
A general form of Green Formula and
Cauchy Integral Theorem

Julià Cuf́ı and Joan Verdera

Abstract

We prove a general form of Green Formula and Cauchy Integral Theorem

for arbitrary closed rectifiable curves in the plane. We use Vitushkin’s local-

ization of singularities method and a decomposition of a rectifiable curve in

terms of a sequence of Jordan rectifiable sub-curves due to Carmona and Cuf́ı.

1 Introduction

In this paper we prove a general form of Green Formula and Cauchy Integral Theo-
rem for arbitrary closed rectifiable curves in the plane. A closed rectifiable curve is
a complex valued mapping γ of bounded variation defined on the unit circle T. We
adopt the standard abuse of notation consisting in denoting by γ also the image of
the unit circle under the mapping. Recall that the winding number or index of a
closed rectifiable curve γ with respect to a point z /∈ γ is

Ind(γ, z) =
1

2πi

∫

γ

dw

w − z
.

Set
D = {z ∈ C : Ind(γ, z) 6= 0}

and
D0 = {z ∈ C : Ind(γ, z) = 0}.

The sets D and D0 are open and a countable union of connected components of
C \ γ. We let dA stand for planar Lebesgue measure and ∂ = ∂/∂z for the usual
Cauchy-Riemann operator. We then have the following.

Theorem. Let γ be a closed rectifiable curve and let f be a continuous function on
D ∪ γ such that the ∂ derivative of f in D, in the sense of distributions, belongs to
L2(D). Then ∫

γ

f(z) dz = 2i

∫

D

∂f(z) Ind(γ, z) dA(z).
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If D is empty then the right hand side in (1) is 0 and the identity is straight-
forward. Notice that the integral in the right hand side is absolutely convergent
because the function Ind(γ, z) is in L2(C). This was proven with the best constant
in [CC1]. It is also a consequence of the Sobolev imbedding Theorem for p = 1 and
the fact that Ind(γ, z) is a function of bounded variation. Indeed

∂(Ind(γ, z)) =
dz

2i
and ∂(Ind(γ, z)) = −dz

2i
.

It is not true in general that Ind(γ, z) ∈ Lp(C) for some p > 2. Our proof works also
under the assumption that ∂f(z) Ind(γ, z) ∈ L1(D).

Corollary. Let γ be a closed rectifiable curve and let f be a holomorphic function
on D which is continuous on D ∪ γ. Then

∫

γ

f(z) dz = 0.

With the extra hypothesis that Ind(γ, z) is bounded on C \ γ the Corollary was
proven by Nöbeling in 1949 [N]. In fact, the corollary is proven in [M] as a conse-
quence of an approximation theorem of γ by chains formed by boundaries of squares
contained in D. Michael’s approximation theorem coupled with a regularization ar-
gument can be used to give a proof of the Theorem above. Our proof, which we
found before becoming aware of [M], keeps the curve fixed and, instead, the function
f is suitably approximated.

Combining the Theorem with a well known result of Fesq [F] (see also [Co]) one
obtains an appealing statement in which no distributions theory is involved. Fesq
proved the following. Assume that a function f is defined and continuous on an open
set Ω and has partial derivatives ∂f/∂x and ∂f/∂y at each point of Ω \ E, where
E is a countable union of closed sets of finite length (one dimensional Hausdorff
measure). Assume further that the measurable function ∂f(z) = 1

2
(∂f
∂x
(z) + i∂f

∂y
(z))

defined for z ∈ Ω \ E, belongs to L1
loc(Ω). We emphasize that now ∂f(z) is not

defined in the sense of distributions but only pointwise. Then

∫

∂Q

f(z) dz = 2i

∫

Q

∂f(z) dA(z), (1)

for each square Q with closure contained in Ω. It is not difficult to realize that
(1) implies that the pointwise ∂-derivative of f on Ω is indeed the distributional
∂-derivative of f on Ω. For the sake of completeness a proof of this simple fact is
presented in section 4. Therefore we obtain the following variation of the Theorem.

