(T) � C1( f )‖ f − g‖C1+α(T)‖h‖C1+α(T).

This concludes the proof of the continuity of the term A( f, h)(w) with respect
to f .

The proof for the terms B( f, h),C( f, h) and D( f, h) given by (39) follows
a similar pattern. We omit the details.
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3.6. Kernel and Range of D f F(λ, 0)

In this subsection we study the kernel and the range of D f F(λ, 0). We also
find the “eigenvalues”, that is, the values of λ for which the kernel of D f F(λ, 0) is
not trivial. In fact, the dimension of the kernel for these particular values of λ turns
out to be 1. Then we check that the range has codimension 1, so that Crandall–Ra-
binowitz’s Theorem can be applied.

Letting f = 0 in (38) and (39), we obtain

D f F(λ, 0)(h)(w)=2λRe(h(w)w)+2 Re

(
1

2π i

∫

T

h(τ ) log
(

1−w
τ

)
dτ

)

−m(h),

where m(h) is the mean on T with respect to |dw| of the sum of the first two
terms in the right-hand side above. Hence w �→ D f F(λ, 0)(h)(w) has zero inte-
gral with respect to |dw| on T. We would like to compute the Fourier series of
w �→ D f F(λ, 0)(h)(w) in terms of the Fourier series of h,

h(w) =
∞∑

n=0

bnw
n, w ∈ T. (51)

Since h ∈ X the Fourier coefficients bn of h are real. Using the expansion

log
(

1 − w

τ

)
= −

∞∑

n=1

1

n
wnτ n

and computing, we get

D f F(λ, 0)(h)(w) =
∞∑

n=1

(

λ− 1

n

)

bn−1w
n +

∞∑

n=1

(

λ− 1

n

)

bn−1w
n .

From the above expression we immediately conclude that the kernel of D f F(λ, 0)
is non-trivial only if λ = 1/m for some positive integer m. If this is the case, then the
kernel is one-dimensional and is generated by the functionw �→ wm−1 = 1/wm−1.
It is precisely at this point when we use the fact that the Fourier coefficients of the
functions in our space X are real. If the coefficient were complex, we would get a
kernel of real dimension 3. Let us now look at the range of D f F(λ, 0) under the
assumption that λ = 1/m. Clearly,

D f F(1/m, 0)(h)(w) = 2
∞∑

n=1

(
1

m
− 1

n

)

bn−1 cos(nθ), w = eiθ . (52)

Notice that D f F(1/m, 0)(h) is a function with zero integral and real Fourier coef-
ficients. We have shown in Section 3.4 that it is in C1+α(T), and thus in the space
Y given by (24). The only Fourier frequency missing in the expansion (52) is m,
so it looks plausible that a complement of the range of D f F(1/m, 0) is the one
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dimensional subspace generated by cos(mθ). To prove this, we need to show that
each g ∈ Y with an expansion of the form

g(w) =
∞∑

n=1,n �=m

βnw
n +

∞∑

n=1,n �=m

βnw
n,

with real βn is equal to D f F(1/m, 0)(h) for some h ∈ X . If h is as in (51) with
real Fourier coefficients, then the equation D f F(1/m, 0)(h) = g is equivalent to

2

(
1

m
− 1

n

)

bn−1 = βn, n = 1, 2, . . .

or, solving for bn ,

bn = m

2

n + 1

n + 1 − m
βn+1

= m

2
βn+1 + m2

2

1

n + 1 − m
βn+1.

The solution to D f F(1/m, 0)(h) = g is

h(w) = m

2
wG(w)+ m2

2
wH(w),

where

G(w) =
∞∑

n=1

βnw
n, w ∈ T

and

H(w) =
∞∑

n=1,n �=m

βn

n − m
wn, w ∈ T.

The function G is in C1+α(T), and then in X , because the Cauchy projection

∞∑

n=−∞
cnw

n �→
∞∑

n=0

cnw
n

preserves the space C1+α(T). This is false for the space C1(T) of continuously
differentiable functions on T (because the Cauchy projection does not preserve
L∞(T)); this is why we cannot choose the space C1(T) in the definition of X and
Y . It still remains to show that H ∈ C1+α(T), but this is easy. Set

K (w) =
∞∑

n=1,n �=m

wn

n − m
, w ∈ T,

so that K ∈ L2(T) ⊂ L1(T) and H = G ∗ K ∈ C1+α(T).
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To apply Crandall–Rabinowitz’s Theorem, we still have to check the transver-
sality condition, that is, that the the second order partial derivative D f λF(1/m, 0)
of F with respect to f and λ applied to the functionw �→ wm−1 is not in the range
of D f F(1/m, 0). Now D f λF(1/m, 0) can be identified with a bounded linear
mapping from X into Y . It is easy to see that

D f λF(1/m, 0)(h)(w) = 2Re(h(w)w), h ∈ X.

