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Abstract. In this paper we consider a general class of anisotropic energies in three
dimensions and give a complete characterisation of their minimisers. We show that,
depending on the Fourier transform of the interaction potential, the minimiser is either
the normalised characteristic function of an ellipsoid or a measure supported on a two-
dimensional ellipse. In particular, it is always an ellipsoid if the transform is strictly
positive, while when the Fourier transform is degenerate both cases can occur. Finally,
we show an explicit example where loss of dimensionality of the minimiser does occur.
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1. Introduction

We consider the nonlocal interaction energy

I(µ) :=

∫
R3

(W ∗ µ)(x) dµ(x) +

∫
R3

|x|2 dµ(x), (1.1)

defined on probability measures µ ∈ P(R3), where the potential W is of the form

W (x) :=
1

|x|
Ψ

(
x

|x|

)
, x ∈ R3, x 6= 0, (1.2)

with the profile Ψ even, strictly positive, and smooth enough. Note thatW is an anisotropic
extension of the classical Coulomb potential, which corresponds to a constant profile Ψ.

Our main result is the following.

Theorem 1.1. Let W be as in (1.2) with Ψ an even and strictly positive function in

Hs(S2), for s > 3
2 . Assume that Ŵ ≥ 0 on S2. Then there exists a unique minimiser

µ0 ∈ P(R3) of I, which can be characterised as follows.

(a) If Ŵ > 0 on S2, then µ0 is of the form

χE(x)

|E|
, (1.3)

for an ellipsoid E ⊂ R3 centred at 0.

(b) If Ŵ ≥ 0 on S2, then either µ0 is as in (1.3) or µ0 is, up to a rotation, of the form

3

2πa1a2

√
1− x2

1

a2
1

− x2
2

a2
2

H2 Ẽ ⊗ δ0(x3), (1.4)

for an ellipse Ẽ ⊂ R3 centred at 0 with semi-axes of length a1 and a2 on the coordinate
axes of the x1x2-plane.

We refer to the measure in (1.3) as an ellipsoid law and to the lower-dimensional measure
in (1.4) as a semi-ellipsoid law.

In other words, Theorem 1.1 shows that if the Fourier transform of W is strictly positive,
then the minimiser is an ellipsoid law, hence a measure with a three-dimensional support.
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If instead the Fourier transform of W is not strictly positive, the minimiser is either an
ellipsoid law, or a semi-ellipsoid law, and both cases can occur, as we show in Example 3.4.

We recall that a similar phenomenon occurs in two dimensions. In that case, if the
Fourier transform of the potential is not strictly positive, the minimiser is either the
normalised characteristic function of an ellipse, which we call an ellipse law, or, up to a
rotation, the semi-circle law measure

µsc(x) =
1

π

√
2− x2

1H
1 (−

√
2,
√

2)⊗ δ0(x2),

and both cases are possible. Note that in the three-dimensional case degeneracy of the
support can happen only on a two-dimensional set, and not on a set of dimension lower
than two.

Our main result Theorem 1.1 is the most general result to date for three-dimensional
anisotropic energies, and provides a full characterisation of their minimisers in both the
non-degenerate and degenerate cases, under minimal assumptions on W .

The motivation of our paper is twofold. There is a large recent literature on nonlo-
cal energies, due to the pivotal role they play in describing the behaviour of large sys-
tems of interaction particles, in a variety of applications. Traditionally, the focus of the
mathematical literature on nonlocal energies has been on radially symmetric potentials,
which model interactions depending on the mutual distance between the particles (see e.g.
[1, 3, 4, 9, 13, 24]). The mathematical study of anisotropic potentials, despite their natural
occurrence in modelling interactions where a preferred direction of interaction is present,
has on the other hand been very limited until recently. The potential (1.2) is the natural
anisotropic extension of the Coulomb kernel. Our main motivation is the characterisation
of the minimisers of the corresponding anisotropic energies. In particular, the issue of
determining the dimension of the support of minimisers has so far remained elusive.

Also, ellipses and more generally ellipsoids play a special role in several problems: as
minimisers of Coulomb and dislocation energies [14, 23, 5, 6], as special solutions (vortex
patches) of the Euler equations [16], as the only bounded coincidence sets (with non-empty
interior) of global solutions of the obstacle problem [10], as special sets in Calderón-
Zygmund theory [22]. It is then natural to try and characterise the potentials for which
minimisers of energies like (1.1) are ellipsoids.

In the recent paper [7], Carrillo and Shu gave a complete answer to the minimality
of ellipses in two dimensions, and partially solved the dimensionality conundrum. It is
indeed proved in [7] that, under the two-dimensional analogue of the assumptions we
make in Theorem 1.1, if the potential has a strictly positive Fourier transform, then the
minimiser is a non-degenerate ellipse. If instead the Fourier transform vanishes in some
direction, then the minimiser is either an ellipse law or a semi-circle law measure, and both
cases can occur. In this paper we prove the analogous result in the three-dimensional case
by means of a different approach which, spelled out in the two-dimensional case, provides
an alternative proof of the result in [7]. We believe that our new approach is robust enough
to be generalised to higher dimension. This is not a line of investigation that we pursue
here, but will be addressed in a forthcoming paper.