Theorem (pointwise version). Let γ be a closed rectifiable curve. Let f be a
continuous function on D ∪ γ whose partial derivatives ∂f/∂x and ∂f/∂y exist at
each point of D \E, where E is a countable union of closed sets of finite length (one
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dimensional Hausdorff measure), and such that ∂f ∈ L2(D), where ∂f is defined
pointwise almost everywhere on D. Then

∫

γ

f(z) dz = 2i

∫

D

∂f(z) Ind(γ, z) dA(z).

In [M] a weaker version of the preceding result is proven under the extra assump-
tion that ∂f(z)/∂x Ind(γ, z) and ∂f(z)/∂y Ind(γ, z) are in L1(D).

In section 2 we present the proof of the Theorem and we leave for section 3
the discussion of the Main Lemma. The main tool in the proof is the method of
separation of singularities due to Vitushkin (see [G], [V] or [Vi]). This is quite natural
because in many instances Cauchy Integral Theorem is reduced to the case in which
more regular functions are involved via uniform approximation of the given data.
For instance, if D is a Jordan domain and γ its boundary, then one can approximate
f , uniformly on D, by polynomials in z, for which the result is obvious.

Vitushkin’s method produces a large finite sum. The terms in this sum are
divided into three classes and in estimating the class which involves more directly
the curve we decompose γ in a sum, in most cases infinite, of Jordan curves. This
decomposition is a consequence of [CC2, Theorem 4] and reads as follows.

Theorem (Carmona and Cuf́ı). For each closed rectifiable curve γ such that
D 6= ∅ there exists a sequence (maybe finite) of Jordan curves (γn)

∞
n=1 with the

property that γn ⊂ γ, dzγ =
∑∞

n=1 dzγn and
∑∞

n=1 l(γn) ≤ l(γ).

Here l(γ) stands for the length of the curve γ and dzγ =
∑∞

n=1 dzγn means that∫
γ
f(z) dz =

∑∞
n=1

∫
γn
f(z) dz, for any continuous function f on γ.

The estimate we are looking for is then reduced to the case of a Jordan curve,
which is dealt with in the Main Lemma.

A word on the existing literature on Green Formula and Cauchy Integral Theo-
rem is in order. Burckel, in his well-known comprehensive book on Classical Complex
Analysis [B, p. 341], states that the more general Cauchy Theorem he knows is that
due to Nöbeling ([N]), in which the index of the curve is assumed to be bounded. He
seems to be unaware of Michael’s article [M], which is apparently widely unknown.
We believe that the general form of Green Formula and Cauchy Integral Theorem
involving arbitrary rectifiable curves and functions defined in the minimal domain
D ∪ γ deserves to be better known.

2 Proof of the Theorem

We first describe Vitushkin’s scheme to separate singularities of functions. The first
step is the construction of partitions of unity subordinated to special coverings of
the plane by discs of equal radii.

Lemma 1. Given any δ > 0 there exists a countable family of discs (∆j) of radius
δ and a family of functions ϕj ∈ C∞

0 (∆j) such that
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(i) C = ∪j∆j.
(ii) The family (∆j) is almost disjoint, that is, for some constant C each z ∈ C

belongs to at most C discs ∆j (in fact we can take C = 21).
(iii)

∑
j ϕj = 1, 0 ≤ ϕj and |∇ϕj(z)| ≤ Cδ−1, z ∈ C, where C is an absolute

constant.

For the proof, take a grid of squares of side length δ/2 and regularize the char-
acteristic function of each square with an appropriate approximation of the identity
(see [V, p.440-441], [G] or [Vi].

Given a compactly supported continuous function f on the plane, set

fj =
1

πz
∗ ϕj ∂f, (2)

which makes sense, because it is the convolution of the compactly supported dis-
tribution ϕj ∂f with the locally integrable function 1

πz
. Since 1

πz
is the fundamental

solution of the differential operator ∂, we have ∂fj = ϕj ∂f and thus fj is holomor-
phic where f is and off a compact subset of ∆j . It is easy to see that

fj(z) =
1

π

∫
f(w)− f(z)

w − z
∂ϕj(w) dA(w)

and hence
|fj(z)| ≤ C ω(f, δ), z ∈ C,

where C is an absolute constant and ω(f, δ) is the modulus of continuity of f. Since
the family of functions (ϕj) is a partition of the unity,

f =
∑

j

fj . (3)

If one defines a singularity of f as a point in the support of ∂f, then clearly the
effect of (3) is to distribute the singularities of f among the discs ∆j . Notice that
the sum in (3) contains only finitely many non-zero terms, because the support of
∂f is compact.