Hence

D f λF(1/m, 0)(wm−1)(w) = 2Re(wm) = 2 cos(mθ), w = eiθ ,

which is not in the range of D f F(1/m, 0).
Finally, one checks easily that D f λF(λ, f )(h)(w) = 2 Re(�(w)h(w)) is a

continuous function on R × V .

3.7. m-Fold Symmetry

We showed in the previous subsections how to apply Crandall–Rabinowitz’s
Theorem to the spaces X and Y . The conclusion is that, given a positive integer m,
we have a continuous curve (λξ , fξ ) ∈ R× V , defined for ξ in some interval of the
form (1/m − δ, 1/m + δ), such that F(λξ , fξ ) = 0, ξ ∈ (1/m − δ, 1/m + δ). Then
�ξ(z) = z + fξ (z), |z| � 1, is a conformal mapping of C∞ \ � into some domain
Uξ and Dξ = C∞ \Uξ is a simply connected vortex patch which rotates with angu-
lar velocity
ξ = (1−λξ )/2. We know that Dξ is a domain with boundary of class
C1+α , but nothing else can be said about its symmetry properties without further
arguments. The m-fold symmetry follows by adding a condition to the spaces X
and Y .
Given m, define Xm as the subspace of X consisting of those functions f ∈ X with
a Fourier expansion of the type

f (w) =
∞∑

n=1

anm−1w
nm−1, w ∈ T.

If f is in the open unit ball of Xm , the expansion of the associated conformal
mapping � in {z : |z| � 1} is given by

�(z) = z

(

1 +
∞∑

n=1

anm−1

znm

)

.

This will provide the m-fold symmetry of the associated patch, via the relation

�(ei2π/m z) = ei2π/m�(z), |z| � 1.

The space Ym is the subspace of Y consisting of those g ∈ Y whose Fourier coeffi-
cients vanish at frequencies which are not non-zero multiples of m. In other words,
the Fourier expansion of g is of the type

g(w) =
∞∑

n=0

βnm2 cos(nmθ), w = eiθ ,
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with β0 = 0 and real βnm . Notice that, since the generatorw �→ wm−1 of the kernel
of D f F(1/m, 0) is in Xm for m � 2, we still have that the dimension of the kernel
is 1. In the same way, the codimension of the range of D f F(1/m, 0) in Ym is 1.

However, to apply Crandall–Rabinowitz’s Theorem to Xm and Ym , one has to
check that F(λ, f ) ∈ Ym if f ∈ Xm . This follows rather easily from work we have
already done. One has to observe that the space Am of continuous functions on T

whose Fourier coefficients vanish at frequencies which are not integer multiples of
m is an algebra, closed in the space of continuous functions on T. Next, we remark
thatw �→ �′(w) ∈ Am . We also need the fact thatw �→ w

�(w)
∈ Am . To show this,

set

g(w) = �(w)

w
− 1, w ∈ T,

so that g ∈ Am and ‖g‖∞ < 1. Thus

w �→ w

�(w)
=

∞∑

n=0

(−1)ngn(w) ∈ Am .

An easy computation gives that w �→ λ|�(w)|2 belongs to Am if f ∈ Xm . It
remains to show that w �→ S( f )(w) is in Am . Recall the identities (36) and (37).
First, an �= 0 only for indexes of the form n = mq − 1 for some positive integer q.
On the other hand, Ank is the Fourier coefficient corresponding to the frequency
n − k + 1 of the function�′(τ )(τ/�(τ))k , which is in Am . Hence Ank is non-zero
only if n − k + 1 = mr for some integer r . Therefore, the sum in k is only over
indexes which are multiples of m. It remains to examine at the Fourier coefficients
of�(w)k . Now,�(w) = wg(w)with g ∈ Am and so�(w)k = wk g(w)k is also in
Am , because only indexes k which are multiples of m have to be taken into account.

Therefore, we can apply Crandall–Rabinowitz’s Theorem to Xm and Ym and,
finally, obtain the existence of m-fold symmetric V -states for each integer m � 2.