Compared with the most recent results for three-dimensional anisotropic energies, [20]
and [8], the present paper represents a substantial improvement in several directions. In our
previous work [20] we proved the minimality of ellipsoids under the additional requirement
that the potential W is a small perturbation of the Coulomb potential WC. Since the
perturbation assumption guarantees the strict positivity of the Fourier transform of W ,
the analysis there was limited to a special case of our result in the non-degenerate case. We
now lift the perturbation assumption, and also allow for potentials whose Fourier transform
is only nonnegative, hence facing the issue of loss of dimensionality for the minimiser. As
for [8], the approach there was heavily based on the two-dimensional case [7]. Indeed,
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the authors impose strong symmetry assumptions on the potentials, which reduce the
complexity of the problem to a two-dimensional setting. By following a different approach,
in Theorem 1.1 we remove the additional symmetry assumptions in [8], and provide a full
characterisation of the minimisers in the general setting. Moreover, we also show that the
minimiser cannot concentrate on a one-dimensional set, a case that was not excluded in [8].

1.1. Literature review. The recent rise of interest in anisotropic energies has been pro-
pelled by the works [23, 5] (see also [18, 19]), where the two-dimensional energy

Iα(µ) :=

∫
R2

(Wα ∗ µ)(x)dµ(x) +

∫
R2

|x|2 dµ(x),

was considered. Here the interaction potential is Wα(x) = WC(x)+α(x1/|x|)2, α ∈ [−1, 1].
The case α = 1 is motivated by the study of edge dislocations in metals, lattice defects

whose motion is restricted to a direction b ∈ S1 in the lattice. The potential W1 indeed
describes the interaction among dislocations in the case b = e1, and the corresponding
energy I1 models their interaction at a continuum scale, where µ represents the macroscopic
density of such defects.

The energy Iα admits a unique minimiser, which has been fully characterised in [23, 5]:
For α ∈ (−1, 1) it is the normalised characteristic function of an ellipse, and it degenerates
from an ellipse to the semi-circle law measure on the vertical axis for α = 1, and on the
horizontal axis for α = −1.

The study of the energy Iα prompted several compelling questions, and motivated the
analysis in [6, 20, 21, 7, 8] and in the current paper. A first question is whether the previous
analysis is bound to the special structure of Wα or can be extended to more general
anisotropies. In [20] we gave a partial answer to this question in arbitrary dimension. We
proved that ellipsoids arise as energy minimisers whenever W is a small, even perturbation
of the Coulomb potential WC with the same homogeneity of WC. In three dimensions
this corresponds to considering W of the form (1.2), with Ψ close to 1. This additional
assumption was instrumental to the proof we provided, where we resorted to the use of
the Implicit Function Theorem, but we conjectured in [21] that the result was likely to
hold true without it.

This was indeed demonstrated, in the two-dimensional case, in the recent breakthrough
paper [7] by Carrillo and Shu. The approach followed in [7] is based on an ingenious way of
rewriting the energy in terms of a one-dimensional profile, and then deduce the minimality
of ellipses from the minimality of the semi-circle law for the one-dimensional logarithmic
energy proved in [26].

Another question of interest is what causes a loss of dimensionality for minimisers.
The result in [7] and our paper show that, in two and three dimensions, a necessary
condition for this to happen is the degeneracy of the Fourier transform. However there
is currently no criterion indicating which shape will be preferred by the minimiser in the
degenerate case. Indeed, there are explicit examples of anisotropic energies with degenerate
Fourier transform for which the minimiser has a full-dimensional support (see [15] in
the two-dimensional case and [6] in the three-dimensional case). An instance of loss of
dimensionality in three dimensions is shown in Example 3.4.

1.2. Idea of the proof of the main result. We sketch here the idea of the proof of the
main result, Theorem 1.1. The existence of a compactly supported minimiser follows by
standard methods. Moreover, the sign condition on the Fourier transform of W implies
that the energy is strictly convex, and hence there is a unique minimiser of I. We can then
focus on the characterisation of such minimiser, which is equivalent to finding a solution
of the Euler-Lagrange conditions, due to the strict convexity of the energy.
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Motivated by the perturbation result [20] and by [8], we look for a candidate ellipsoid
E ⊂ R3 such that its normalised characteristic function χ := χE/|E| satisfies the Euler-
Lagrange conditions

(W ∗ χ) (x) +
1

2
|x|2 = C for x ∈ E, (1.5)

(W ∗ χ) (x) +
1

2
|x|2 ≥ C for x ∈ R3 \ E. (1.6)

A crucial step in our approach is to resort to a Fourier representation of the potential W ∗χ,
appearing at the left-hand side of (1.5)–(1.6) (see Section 2.5). One of the advantages of
this representation is that it shows directly that W ∗ χ is quadratic on E, which is a
necessary condition for (1.5) to hold. Moreover, in Fourier terms it is immediate to see
that if an ellipsoid satisfies the stationarity condition (1.5), then it satisfies also (1.6).
Hence it remains to find a stationary ellipsoid.