Having set up these preliminaries, let us start the proof of the Theorem. We will
consider only the case in which D is not empty; otherwise the conclusion is straight-
forward. Extend the function f to a compactly supported continuous function on
the plane, fix a δ > 0 and apply (3). We divide the indexes j into the following
three classes :

I = {j : ∆j ⊂ D},
II = {j : ∆j ∩ γ 6= ∅},

and

III = {j : ∆j ⊂ D0}.
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For j ∈ III we have
∫
γ
fj(z) dz = 0, because fj is holomorphic on an open set

in which γ is homologous to zero. Hence

∑

j∈III

∫

γ

fj(z) dz = 0.

For j ∈ I use the definition of fj in (2) and Fubini’s theorem to get

∫

γ

fj(z) dz = 2i

∫

C

ϕj(w) ∂f(w) Ind(γ, w) dA(w).

Adding up in j ∈ I one obtains

∑

j∈I

∫

γ

fj(z) dz = 2i

∫

C

(∑

j∈I

ϕj(w)

)
∂f(w) Ind(γ, w) dA(w).

Since
lim
δ→0

∑

j∈I

ϕj(w) = 1, w ∈ D

and ∂f(w) Ind(γ, w) ∈ L1(D), it follows, by dominated convergence, that

lim
δ→0

∑

j∈I

∫

γ

fj(z) dz = 2i

∫

C

∂f(w) Ind(γ, w) dA(w).

Therefore
∫

γ

f(z) dz = 2i

∫

C

∂f(z) Ind(γ, z) dA(z) + lim
δ→0

∑

j∈II

∫

γ

fj(z) dz

and so to complete the proof it is enough to check that the limit in the above right
hand side vanishes. This follows from the inequality

∑

j∈II

∣∣∣∣
∫

γ

fj(z) dz

∣∣∣∣ ≤ C ω(f, δ) l(γ) + η(δ), (4)

where C is an absolute constant and η(δ) a function which tends to zero with δ. To
show (4) fix j ∈ II. One has

∣∣∣∣
∫

γ

fj(z) dz

∣∣∣∣ =
∣∣∣∣∣

∫

γ∩∆j

fj(z) dz

∣∣∣∣∣ +
∣∣∣∣∣

∫

γ∩(∆j)c
fj(z) dz

∣∣∣∣∣

≤ C ω(f, δ) l(γ ∩∆j) +

∣∣∣∣∣

∫

γ∩(∆j)c
fj(z) dz

∣∣∣∣∣ .
(5)
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Observe that adding up on j ∈ II the first terms in right hand side of the inequality
above one gets the desired estimate, namely,

∑

j∈II

ω(f, δ) l(γ ∩∆j) ≤ C ω(f, δ) l(γ),

where we used that the family of discs ∆j is almost disjoint. However, the obvious
estimate for the second term∣∣∣∣∣

∫

γ∩(∆j)c
fj(z) dz

∣∣∣∣∣ ≤ C ω(f, δ) l(γ ∩ (∆j)
c)

does not lead anywhere because the length of γ off the disc ∆j is not under control.
To overcome this difficulty we resort to the next lemma.

Main Lemma. Let Γ be a closed rectifiable Jordan curve, ∆ a disc of radius δ and
h a bounded continuous function on C, holomorphic off a compact subset of ∆. Then

∣∣∣∣
∫

Γ∩(∆)c
h(z) dz

∣∣∣∣ ≤ 2π ‖h‖∞ δ, (6)

where ‖h‖∞ is the supremum norm of h on the whole plane.

We postpone the proof of the Main Lemma to next section and we proceed to
finish the proof of the Theorem.