3.8. Kirchhoff’s Ellipses

For m = 2 we obtain the ellipses parametrized by w ∈ T �→ w + ξw. The
real number ξ satisfies −1 < ξ < 1 and is a parameter which determines the shape
of the ellipse. The ellipse is centered at 0, has horizontal semi-axis 1 + ξ, and
vertical semi-axis 1 − ξ . The function z �→ z + ξ

z is the conformal mapping of
the exterior on the unit disc onto the exterior of the ellipse. It is instructive to use
Crandall–Rabinowitz’s Theorem to prove that these ellipses rotate. We are going
to apply the Theorem to the one-dimensional space X , which is generated by w,
and Y , generated by w2 + w2 = 2 cos(2θ), w = eiθ . Notice that X is the kernel
of D f F(1/2, 0), which then has range {0} of codimension 1 in Y . Of course, we
have to check that F(λ, f ) sends X into Y . Take f (w) = ξw with |ξ | < 1, so that
�(w) = w + ξw. The term

|�(w)|2 = 1 + ξ2 + ξw2 + ξw2
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is correct because the constant 1 + ξ2 will disappear when subtracting the mean.
We can explicitly compute S( f )(w) using (36), and the remark that the sum in n
and k may be reversed because the sum in n is finite. We obtain

S( f )(w) = −
∞∑

k=1

�(w)k

k

1

2π i

∫

|τ |=1
�(τ)�′(τ ) 1

�(τ)k
dτ.

The only term that survives is that corresponding to the index k = 2, and the result
of the integral is ξ . Thus,

S( f )(w) = −ξ
2
(w + ξw)2

and

2 Re S( f )(w) = −
(
ξ

2
(1 + ξ2)(w2 + w2))+ 2ξ2

)

.

Again, the constant term will disappear when subtracting the mean and we conclude
that F(λ, f ) ∈ Y .

A final remark is that, strictly speaking, the conclusion of Crandall–Rabino-
witz’s Theorem is that for some little interval of ξ centered at 0, the associated
ellipse rotates. But, of course, that any ellipse satisfies Burbea’s equation (13) can
be proved directly. It is interesting to notice that, in this example,�ξ(z) is analytic
on a neighborhood of {z : |z| � 1} for each ξ ∈ (−1, 1), and real analytic in ξ for
each z ∈ T. We do not know how general this fact is.

4. Boundary Smoothness of Rotating Vortex Patches

In this section we prove our main result, which states that if the bifurcated
patch is close enough to the circle where bifurcation takes place, then the boundary
of the patch is of class C∞. Before stating the result more formally, we remind
the reader of the big picture. We called V the set of functions in the unit ball of
C1+α(T) with real Fourier coefficients living only at negative frequencies. Each
f ∈ V determines a conformal mapping�(z) = z+ f (z) of the complement of the
closed unit disc � into some domain containing the point at ∞. The boundary of
the simply connected domain D = C \�(C \�) is the Jordan curve�(T) and so,
since � ∈ C1+α(T), the boundary of D is a Jordan curve of class C1+α . Burbea’s
existence Theorem asserts that for each integer m � 2, there exists a small positive
number a and a continuous curve f (ξ),−a < ξ < a, taking values in V , such
that the simply connected domain Dξ associated with f (ξ) is an m-fold rotating
vortex patch. Since f (0) = 0, D0 is the open unit disc and one should think that
Dξ is a domain close to the disc, for small values of ξ ∈ (−a, a), in the topology
determined by C1+α(T). We claim that if Dξ is close enough to the disc in the
topology given by C1(T), then the boundary of Dξ is of class C∞. Later on, we
will show that if Dξ is close enough to the disc in the topology given by C2(T),
then Dξ is also convex.
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Theorem 2. For each integer m � 3, there exists a small positive ε0 = ε0(m)
such that if f ∈ V defines an m-fold V -state D and ‖ f ‖C1(T) < ε0, then D has
boundary of class C∞.

Outline of the Proof. Before plunging into the details, we present a sketch of the
proof of Theorem 2. Burbea’s equation for V -states is F(λ, f )(w) = 0, w ∈ T,
with

F(λ, f )(w) = λ|w + f (w)|2 + 2 Re S( f )(w)− m(Id + f, λ), w ∈ T,

where S( f ) is given by (18) and m(Id + f, λ) by (16). Recall that the reason to
subtract m(Id + f, λ) is so that the integral of F(λ, f ) over T will be zero.