In Fourier terms, the stationarity condition (1.5) can be equivalently expressed as the
system

3

4
√

2π

∫
S2

ωiωjŴ (ω)

(Mω · ω)3/2
dH2(ω) = δij , for i, j = 1, 2, 3, (1.7)

where M is a positive-definite symmetric matrix which incorporates the information about
the semi-axes of the ellipsoid and its orientation. A key observation is that a solution to
the system (1.7) is a critical point of the auxiliary scalar function f which is defined in
(3.9) for positive symmetric matrices M . To find a solution of (1.7) we then study the

auxiliary function f and show that, when Ŵ > 0 on S2, it admits a minimiser M .

When instead Ŵ ≥ 0, we repeat the procedure above for a perturbed potential with
strictly positive Fourier transform, and by letting the perturbation parameter to zero,
we investigate the possible stationary shapes in the limit. Energy considerations allow
us to exclude that the limiting measure concentrates on points or on segments, hence
only the ellipsoid and semi-ellipsoid law measures are attainable. We then show that the
semi-ellipsoid law can be attained, by providing an explicit example.

1.3. Plan of the paper. The paper is organised as follows. In Section 2 we collect some
preliminary results that will be used in the paper. In particular, in Section 2.5 we compute
the Fourier representation of W ∗ χ, which is a crucial step of our approach. Section 3 is
the heart of the paper and contains the proof of the main result, Theorem 1.1.

2. Preliminaries

In this section we collect some definitions and preliminary results that will be needed
in the paper. We also establish some notation.

2.1. Spherical harmonics and Fourier transforms. On L2(S2) we consider the Fourier
basis given by the spherical harmonics, which are obtained as the restriction to S2 of ho-
mogeneous harmonic polynomials of degree k ≥ 0. For k ≥ 0, the dimension of the space
of spherical harmonics of degree k in R3 is 2k + 1. In particular, any ϕ ∈ L2(S2) can be
decomposed as

ϕ =

∞∑
k=0

akΦk, (2.1)

where Φk is a spherical harmonic of degree k ≥ 0 with

‖Φk‖L2(S2) = 1 (2.2)

and {ak}k≥0 ∈ `2. We note that ‖ϕ‖L2(S2) = ‖{ak}k≥0‖`2 .
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We recall that for any homogeneous harmonic polynomial Φk of degree k ≥ 0 we have
the inequality

‖Φk‖L∞(S2) ≤
√

2k + 1

4π
‖Φk‖L2(S2), (2.3)

see [11, Proposition 4.16].
We now recall the definition of Sobolev spaces on the sphere, see for instance [2]. Let ∆S

denote the Laplace-Beltrami operator on S2. For s > 0, we denote by Hs(S2) the subspace

of all ϕ ∈ L2(S2) such that (−∆S)s/2ϕ ∈ L2(S2). We identify H0(S2) with L2(S2). On
Hs(S2), s > 0, we consider the norm

‖ϕ‖2Hs(S2) = ‖ϕ‖2L2(S2) + ‖(−∆S)s/2ϕ‖2L2(S2).

For any s ≥ 0, the space Hs(S2) can be equivalently defined as the subspace of all ϕ ∈
L2(S2) such that {(

1 +
√
k(k + 1)

)s
ak
}
k≥0
∈ `2

(where {ak}k≥0 is as in (2.1)) with equivalent norm

‖ϕ‖Hs(S2) =
∥∥{(1 +

√
k(k + 1)

)s
ak
}
k≥0

∥∥
`2
.

Moreover, we have the following embedding.

Lemma 2.1. The space Hs(S2) is continuously embedded in C0(S2) for any s > 1.

Proof. It is enough to prove that

‖ϕ‖L∞(S2) ≤ C(s)‖ϕ‖Hs(S2) (2.4)

for every ϕ ∈ Hs(S2) and any s > 1, where C(s) > 0 is a constant depending on s only.
Indeed, if (2.4) holds true, then it is easy to infer that ϕ ∈ Hs(S2) is continuous, since it
is the uniform limit of continuous functions, and the proof is then complete.

By (2.1), (2.2), and (2.3) we have that

‖ϕ‖L∞(S2) ≤
∞∑
k=0

|ak|‖Φk‖L∞(S2) ≤
1√
4π

∞∑
k=0

√
2k + 1|ak|

=
1√
4π

∞∑
k=0

√
2k + 1(

1 +
√
k(k + 1)

)s (1 +
√
k(k + 1)

)s|ak|
≤ 1√

4π

( ∞∑
k=0

2k + 1(
1 +

√
k(k + 1)

)2s
)1/2

‖ϕ‖Hs(S2).

Since the series above is convergent for s > 1, the proof is complete. �

The Fourier transform definition we adopt is

f̂(ξ) =
1

(2π)3/2

∫
R3

f(x)e−iξ·x dx, ξ ∈ R3,

for functions f in the Schwartz space S. Correspondingly, the inverse Fourier transform is
the following

f(x) =
1

(2π)3/2

∫
R3

f̂(ξ)eiξ·x dξ, x ∈ R3.