First of all we prove (4) with η ≡ 0 assuming that γ = Γ is a Jordan curve.
Consider the case δ ≤ 1

2
diam(Γ). Since there is a point in Γ ∩ ∂∆j the length of

the curve in the disc 3∆j is larger than 2δ. Combining (5) with the Main Lemma
applied to fj and ∆j we conclude that

∣∣∣∣
∫

Γ

fj(z) dz

∣∣∣∣ ≤ C ω(f, δ) l(Γ ∩ (3∆j),

which yields (4) with η ≡ 0, because the family of discs (3∆j) is almost disjoint.
If δ > 1

2
diam(Γ), then the number of discs ∆j that intersect Γ is less than an

absolute constant. Thus (4) with η ≡ 0 and γ replaced by Γ also holds in this case.
Now we will reduce the proof of (4) to the case of a Jordan curve by appealing

to the decomposition theorem of [CC2] mentioned in the introduction. There is
a sequence (maybe finite) of rectifiable Jordan curves (γn)

∞
n=1 such that γn ⊂ γ,

dzγ =
∑∞

n=1 dzγn and
∑∞

n=1 l(γn) ≤ l(γ). We need to decompose II into two subsets.
Let II0 be the set of indices j ∈ II such that Dj does not intersect any γn and
II1 = II \ II0. Since the set of indices II is finite, we have

∑

j∈II1

∣∣∣∣
∫

γ

fj(z) dz

∣∣∣∣ ≤
∑

j∈II1

∞∑

n=1

∣∣∣∣
∫

γn

fj(z) dz

∣∣∣∣

=

∞∑

n=1

∑

j∈II1

∣∣∣∣
∫

γn

fj(z) dz

∣∣∣∣ .
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Given n = 1, 2, ... set IIn = {j : ∆j ∩ γn 6= ∅}. Each j ∈ II1 belongs to at least
one IIn, but may belong to several. Taking into account this remark in the first
inequality below and applying (4) with η ≡ 0 to the Jordan curve γn and the function
f in the second one, we get

∞∑

n=1

∑

j∈II1

∣∣∣∣
∫

γn

fj(z) dz

∣∣∣∣ ≤
∞∑

n=1

∑

j∈IIn

∣∣∣∣
∫

γn

fj(z) dz

∣∣∣∣

≤
∞∑

n=1

C ω(f, δ) l(γn)

≤ C ω(f, δ) l(γ),

which is the right estimate.
We turn now our attention to the sum over II0. If j ∈ II0 then Ind(γ, z) =∑∞

n=1 Ind(γn, z) is constant on ∆j \ γ. Hence ∆j \ γ ⊂ D0 or ∆j \ γ ⊂ D.
In the first case we argue as we did for j ∈ III. The infinite cycle

∑∞
n=1 γn is ho-

mologous to 0 in an open set on which fj is holomorphic and therefore
∫
γ
fj(z) dz =∑∞

n=1

∫
γn

fj(z) dz = 0. This follows by the usual argument to prove Cauchy’s Theo-
rem for finite cycles.

To settle the case ∆j \ γ ⊂ D we need to know that the ∂-derivative of f on ∆j

does not charge the set γ ∩∆j .

Lemma 2. Let ∆ be an open disc and assume that ∆\γ ⊂ D. Then the ∂-derivative
of f on ∆ in the distributions sense is the function ∂f(z)χ∆\γ(z).

Proof. It is shown in Appendix 1(section 4) that the conclusion of the Lemma follows
from the identity

∫

∂Q

f(z) dz = 2i

∫

Q

∂f(z)χ∆\γ(z) dA(z), (7)

for each closed square Q with sides parallel to the coordinates axis contained in ∆.
To prove (7) subdivide Q in dyadic sub-squares. At the n-th generation one has 4n

dyadic sub-squares of Q, denoted by Qk, 1 ≤ k ≤ 4n. Their side length is L 4−n, L
being the side length of Q. Set I = {k : Qk ∩ γ = ∅} and J = {k : Qk ∩ γ 6= ∅}.
Then