In the previous section we have used bifurcation theory to prove that, given an
integer m � 2 and 0 < α < 1, there exists a curve of V -states passing through
(1/m, 0) and taking values in a little neighborhood of (1/m, 0) in (0,∞) × V .
Since V is contained in C1+α(T), we conclude that the non-trivial V -states we
have found have boundary of class C1+α(T). The same approach can be adapted
with slight modifications to the space Cn+α(T), for each positive integer n and each
0 < α < 1. This provides curves of solutions with boundaries of class Cn+α . How-
ever, the neighborhood of (1/m, 0) containing the curve of solutions decreases as
n increases, so the C∞ regularity of the boundary cannot be reached by using Crand-
all–Rabinowitz as a black box. Since Crandall–Rabinowitz depends essentially on
the implicit function theorem, we thought of resorting to Nash–Moser implicit
function theorem for C∞(T). Unfortunately, we were not able to implement this
idea. We realized later that a simpler method works. The idea is to differentiate
the equation F(λ, f )(w) = 0 with respect to w and carefully study the resulting
equation. We find a surprising smoothing effect for the unit tangent field to the
curve �(T), which induces, in turn, a global smoothing effect for the conformal

mapping �. To be more precise, we compute dF(λ, f )
dw , which yields a formula for

the quotient

q(w) = �′(w)
�′(w)

, w ∈ T,

of the form

q(w) = w2 (1 − λ)�(w)+ I1(w)

(1 − λ)�(w)+ I1(w)
, w ∈ T, (53)

where I1 is the integral

I1(w) = 1

2π i

∫

T

�(τ)−�(w)

�(τ)−�(w)
�′(τ ) dτ. (54)

As we know, a priori, � ∈ C1+α(T) and thus q is only in Cα(T). But (53) sug-
gests that q might be of class C1+α(T), provided I1(w) is, too. It is not difficult
to compute the derivative of I1 and check that it is in Cβ(T), 0 < β < α. Thus,
we get that q ∈ C1+β(T), 0 < β < α, if the denominator in (53) does not van-
ish in T. This is guaranteed by the smallness condition ‖ f ‖C1(T) < ε0. Now,
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the smoothness of q is the same as that of the unit tangent vector to the curve
�(T) and classical results on the smoothness of conformal mappings yield that
� ∈ C2+β(T), 0 < β < α. One can then iterate the argument and show that under
the assumption � ∈ C2+β(T), 0 < β < α, the function I1 can be differentiated
twice with respect to w and the second derivative is in Cβ(T), 0 < β < α. Thus,
� ∈ C3+β(T), 0 < β < α. Since the iteration can be performed any number
of times, we conclude that � ∈ C∞(T). We begin now with the details of the
proof. ��
Proof of Theorem 2. To get (53) we differentiate the equation F(λ, f )(w) = 0
with respect to w and use (21). We get

λ

(

�′(w)�(w)− 1

w2�
′(w)�(w)

)

+ dS( f )

dw
(w)− 1

w2

dS( f )

dw
(w) = 0.

Recall that the parameter λ is taken in the interval ]0, 1[. According to (25) and
(31),

dS( f )

dw
(w) = −�′(w)

(

�(w)+ 1

2π i

∫

T

�(τ)−�(w)

�(τ)−�(w)
�′(τ ) dτ

)

:= −�′(w)
(
�(w)+ I1(w)

)
, w ∈ T.

Putting together the two preceding identities and setting q(w) := �′(w)
�′(w) , we obtain

(53). Let us show that the denominator in (53) does not vanish on T if ‖ f ‖C1(T) is
small enough.
Since �(w) = w + f (w),w ∈ T, the denominator in (53) is

D(w) = (1 − λ)(w + f (w))+ I1(w), w ∈ T. (55)

Now

I1(w) = 1

2π i

∫

T

τ − w

�(τ)−�(w)
�′(τ ) dτ + 1

2π i

∫

T

f (τ )− f (w)

�(τ)−�(w)
�′(τ ) dτ

= − 1

w

1

2π i

∫

T

τ − w

�(τ)−�(w)
�′(τ )dτ

τ
+ J1(w),

where J1 is a notation for the second term and we have used the identity

τ − w = −τ − w

τw
, τ,w ∈ T. (56)

On the other hand, by Lebesgue dominated convergence Theorem, we have

1

2π i

∫

T

τ − w

�(τ)−�(w)
�′(τ )dτ

τ
= lim
ε→0

1

2π i

∫

|τ |=1+ε
τ − w

�(τ)−�(w)
�′(τ )dτ

τ
.