Finally, we recall the expression of the Fourier transform for homogeneous harmonic
polynomials. If Φk is a homogeneous harmonic polynomial of degree k ≥ 1 and 0 < s < 3,
then

Φk(x)

|x|3−s+k
Fourier−−−−→ (−i)k2s−3/2 Γ(k+s

2 )

Γ(k+3−s
2 )

Φk(ξ)

|ξ|k+s
,
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see [25, Chapter III, Theorem 5] where a slightly different definition of the Fourier trans-
form is adopted. In particular, for s = 2, we have

Φk(x)

|x|1+k

Fourier−−−−→ (−i)k
√

2
Γ(k2 + 1)

Γ(k+1
2 )

Φk(ξ)

|ξ|k+2
=: bk

Φk(ξ)

|ξ|k+2
. (2.5)

The formula (2.5) holds true also for k = 0, and can be proved by a classical argument
based on the fundamental solution of the Laplacian operator.

2.2. The Fourier transform of W . Let W be as in (1.2) with Ψ even and in Hs(S2) for
s > 3

2 . Since Ψ is continuous, the kernel W is locally L1 and bounded at infinity, therefore
it is a tempered distribution. We now write its Fourier transform.

To this aim, we first write W in terms of spherical harmonics, using (1.2) and the
decomposition (2.1) for Ψ. Since Ψ is even, the decomposition (2.1) for Ψ reduces to

Ψ =

∞∑
k=0

a2kΦ2k. (2.6)

Hence, for x 6= 0, we have

W (x) =
∞∑
k=0

a2k
Φ2k(x)

|x|1+2k
.

By (2.5) we have

Φ2k(x)

|x|1+2k

Fourier−−−−→ (−1)k
√

2
Γ(k + 1)

Γ(k + 1
2)

Φ2k(ξ)

|ξ|2k+2
= b2k

Φ2k(ξ)

|ξ|2k+2
. (2.7)

Note that, since

Γ
(
k + 1

2

)
=

√
π(2k)!

4kk!
and Γ(k + 1) = k!,

we may rewrite

b2k =

√
2

π
(−1)k4k

k!k!

(2k)!
. (2.8)

Moreover, by Stirling’s formula, |b2k| ∼
√

2k, hence, for an absolute constant C,

|b2k| ≤ C(1 +
√

2k(2k + 1))1/2, k ≥ 0.

Since Ψ ∈ Hs(S2) for s > 3
2 , we deduce that

Ŵ (ξ) =
1

|ξ|2
Ψ̂(ξ/|ξ|) (2.9)

where, with a little abuse of notation,

Ψ̂ :=

∞∑
k=0

a2kb2kΦ2k ∈ Hs− 1
2 (S2). (2.10)

Note that since s− 1
2 > 1, the function Ψ̂ is continuous by Lemma 2.1.

2.3. Ellipses and ellipsoids. For any a = (a1, a2, a3) ∈ R3, D(a) = diag(a1, a2, a3)
stands for the diagonal matrix such that Dii = ai for i = 1, 2, 3. Given a = (a1, a2, a3) ∈ R3

with ai > 0 for i = 1, 2, 3, we let

E0(a) :=

{
x = (x1, x2, x3) ∈ R3 :

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

≤ 1

}
(2.11)

denote the compact set enclosed by the ellipsoid with semi-axes of length a1, a2, and a3

on the coordinate axes. Note that

E0(a) = D(a)B,
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where B denotes the unit ball B1(0) ⊂ R3. A general ellipsoid E ⊂ R3 centred at the
origin can be then obtained by rotating E0(a) in (2.11) with respect to the coordinate
axes, namely as

E = RE0(a) = RD(a)B, (2.12)

for some rotation R ∈ SO(3).
Similarly, for given constants a1 > 0 and a2 > 0, we let

Ẽ0(a1, a2) :=

{
(x1, x2) ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

≤ 1

}
× {0} (2.13)

denote the compact set enclosed by the ellipse with semi-axes of length a1 and a2 on the
coordinate axes of the x1x2-plane. A general two-dimensional ellipse Ẽ ⊂ R3 centred at the
origin can be then obtained by rotating Ẽ0(a1, a2) in (2.13) with respect to the coordinate
axes, namely as

Ẽ = RẼ0(a1, a2), (2.14)

for some rotation R ∈ SO(3).