∫

∂Q

f(z) dz =
∑

k∈I

∫

∂Qk

f(z) dz +
∑

k∈J

∫

∂Qk

f(z) dz

=
∑

k∈I

2i

∫

Qk

∂f(z) dA(z) +
∑

k∈J

∫

∂Qk

(f(z)− f(zk)) dz

≡ T1(n) + T2(n),
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where zk is any point in Qk and the last identity is a definition of T1(n) and T2(n).
On the one hand it is clear that

lim
n→∞

T1(n) = 2i

∫

Q

∂f(z)χ∆\γ(z) dA(z)

and on the other hand, setting ǫn =
√
2L4−n, we have

|T2(n)| ≤ ω(f, ǫn)
∑

k∈J

l(∂Qk).

Take n big enough so that diam(2Qk) =
√
2 2L4−n < diam(γ). Then l(∂Qk) ≤

8 l(2Qk ∩ γ) and thus
|T2(n)| ≤ C ω(f, ǫn)l(γ),

because the family of squares 2Qk, 1 ≤ k ≤ 4n, is almost disjoint (with an absolute
constant). Letting n → ∞ we get (7).

Denote by II2 the set of indices j ∈ II0 such that ∆j \ γ ⊂ D. For j ∈ II2, by
Fubini’s theorem and Lemma 2,

∫

γ

fj(z) dz = 2i

∫

C

ϕj(w) ∂f(w)χ∆j\γ(w) Ind(γ, w) dA(w)

= 2i

∫

D

ϕj(w) ∂f(w) Ind(γ, w) dA(w),

which is the same relation we found for indices j ∈ I. It is also clear that for some
Borel subset E of γ, limδ→0

∑
j∈II2

ϕj(z) = χE(z), z ∈ C. Therefore

∑

j∈II0

∣∣∣∣
∫

γ

fj(z) dz

∣∣∣∣ ≤ 2

∫

D

(∑

j∈II2

ϕj(z)

)
|∂f(z) Ind(γ, z)| dA(z) ≡ η(δ)

and, since E ⊂ γ, η(δ) tends to zero with δ. This completes the proof of (4) and of
the Theorem.

3 Proof of the Main Lemma

We can assume , without loss of generality, that Γ intersects the circle ∂∆ in finitely
many points. Indeed, by the Banach Indicatrix Theorem [Na, p. 225] applied to the
function of bounded variation |γ|, there is a sequence of numbers λn > 1 with limit
1 such that Γ intersects ∂(λn∆) in finitely many points. It is readily shown that the
inequality (6) follows as soon as one knows it for the discs λn∆. Assume then that
Γ intersects the circle ∂∆ in finitely many points.
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We claim that there are finitely many subintervals (Ik) of the circle ∂∆, which
are mutually disjoint, such that

∫

Γ∩(∆)c
h(z) dz =

∑

k

ǫk

∫

Ik

h(z) dz, (8)

where ǫk = ±1 determines the orientation on the interval Ik (ǫk = 1 corresponds to
the counterclockwise orientation of ∂∆). It is plain that (8) completes the proof of
the Main Lemma.

Take a connected component C of Γ∩ (∆)c. The open Jordan arc C has two end
points on ∂∆ ,which determine two complementary open intervals I1 and I2 in ∂∆.
Each Ij, j = 1, 2, determines a closed Jordan curve Cj which is the union of C and
the closure of Ij . We claim that one and only one of the two closed curves Cj has
index zero with respect to the center z of ∆. This means that the domain enclosed
by this Jordan curve lies completely outside the closed disc ∆. To show the claim
take a path joining z with ∞ without touching the closure of C. Consider the point
w where this path leaves the disc ∆ for the last time. Modifying the path by taking
first the segment joining z with w, we may assume that it indeed intersects ∂∆ at
only one point w, which belongs to I1 or I2. If it lies on I2 then the index of C1

with respect to z is 0 and the index of C2 with respect z is ±1. The case w ∈ I1 is
symmetric and so the claim is proven.

Given a connected component C of Γ∩(∆)c, we define I(C) to be the interval Ij in
the preceding discussion such that the domain enclosed by Cj lies in the complement
of ∆.