The integral on the circle of radius 1 + ε is 1 for each positive ε, because the inte-
grand is an analytic function of τ in the exterior of the unit disc whose first term in
the expansion at ∞ is 1/τ. Hence

I1(w) = −w + J1(w), w ∈ T.
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Plugging this identity into (55),

D(w) = −λw + (1 − λ) f (w)+ J1(w), w ∈ T.

The estimate of the L∞ norm of J1 can be easily performed as follows

‖J1‖L∞(T) � ‖ f ′‖L∞(T)

infτ �=w |�(τ)−�(w)|
|τ−w|

‖�′‖L∞(T)

� ‖ f ′‖L∞(T)
1 − ‖ f ′‖L∞(T)

(1 + ‖ f ′‖L∞).

Therefore,

|D(w)| � λ− (1 − λ)‖ f ‖L∞(T) − ‖ Ĩ1‖L∞(T)

� λ− ‖ f ‖∞ − ‖ f ′‖∞
1 + ‖ f ′‖∞
1 − ‖ f ′‖∞

� λ− 2
‖ f ‖C1(T)

1 − ‖ f ‖C1(T)

� 1

2
λ,

where the last inequality holds, provided ‖ f ‖C1(T) � λ
4+λ .

Let us now prove that the function w ∈ T �→ I1(w) is more regular than
one would expect. Indeed, it belongs to the space C1+β(T) for any β satisfying

0 < β < α. Since the quotient w �→ �(τ)−�(w)
�(τ)−�(w) extends continuously to the diag-

onal of T, in taking derivatives inside the integral defining I1(w), no “boundary
terms” will appear. Then it follows from (21) and (31) that

dI1

dw
(w) = 1

w2�
′(w)p.v.

1

2π i

∫

T

�′(τ )
�(τ)−�(w)

dτ

+�′(w)p.v.
1

2π i

∫

T

�(τ)−�(w)

(�(τ)−�(w))2
�′(τ ) dτ (57)

= �′(w)
2w2 +�′(w)p.v.

1

2π i

∫

T

�(τ)−�(w)

(�(τ)−�(w))2
�′(τ ) dτ. (58)

To obtain the appropriate Hölder estimate we are looking for, it is convenient to
write the principal value integral above as the sum of two terms by adding and
subtracting �′(w)(τ − w) in the numerator of the fraction. We get

p.v.
1

2π i

∫

T

�(τ)−�(w)

(�(τ)−�(w))2
�′(τ ) dτ = 1

2π i

∫

T

�(τ)−�(w)−�′(w)(τ − w)

(�(τ)−�(w))2
�′(τ ) dτ

+�′(w)p.v.
1

2π i

∫

T

τ − w

(�(τ)−�(w))2
�′(τ ) dτ.

(59)
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Call I2(w) the first term in the right-hand side above, namely,

I2(w) := 1

2π i

∫

T

�(τ)−�(w)−�′(w)(τ − w)

(�(τ)−�(w))2
�′(τ ) dτ, w ∈ T.

Let us compute the principal value integral in the second term of (59). By (56)

p.v.
1

2π i

∫

T

τ − w

(�(τ)−�(w))2
�′(τ ) dτ = − 1

w
p.v.

1

2π i

×
∫

T

(
τ − w

�(τ)−�(w)

)2
�′(τ )
τ

dτ

τ − w
.

(60)

We compute the principal value integral above by the method used in dealing with
(30). Denote by γε, ε > 0, the arc which is the intersection of the circle centered at
w of radius ε and the complement of the open unit disc, with the counter-clockwise
orientation. Let Tε be the closed Jordan curve consisting of the arc γε followed by
the part of the unit circle at distance fromw not less than ε, traversed counterclock-
wise. Then the principal value in (60) is

p.v.
1

2π i

∫

T

(
τ − w

�(τ)−�(w)

)2
�′(τ )
τ

dτ

τ − w

= lim
ε→0

1

2π i

∫

Tε

(
τ − w

�(τ)−�(w)

)2
�′(τ )
τ

dτ

τ − w

− lim
ε→0

1

2π i

∫

γε

(
τ − w

�(τ)−�(w)

)2
�′(τ )
τ

dτ

τ − w
.

The integral on Tε is zero because the integrand is analytic in the exterior of the
unit disc and has a double zero at ∞. The limit of the integral on γε is given by

lim
ε→0

1

2π i

∫

γε

(
τ − w

�(τ)−�(w)

)2
�′(τ )
τ

dτ

τ − w
= 1

2w�′(w)
.