2.4. The Fourier transform of the characteristic function of an ellipsoid. The
Fourier transform of the characteristic function of B in R3 is given by

χ̂B(ξ) =
J3/2(|ξ|)
|ξ|3/2

,

where Jα denotes the Bessel function of the first kind of order α. We recall that

J3/2(r) =

√
2

πr

(sin r

r
− cos r

)
, r > 0,

hence

χ̂B(ξ) =

√
2

π

(sin |ξ|
|ξ|3

− cos |ξ|
|ξ|2

)
. (2.15)

Moreover, we have the following asymptotic behaviours:

J3/2(r)

r3/2
∼ 1

23/2Γ(5/2)
=

1

3

√
2

π
, as r → 0+,

and
J3/2(r)

r3/2
∼ −

√
2

π

1

r2
cos r, as r → +∞,

see for instance [17, Section 5.16].
Let E be an ellipsoid of the form (2.12). If we set χ := χE/|E|, then it is immediate to

see that

χ̂(ξ) =
1

|B|
χ̂B(D(a)RT ξ). (2.16)

2.5. The Fourier representation of W ∗ χ. In this section, we assume that Ψ is even
and in Hs(S2), for s > 3

2 . We note that here we do not require any sign condition on Ψ.
Let E be an ellipsoid of the form (2.12), and let χ := χE/|E|. We express W ∗ χ in

Fourier terms. By [27, Chapter VI.3, Theorem 6] and by using (2.15) and (2.16), we have

Ŵ ∗ χ(ξ) = (2π)3/2Ŵ (ξ)χ̂(ξ)

=
4π

|B|

(
sin(|D(a)RT ξ|)
|D(a)RT ξ|3

− cos(|D(a)RT ξ|)
|D(a)RT ξ|2

)
1

|ξ|2
Ψ̂(ξ/|ξ|) ∈ L1(R3),

with Ψ as in (2.6) and Ψ̂ as in (2.10). Hence, the inversion formula holds, that is,

(W ∗ χ)(x) =

∫
R3

Ŵ (ξ)χ̂(ξ)eix·ξ dξ =

∫
R3

Ŵ (ξ)χ̂(ξ) cos(x · ξ) dξ
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for every x ∈ R3. Writing this integral in spherical coordinates, we obtain

(W ∗ χ)(x)

=
1

|B|

√
2

π

∫
S2

∫ ∞
0

(sin(r|D(a)RTω|)
r3|D(a)RTω|3

− cos(r|D(a)RTω|)
r2|D(a)RTω|2

)
Ψ̂(ω) cos(x · rω) dr dH2(ω).

Setting

ρ := r|D(a)RTω| and α(x, ω) :=
x · ω

|D(a)RTω|
, (2.17)

we have

(W ∗ χ)(x) =
1

|B|

√
2

π

∫
S2

(∫ ∞
0

(sin ρ

ρ3
− cos ρ

ρ2

)
cos(α(x, ω)ρ) dρ

)
Ψ̂(ω)

|D(a)RTω|
dH2(ω).

By several integration by parts we obtain that for any α ∈ R∫ ∞
0

(sin ρ

ρ3
− cos ρ

ρ2

)
cos(αρ) dρ =

1

2
(1− α2)

∫ ∞
0

sin ρ cos(αρ)

ρ
dρ.

Computing this improper integral is a simple exercise. Alternatively, one can appeal to
formula 1.6(1) on page 18 of [12] and obtain∫ ∞

0

(sin ρ

ρ3
− cos ρ

ρ2

)
cos(αρ) dρ =

π

4
(1− α2)χ(−1,1)(α).

Finally, we have that

(W ∗ χ)(x) =
1

|B|

√
π

8

∫
S2

(1− α2(x, ω))χ(−1,1)(α(x, ω))
Ψ̂(ω)

|D(a)RTω|
dH2(ω). (2.18)

The above formula shows that W ∗ χ is a quadratic polynomial in E, since for x in the
interior of E one has that |α(x, ω)| < 1 for any ω ∈ S2. This can be seen by rewriting

α(x, ω) = (D(a)−1RTx) · (D(a)RTω/|D(a)RTω|) =: y · ω̃,

where ω̃ ∈ S2. It is then immediate to see that x ∈ E if and only if y ∈ B. Hence, for
x in the interior of E we have that |α(x, ω)| < 1 for any ω ∈ S2. We also note that for
x ∈ ∂E we have that |α(x, ω)| < 1 except on a set of ω ∈ S2 of H2-measure zero, whereas
for x /∈ E we have that |α(x, ω)| 6= 1 except on a set of H2-measure zero.

We conclude this section by computing the gradient and the Hessian of W ∗ χ, which
will be used in the proof of Theorem 1.1. For the gradient, since the function t ∈ R 7→
(1− t2)χ(−1,1)(t) is a Lipschitz function, we can differentiate (2.18) with respect to x. This

provides us with the following formula: for any j = 1, 2, 3 and any x ∈ R3

∂(W ∗ χ)

∂xj
(x) = − 1

|B|

√
π

2

∫
S2

α(x, ω)ωj
|D(a)RTω|

χ(−1,1)(α(x, ω))
Ψ̂(ω)

|D(a)RTω|
dH2(ω). (2.19)

From this formula we deduce that W ∗ χ ∈ C1(R3) and that for any x ∈ R3

∇(W ∗ χ)(x) · x = − 1

|B|

√
π

2

∫
S2
α2(x, ω)χ(−1,1)(α(x, ω))

Ψ̂(ω)

|D(a)RTω|
dH2(ω). (2.20)

Finally, we compute the Hessian of W ∗ χ in the interior of E. From (2.19), for any
j, k = 1, 2, 3 and any x in the interior of E, we have that