I0

k

Figure 1
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If C1 and C2 are two different components of Γ ∩ (∆)c then I(C1) ⊂ I(C2) or
I(C2) ⊂ I(C1) or the intervals I(C1) and I(C2) have disjoint interiors. This “dyadic”
structure allows a classification of the intervals I(C) in generations. Since there are
finitely many components of Γ ∩ (∆)c some of the intervals I(C) are maximal with
respect to inclusion. These are said to be of generation 0 and they form a set G0.
If an interval I(C) is contained in exactly one interval of G0 it is said to be of
generation 1. The intervals I(C) of generation 1 form a set G1. In this way we define
inductively intervals I(C) of generation p and the corresponding set Gp of intervals
of generation p. Clearly there are only finitely many generations (see Figure 1).

To construct the intervals (Ik) in (8) we proceed inductively as follows. Notice
that the subset of ∂∆

∪I∈G0
(I \ ∪I⊃J∈G1

J)

is a union of disjoint intervals. Call this intervals (I0k). We then have, for appropri-
ately chosen ǫk = ±1,

∑

I(C)∈G0

∫

C

h(z) dz +
∑

I(C)∈G1

∫

C

h(z) dz =
∑

k

ǫk

∫

I0
k

h(z) dz. (9)

This is a consequence of Cauchy’s integral theorem applied to the function h and
the Jordan curves defined as follows. For each I(C0) ∈ G0 define the Jordan curve
which consists of the arc C0, the arcs C such that I(C) ∈ G1 and I(C) ⊂ I(C0)
and the intervals I0k ⊂ I(C0). The subarcs of Γ keep the orientation of Γ and the
orientation on the I0k can be chosen so that (9) holds because of a topological fact
that we discuss below.

We say that Γ enters the disc ∆ at the point Γ(t0) ∈ ∂∆ if there is ǫ > 0 with the
property that Γ(t) ∈ (∆)c for t0−ǫ < t < t0 and Γ(t) ∈ ∆ for t0 < t < t0+ ǫ. We say
that Γ leaves the disc ∆ at the point Γ(t0) ∈ ∂∆ if there is ǫ > 0 with the property
that Γ(t) ∈ ∆ for t0− ǫ < t < t0 and Γ(t) ∈ (∆)c for t0 < t < t0+ ǫ. There is a third
category of points in Γ ∩ ∂∆, namely those with the property that the curve just
before and just after the point stays either in the disc or in the complement of its
closure. We will ignore these points. Consider now two points in Γ ∩ ∂∆ at which
Γ enters or leaves the disc and assume that in one of the complementary intervals
in ∂∆ determined by these two points there is no other point at which Γ enters or
leaves the disc. Then we claim that at one of the two points the curve enters the
disc and at the other the curve leaves the disc. In other words, it is not possible that
either the curve enters the disc at both points or that the curve leaves the disc at
both points. Before embarking in the proof of this claim we remark that, with (9)
at our disposition, and arguing inductively with the intervals of generation 2 and
subsequent (if any), we finally get (8).

To prove the claim, take two points A and B in Γ ∩ ∂∆ at which Γ enters or
leaves the disc and assume that in one of the complementary open intervals in ∂∆
determined by A and B there is no other point at which Γ enters or leaves the disc.
Then we have to show that the curve enters the disc at one of the points A and B
and leaves the disc at the other.
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Proceeding by contradiction, we assume that at A and B the curve leaves the
disc (the argument is similar for the case in which the curve enters the disc at A
and B ). Assume also that in the interval on the circle ∂∆ which joins A to B in
the clockwise direction there are no points at which the curve enters or leaves the
disc (see Figure 2).