Therefore,

dI1(w)

dw
= �′(w)I2(w)+ �′(w)

w2 , w ∈ T. (61)

Lemma 5, below, applied for n = 2 yields I2 ∈ Cβ(T), for each β satisfying

0 < β < α, hence we conclude thatw �→ dI1
dw (w) belongs to the space Cβ(T), 0 <

β < α, that is, that I1 ∈ C1+β(T), 0 < β < α. Thus, from the expression (53), we
find that

q ∈ C1+β(T), 0 < β < α. (62)
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Before dealing with Lemma 5 we discuss how the smoothness of q translates
into the same type of smoothness of�′. More precisely, we will prove the following:
for each positive integer n and 0 < β < 1,

q ∈ Cn+β(T; T) �⇒ � ∈ Cn+1+β(T; C). (63)

For this purpose, we first relate the regularity of the mapw �→ q(w) to the smooth-
ness of the Jordan curve�(T) and then we use the Kellogg–Warschawski Theorem
[12] to get a global regularity result for the conformal map �.

Using the conformal parametrization θ ∈ R �→ �(eiθ ), we easily get the fol-
lowing formula for the unit tangent vector �τ(θ) to the curve �(T) at the point
�(eiθ ),

�τ(θ) =
d
dθ �(e

iθ )

| d
dθ �(e

iθ )|
= iw

�′(w)
|�′(w)| , w = eiθ .

Consequently,

[�τ(θ)]2 = −w2q(w), w = eiθ . (64)

Since� belongs to C1+α , the map θ �→ �τ(θ)must be in Cα(R; T) ⊂ C(R; T) and
by the lifting theorem there exists a continuous function φ : R → R, such that

�τ(θ) = eiφ(θ), θ ∈ R.

Recall that we have established that q ∈ C1+β(T), 0 < β < α, and so [�τ ]2 remains
in the same space. Since the argument function φ can be recovered by the formula

φ(θ) = φ(0)− 1

2
i
∫ θ

0

σ ′(t)
σ (t)

dt, with σ(t) := [�τ(t)]2,

φ is in C1+β(R) and consequently �τ ∈ C1+β(R). More generally, the preceding
formula for φ shows that, for each non-negative integer n and β ∈]0, 1[,

q ∈ Cn+β(T; T) �⇒ �τ ∈ Cn+β(R; T).

Now we will use the Kellogg–Warschawski Theorem [12], which can be also found
in [10, Theorem 3.6]. It asserts that if the boundary�(T) is a Jordan curve of class
Cn+1+β , with n a non-negative integer and 0 < β < 1, then the conformal map
� : C\� → C has a continuous extension to C\� which is of class Cn+1+β . In
other words,

�τ ∈ Cn+β(R; T) �⇒ � ∈ Cn+1+β(T; C).

Combining (62) and (63) we obtain

� ∈ C2+β(T).
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We are now ready to iterate the preceding argument. Assume that � ∈
Cn−1+β(T),
0 < β < 1, for some n � 3. We are going to show that,

� ∈ Cn+γ (T), 0 < γ < β. (65)

This will complete the proof that � ∈ C∞(T).
We need the following general lemma. For � ∈ Cn(T), let

Pn(�)(τ,w) =
n∑

j=0

�( j)(w)

j ! (τ − w) j

be the Taylor polynomial of degree n of �, around the point w, evaluated at the
point τ .

Lemma 5. Assume that � ∈ Cn−1+α(T), for n � 2, 0 < α < 1. Let Tn be the
operator

Tng(w) = 1

2π i

∫

T

Kn(w, τ)g(τ ) dτ, w ∈ T, g ∈ L∞(T), (66)

with kernel

Kn(w, τ) = �(τ)− Pn−1(�)(τ,w)

(�(τ)−�(w))n
.

Then, for any β satisfying 0 < β < α,

‖Tng‖Cβ(T) � C‖g‖L∞(T).