∂2(W ∗ χ)

∂xj∂xk
(x) = − 1

|B|

√
π

2

∫
S2

ωjωkΨ̂(ω)

|D(a)RTω|3
dH2(ω), (2.21)

where we used that χ(−1,1)(α(x, ω)) = 1 for every ω ∈ S2.
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3. Main results

In this section we prove Theorem 1.1. We start by introducing some notation.
For any ellipsoid E as in (2.12), we define the corresponding ellipsoid law as the measure

µE(x) :=
χE(x)

|E|
=
χE0(a)(R

Tx)

|E0(a)|
= µE0(a)(R

Tx), (3.1)

namely, as the normalised characteristic function of the ellipsoid.
For an ellipse Ẽ as in (2.14), we define the corresponding semi-ellipsoid law as the

measure

µẼ(x) := µẼ0(a1,a2)(R
Tx), (3.2)

where we set

µẼ0(a1,a2)(x) :=
2

|B|a1a2

√
1− x2

1

a2
1

− x2
2

a2
2

H2 Ẽ0(a1, a2)⊗ δ0(x3).

We proceed as follows. In Section 3.1 we prove existence and uniqueness of the min-
imiser of the energy I, and show that it is characterised by the Euler-Lagrange conditions
for I. In Section 3.2 we prove that there exists a minimising ellipsoid under the additional

assumption that Ŵ is strictly positive on S2, that is, we prove Theorem 1.1(a). In Sec-
tion 3.3, we consider the degenerate case and prove Theorem 1.1(b). Moreover, we show
that both cases in Theorem 1.1(b) can indeed occur.

3.1. Existence, uniqueness and characterisation of the minimiser. We have the
following result.

Proposition 3.1. Let W be as in (1.2) with Ψ even, strictly positive, and in Hs(S2), for

s > 3
2 . Assume that Ŵ ≥ 0 on S2. Then there exists a unique minimiser µ0 of I, which is

characterised by the following Euler-Lagrange conditions:

(W ∗ µ0) (x) +
1

2
|x|2 = C for µ0-a.e. x ∈ suppµ0, (3.3)

(W ∗ µ0) (x) +
1

2
|x|2 ≥ C for x ∈ R3 \N with Cap(N) = 0, (3.4)

where suppµ0 stands for the support of µ0, C is a constant, and Cap is the capacity.

Proof. Arguing as in [6, Proposition 2.1], one can prove that a minimiser exists and that
any minimiser has compact support and finite energy. Moreover, the energy I is strictly
convex on the subset of P(R3) given by

P̃ :=
{
ν ∈ P(R3) : ν has compact support and

∫
R3

(W ∗ ν)(x) dν(x) < +∞
}
.

Strict convexity immediately implies uniqueness of the minimiser. The characterisation
of the minimiser through the Euler-Lagrange conditions can then be deduced as in [23,
Theorem 3.1].

We briefly comment on the proof of strict convexity of I on P̃. Arguing as in [6, Propo-

sition 2.1], strict convexity is equivalent to the following inequality: for any ν1, ν2 ∈ P̃∫
R3

Ŵ (ξ)| ̂(ν1 − ν2)(ξ)|2 dξ ≥ 0 (3.5)

and equality holds if and only if ν1 = ν2. The inequality (3.5) follows immediately from

(2.9) and the assumption Ŵ ≥ 0 on S2. To show that equality holds in (3.5) if and only if
ν := ν1−ν2 = 0, one can follow the proof of [7, Theorem 2.6]. In fact, since by assumption
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W > 0, its Fourier transform Ŵ cannot be identically 0. Hence, there exist c0 > 0, x0 ∈ R3,

and r > 0, with r < |x0|, such that Ŵ ≥ c0 in Br(x
0). If∫

R3

Ŵ (ξ)|ν̂(ξ)|2 dξ = 0,

then ν̂ = 0 on Br(x
0). Since by the Paley-Wiener Theorem ν̂ is the restriction of an entire

function to R3, ν̂ must be identically zero. This concludes the proof. �

Remark 3.2. We show that there exists a constant r0, depending only on the maximum
of Ψ on S2, such that the compact support of the minimiser µ0 is contained in Br0(0).

First note that for any r > 0, due to the positivity of the profile and the minimality of
µ0, we have

I(µ0) ≥
∫∫

Br×Br

W (x− y) dµ0(x)dµ0(y) +
1

2

∫∫
Br×Br

(|x|2 + |y|2) dµ0(x)dµ0(y)

+
1

2

∫∫
R6\(Br×Br)

(
|x|2 + |y|2

)
dµ0(x)dµ0(y)

≥ (µ0(Br))
2I

(
µ0 Br
µ0(Br)

)
+ r2

(
1− (µ0(Br))

2
)

≥ (µ0(Br))
2 I(µ0) + r2

(
1− (µ0(Br))

2
)
,

where we have used the shorthand Br := Br(0). Hence, by rearranging the terms in the
inequality above, it follows that for any r > 0(

1− (µ0(Br))
2
) (
I(µ0)− r2

)
≥ 0.