Γ0

A

B

p

q

Γ
+

A

Γ
+

B

Γ
−

A

Γ
−

B

Figure 2

In view of the definition that the curve leaves the disc at A, there is a disc DA

centered at A and of radius small enough so that Γ ∩DA contains a Jordan arc Γ−
A

joining ∂DA to A inside ∆ (that is, Γ−
A \ {A} ⊂ ∆) and a Jordan arc Γ+

A joining A
to ∂DA inside (∆)c (that is, Γ+

A \ {A} ⊂ (∆)c.) The same argument applies to B to
produce a disc DB centered at B and Jordan arcs Γ−

B and Γ+
B joining respectively

∂DB to B inside ∆ and B to ∂DB inside (∆)c. Let Γ0 be the Jordan arc contained
in Γ joining the end point of Γ+

A to the initial point of Γ−
B. Let ΓAB be the closed

Jordan curve formed by the union of the 4 arcs Γ+
A,Γ0,Γ

−
B and ÂB, where ÂB is the

interval joining B to A in the circle ∂∆ with the counterclockwise orientation. The
sub-arcs of Γ keep the orientation provided by the original parametrization of Γ.

Out goal is to find points p ∈ Γ−
A and q ∈ Γ+

B with different index with respect
to the Jordan curve ΓAB. This will provide a contradiction, because the sub-arc of Γ
starting at B and ending at A joins p and q without intersecting ΓAB, which means
that p and q have the same index with respect to ΓAB.

Let us proceed to the definition of p and q. Since Γ0 and ÂB are disjoint compact
sets there is δ > 0 such that Uδ ∩ Γ0 = ∅, where Uδ = {z : dist(z, ÂB) < δ}. Take
p ∈ Uδ ∩ Γ−

A and q ∈ Uδ ∩ Γ+
B. The next step is to construct a Jordan arc joining

p and q, which intersects ΓAB only once, so that p and q have different index with
respect to ΓAB. Start at p and follow the circle concentric with ∂∆ which contains
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p in the clockwise direction until we are under the middle point of the interval ÂB.
Continue along the ray emanating at the center of ∆ towards ∂∆, cross ∂∆ and
proceed until you touch the circle concentric with ∂∆ containing q. Then follow
that circle until you get to q. Obviously you cross ΓAB once through ÂB, but there
is no other intersection with ΓAB. The proof is now complete.

4 Appendix

In this section we prove the following.

Lemma 3. Assume that f is a continuous function on an open set Ω such that its
partial derivatives exist almost everywhere in Ω and ∂f ∈ L1

loc(Ω). Assume further
that ∫

∂Q

f(z) dz = 2i

∫

Q

∂f(z) dA(z), (10)

for each closed square Q ⊂ Ω with sides parallel to the coordinates axis. Then the
pointwise ∂ derivative of f on Ω is indeed the distributional derivative of f on Ω.

Proof. One has to show that

−
∫

f(z) ∂ϕ(z) dA(z) =

∫
∂f(z)ϕ(z) dA(z), (11)

for each ϕ ∈ C∞
0 (Ω). Take ρ ∈ C∞

0 (C) with support contained in {z : |z| ≤ 1} and∫
ρ(z) dA(z) = 1. Set ρǫ(z) = 1

ǫ2
ρ( z

ǫ
) and fǫ = f ∗ ρǫ. Then ∂(f ∗ ρǫ) = f ∗ ∂ρǫ,

but it is not clear that this coincides with ∂f ∗ ρǫ. Given δ > 0 set Ωδ = {z ∈ Ω :
dist(z, ∂Ω) > δ} and take δ small enough so that the support of ϕ is contained in
Ωδ. Let ǫ < δ. Then

−
∫

fǫ(z) ∂ϕ(z) dA(z) = −
∫
(f ∗ ρǫ)(z) ∂ϕ(z) dA(z),

=

∫
∂(f ∗ ρǫ)(z)ϕ(z) dA(z)

=

∫
(f ∗ ∂ρǫ)(z)ϕ(z) dA(z).

(12)

We show now that
(f ∗ ∂ρǫ)(z) = (∂f ∗ ρǫ)(z), z ∈ Ωδ. (13)

Inserting this in (12) and letting ǫ → 0 yields (11). To prove (13) let Q be the closed
square with sides parallel to the coordinate axis with center z and side length 2ǫ.
Then Q ⊂ Ω. The function g(w) = f(w)ρǫ(z − w) vanishes on the boundary of Q.
Applying (10) to Q and g we get (13).
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