Proof. The lemma is easily proven by standard methods, as in [8, p.419], once one
knows that Kn satisfies

|Kn(w, τ) � C |τ − w|α−1, τ, w ∈ T, τ �= w (67)

and

|Kn(w1, τ )− Kn(w2, τ )| � C
|w1 − w2|α
|τ − w1| , w1, w2 ∈ T, |τ − w1|

� 2|w1 − w2|. (68)

It is obvious that (67) holds by Taylor’s formula. For (68) we write

|Kn(w1, τ )− Kn(w2, τ )| �
∣
∣
∣
∣
∣

Pn−1(�)(τ,w1)− Pn−1(�)(τ,w2)

(�(τ)−�(w1))n

∣
∣
∣
∣
∣

+ |�(τ)− Pn−1(�)(τ,w2)|
∣
∣
∣
∣

1

(�(τ)−�(w1))n

− 1

(�(τ)−�(w2))n

∣
∣
∣
∣

:= I + II.
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The term II can easily be controlled via a gradient estimate by

|II| � C |τ − w2|n−1+α |w1 − w2|
|τ − w1|n+1

� C
|w1 − w2|α
|τ − w1| .

In the last inequality, we have used the equivalence 1
2 |τ − w1| � |τ − w2| �

3
2 |τ − w1|. The term I is estimated by observing that there is an elementary for-
mula for the difference of two Taylor’s polynomials around different pointsw1 and
w2, namely,

Pn−1(�)(τ,w2)− Pn−1(�)(τ,w1)

=
n−1∑

j=0

(�( j)(w2)− Pn−1− j (�
( j))(w2, w1))

(τ − w2)
j

j ! . (69)

This follows easily from the identity,

Pn−1(�)(τ,w1) =
n−1∑

j=0

(τ − w2)
j

j ! {∂( j)
τ [Pn−1(�)]}(w2, w1)

=
n−1∑

j=0

(τ − w2)
j

j !
n−1∑

k= j

(w2 − w1)
k− j

(k − j)! �(k)(w1)

=
n−1∑

j=0

(τ − w2)
j

j ! Pn−1− j (�
( j))(w2, w1).

Since �( j) belongs to Cn−1− j+α(T) then
∣
∣
∣�

( j)(w2)− Pn−1− j (�
( j))(w2, w1)

∣
∣
∣ � C |w2 − w1|n−1− j+α.

Combining this estimate with formula (69) yields

|I| � C
n−1∑

j=0

|w2 − w1|n−1− j+α |τ − w2| j

j !
1

|τ − w1|n

� C
|w1 − w2|α
|τ − w1| .

��
In view of (53), the only task left is to show that I1 ∈ Cn−1+γ (T), 0 < γ < β,

provided� ∈ Cn−1+β(T). Indeed, this will lead to q ∈ Cn−1+γ (T) and, according
to the discussion above on the Kellogg–Warschawski Theorem, we conclude that
� ∈ Cn+γ (T). Now, in order to prove that I1 ∈ Cn−1+γ (T) we need to establish
a recursive formula for the higher order derivatives of I1, which is the goal of the
next lemma.
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Lemma 6. Let � ∈ Cn+β(T), 0 < β < 1, n � 2, and set

In(w) := 1

2π i

∫

T

�(τ)− Pn−1(�)(τ,w)

(�(τ)−�(w))n
�′(τ ) dτ, w ∈ T.

Then

dIn(w)

dw
= n�′(w)In+1(w), w ∈ T. (70)

Remark. Notice that formula (57) for the derivative of I1 falls out of the scope of
(70). Indeed, it is a fortunate fact that a formula as compact as (70) can be found.

The proof of the preceding lemma depends on the following calculation.

Sublemma. Let � ∈ C1(T) and n � 1. Then

p.v.
1

2π i

∫

T

(τ − w)n

(�(τ)−�(w))n+1�
′(τ )dτ

τ n
= − 1

2�′(w)nwn
, w ∈ T. (71)

Proof. Consider again the closed Jordan curve Tε and the arc γε used to deal with
(30) and (60). The principal value integral in the statement of the sublemma is the
limit, as ε tends to 0, of the sum of two terms. The first is the integral over Tε of
the integrand in (71), which is zero because the integrand is an analytic function
of τ in the exterior of the unit disc with a zero at ∞ of order at least 2. The second
term is minus the limit as ε tends to 0 of the integral of the same expression over
the arc γε. Since

1

2π i
lim
ε→0

∫

γε

�′(τ )
�(τ)−�(w)

dτ = 1

2π i
lim
ε→0

�γε log� = 1

2
,

it is clear that the limit of the second term is −1/(2�′(w)nwn). Here �γε log�
stands for the variation of log� on the arc γε. ��

Proof of Lemma 6. Since � ∈ Cn(T), the fraction in the integrand in In extends
continuously to the diagonal of T taking the value (−1)n�(n)(w)w2n/(n!�′(w)n).
We can then take derivatives inside the integral, and the boundary terms arising in
the integration by parts are zero. Thus,

dIn

dw
(w) = n�′(w)p.v.