Choosing r =
√
I(µ0) + 1, we infer that µ0(Br) = 1, so the support of µ0 is contained in

the closed ball Br. On the other hand, I(µ0) can be bounded in terms of the maximum of
Ψ on S2, since

I(µ0) ≤ I

(
χB
|B|

)
≤ 1

|B|2

∫∫
B×B

W (x− y) dxdy + 1

≤ ‖Ψ‖L∞(S2)
1

|B|2

∫∫
B×B

1

|x− y|
dxdy + 1 =: C,

thus the proof is concluded by setting r0 =
√
C + 1.

3.2. The case of strictly positive Fourier transform. In this section we assume that

Ŵ is strictly positive on S2 and we prove Theorem 1.1(a).

Proof of Theorem 1.1(a). Let E be an ellipsoid of the form (2.12) and let χ := χE/|E|.
For any x ∈ R3 we define the potential

P (x) := (W ∗ χ)(x) +
|x|2

2
. (3.6)

We need to show that there exists an ellipsoid E such that the corresponding function P
in (3.6) satisfies (3.3) and (3.4).

As a preliminary remark, we note that a direct consequence of formula (2.18), together
with the definition of α in (2.17), is that

P (x) = P (0) + P2(x) for any x ∈ E,

where P2 is a homogeneous second-order polynomial, whose expression can be computed

in terms of Ψ̂ by (2.21).
We divide the proof into three steps.
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Step 1: The first Euler-Lagrange condition. By the regularity and evenness of the potential
P in (3.6), proving condition (3.3) is equivalent to showing that the Hessian of P vanishes
on E. By (2.21) this is equivalent to showing that for i, j = 1, 2, 3

1

|B|

√
π

2

∫
S2

ωiωjΨ̂(ω)

|D(a)RTω|3
dH2(ω) = δij , (3.7)

δij being the Kronecker delta.
We need to show that there exist a = (a1, a2, a3) ∈ R3, with ai > 0 for i = 1, 2, 3, and

R ∈ SO(3) such that E as in (2.12) satisfies (3.7). We begin by showing that (3.7) can be
written as a stationarity condition for an auxiliary scalar function defined on M+, where
M+ is the space of positive definite symmetric 3× 3 matrices.

Note that

|D(a)RTω|3 = (D(a)RTω ·D(a)RTω)3/2 = ((D(a)RT )TD(a)RTω · ω)3/2

= (R(D(a))2RTω · ω)3/2 = (RD(A)RTω · ω)3/2,

where A = (A1, A2, A3) is such that Ai = a2
i for i = 1, 2, 3. By setting M := RD(A)RT ,

we observe that M ∈M+. In terms of M , condition (3.7) reads as

1

|B|

√
π

2

∫
S2

ωiωjΨ̂(ω)

(Mω · ω)3/2
dH2(ω) = δij , for i, j = 1, 2, 3. (3.8)

We define the function f : M+ → R as

f(M) := g(M) + h(M) =

√
2π

|B|

∫
S2

Ψ̂(ω)√
Mω · ω

dH2(ω) + tr(M), (3.9)

where M = [Mij ]
3
i,j=1. Note that f, g ≥ 0. We observe that the first Euler-Lagrange

condition is satisfied if there exists M0 ∈M+ such that ∇Mf(M0) = 0, where we denoted,
with some abuse of notation,

∇M =

(
∂

∂M11
,

∂

∂M22
,

∂

∂M33
,

∂

∂M12
,

∂

∂M13
,

∂

∂M23

)
.

Therefore, the proof of (3.7) is concluded if we show that there exists a stationary point
for f . In the next step we actually show that f has a global minimiser M0 on M+. Since
M+ is an open set in R6, this will imply that M0 is a solution of the system (3.8) and the
proof is concluded.

Step 2: The function f in (3.9) has a global minimiser on M+. We rewrite the minimisation
problem minM∈M+ f(M) in a simpler form. We start by analysing the behaviour of f along
lines passing through the origin. For every fixed line we characterise the minimum point
of f on the line, and we then minimise over the lines.

More precisely, let M ∈M+ be fixed, and let F : (0,+∞)→ R be the function defined
as F (t) := f(tM). Note that

F (t) =
1√
t
g(M) + th(M),

where we have used the scaling properties of the terms g and h in f . Hence the function
F has a unique minimiser at

tmin(M) =

(
g(M)

2h(M)

)2/3

.