1

2π i

∫

T

�(τ)− Pn−1(�)(τ,w)

(�(τ)−�(w))n+1 �′(τ )dτ

+ 1

n − 1!
�(n)(w)

w2 p.v.
1

2π i

∫

T

(τ − w)n−1

(�(τ)−�(w))n
�′(τ )dτ

:= T1(w)+ T2(w).
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The next move consists in adding and subtracting �(n)(w)(τ − w)n/n! to the
numerator of the fraction in the integrand of T1(w). The result is

T1(w) = n�′(w)p.v.
1

2π i

∫

T

�(τ)− Pn(�)(τ,w)

(�(τ)−�(w))n+1 �
′(τ )dτ

+�′(w)�
(n)(w)

n − 1! p.v.
1

2π i

∫

T

(τ − w)n

(�(τ)−�(w))n+1�
′(τ )dτ

= n�′(w)In+1(w)+�′(w)�
(n)(w)

n − 1! p.v.
1

2π i

∫

T

(τ−w)n
(�(τ)−�(w))n+1�

′(τ )dτ

:= n�′(w)In+1(w)+ T3(w).

We claim that T2(w)+T3(w) = 0, which ends the proof of the lemma. The only
difficulty is to compute the principal value integrals, which are the same except for
a shift in the exponents of the integrand. For instance, by (56) and the sublemma
we see that the principal value integral in the term T3(w) is

p.v.
1

2π i

∫

T

(τ − w)n

(�(τ)−�(w))n+1�
′(τ )dτ = (−1)n

wn
p.v.

1

2π i

×
∫

T

(τ − w)n

(�(τ)−�(w))n+1�
′(τ )dτ

τ n

= (−1)n+1

2[�′(w)]nw2n
.

This completes the proof of the Lemma 6. ��
We can now finish the proof of Theorem 2. Recall that our assumption is

� ∈ Cn−1+β(T), where 0 < β < 1 and n � 3, and we want to conclude
that I1 ∈ Cn−1+γ (T), 0 < γ < β. We have already seen that this will give
� ∈ Cn+γ (T), 0 < γ < β. We apply Lemma 5 and we get that In = Tn(�

′)
belongs to Cγ (T), 0 < γ < β. Formula (70) in Lemma 6 readily yields
In−1 ∈ C1+γ (T). Iterating the use of (70) we obtain I2 ∈ Cn−2+γ (T), and so,
finally, by (57), I1 ∈ Cn−1+γ (T).

We end the paper with the following remark.

Corollary. For each integer m � 3, there exists a small positive ε0 = ε0(m) such
that if f ∈ V defines an m-fold V -state D, ‖ f ‖C1(T) < ε0 and ‖ f ‖C2(T) < 1/2,
then D is convex.

Proof. As it is well-known, if D is a Jordan domain bounded by a smooth Jordan
curve of class C2, then D is convex if and only if the curvature of the boundary
curve does not change sign on the curve. By Theorem 2 we know that the boundary
of our V -state D is of class C∞. To compute the curvature at boundary points,
we resort to the conformal parametrization�(eiθ ). The velocity vector (or tangent
vector) and the principal normal to the curve at the point�(w),w = eiθ , are given
by

�v(θ) = iw�′(w) and �n(θ) = −w�
′(w)

|�′(w)| ,
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respectively. On the other hand, according to a well-known classical formula for
the curvature κ(θ) at the point �(eiθ ), we have

κ(θ) =
Re

(
d2
θ {�(eiθ )}�n(θ)

)

|�v(θ)|2 .

A straightforward computation yields

d2
θ {�(eiθ )} = −w(�′(w)+ w�′′(w)).

Thus the curvature is

κ(θ) = 1

|�′(w)| Re

(

1 + w
�′′(w)
�′(w)

)

.

Since �(w) = w + f (w),

1 + w
�′′(w)
�′(w)

= 1 + w
f ′′(w)

1 + f ′(w)
,

and so

Re

(

1 + w
�′′(w)
�′(w)

)

� 1 − | f ′′(w)|
1 − | f ′(w)| � 1 − ‖ f ‖C2(T)

1 − ‖ f ‖C2(T)

,

which is non-negative if ‖ f ‖C2(T) < 1/2. ��
The reader will find interesting information on conformal mappings and con-

vexity in Duren’s book [6].
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