We now define the function f̃ : M+ → R as

f̃(M) := f(tmin(M)M) =
3

22/3
g(M)2/3h(M)1/3,
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and we note that it is constant on rays emanating from the origin. Therefore, in minimising
f̃ we can introduce the constraint tr(M) = 1. Moreover, under this constraint, the problem

min
M∈M+: tr(M)=1

f̃(M)

is equivalent to
min

M∈M+: tr(M)=1
g(M). (3.10)

We now consider the sets

T =

{
A = (A1, A2, A3) ∈ R3 : Ai > 0 and

3∑
i=1

Ai = 1

}
and Ω = T × SO(3),

endowed with the usual Euclidean distance. For any (A,Q) ∈ Ω, we call M(A,Q) =
QTD(A)Q. This map is surjective onto the set of matrices M ∈M+ with tr(M) = 1. Thus
(3.10) is in turn equivalent to

min
(A,Q)∈Ω

∫
S2

Ψ̂(ω)√
D(A)Qω ·Qω

dH2(ω),

where we have neglected the positive constant factor in the definition of g.
By a change of variables, the minimisation problem we want to solve is

min
(A,Q)∈Ω

γ(A,Q),

where

γ(A,Q) :=

∫
S2

Ψ̂(QTω)√
D(A)ω · ω

dH2(ω).

Clearly the function γ is positive and continuous on Ω. Moreover, since

0 < C0 ≤ Ψ̂(ω) ≤ C1 for all ω ∈ S2, (3.11)

for some positive constants C0 and C1, the function γ satisfies the bounds

C0

∫
S2

1√
D(A)ω · ω

dH2(ω) ≤ γ(A,Q) ≤ C1

∫
S2

1√
D(A)ω · ω

dH2(ω) (3.12)

for any (A,Q) ∈ Ω. Note that, since SO(3) is compact,

Ω = T × SO(3)

is a compact set, where clearly

T =

{
A = (A1, A2, A3) ∈ R3 : Ai ≥ 0 and

3∑
i=1

Ai = 1

}
.

Hence, if γ could be extended by continuity to Ω, we would directly derive the existence
of a global minimiser of γ in Ω, and the remaining step to be proved would be that such
a minimiser is, in fact, in Ω. This is our strategy of proof.

Step 2.1: The function γ has a global minimiser in Ω. We observe that

T \ T = V ∪ E ,
where V = {e1, e2, e3} and

E = {(σ, 1− σ, 0), (σ, 0, 1− σ), (0, σ, 1− σ) : 0 < σ < 1} .
We extend γ to V ×SO(3) first, and then to E ×SO(3). Let (A0, Q) ∈ V ×SO(3). We set
γ(A0, Q) := +∞ and we now show that

lim
A∈T
A→A0

γ(A,Q) = +∞ uniformly in Q. (3.13)
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With no loss of generality we can assume that A0 = e3, so that we can restrict our attention
to A = (A1, A2, A3) ∈ T with 0 < A1, A2 < δ < 1/4. Then by (3.12)

γ(A,Q) ≥ C0

∫
S2

1√
δ(ω2

1 + ω2
2) + ω2

3

dH2(ω),

where the right hand side goes to +∞, as δ goes to 0, which proves (3.13).
Now, let (A0, Q0) ∈ E × SO(3). With no loss of generality we can assume that A0 =

(A0
1, A

0
2, 0) and A0

1, A
0
2 > 0. Let (An, Qn) ∈ Ω be such that (An, Qn)→ (A0, Q0) as n→∞.

We define

γ(A0, Q0) :=

∫
S2

Ψ̂((Q0)Tω)√
A0

1ω
2
1 +A0

2ω
2
2

dH2(ω) < +∞,

and we show that

lim
n
γ(An, Qn) = γ(A0, Q0). (3.14)

Note that, for ω ∈ S2, we have that

Ψ̂((Qn)Tω)√
D(An)ω · ω

→ Ψ̂((Q0)Tω)√
A0

1ω
2
1 +A0

2ω
2
2

as n → ∞. Let 0 < a0 < min{A0
1, A

0
2}. Since An → (A0

1, A
0
2, 0), there exists n0 ∈ N such

that An1 , A
n
2 > a0 for any n ≥ n0, and so

Ψ̂((Qn)Tω)√
D(An)ω · ω

≤ C1√
a0ω2

1 + a0ω2
2

∈ L1(S2).

Hence by the Dominated Convergence Theorem we deduce (3.14).
The existence of a minimiser of γ on Ω is now established.

Step 2.2: The function γ attains a global minimiser in Ω. Assume by contradiction that
(A0, Q0) ∈ ∂T ×SO(3) is a global minimiser. Clearly, A0 ∈ E , thus we can assume without
loss of generality that A0 = (A0

1, A
0
2, 0) with A0

1, A
0
2 > 0. To reach a contradiction we show

that γ decreases when moving from A0 towards the interior of T , at least close to A0.
Let, as before, 0 < a0 < min{A0

1, A
0
2}, and for any 0 < r < a0 let Ar := (A0

1− r/2, A0
2−

r/2, r). Note that Ar ∈ T .
We claim that for some 0 < δ0 < a0, we have

d

dr
γ(Ar, Q0) < 0 for any 0 < r < δ0, (3.15)

which contradicts the minimality of (A0, Q0), therefore proving that γ attains a global
minimiser in Ω. Let 0 < r < a0. We have

d

dr
γ(Ar, Q0) = −1

2

∫
S2

Ψ̂(QTω)(−ω2
1/2− ω2

2/2 + ω2
3)

(D(Ar)ω · ω)3/2
dH2(ω)

= −1

4

∫
S2

Ψ̂(QTω)(2− 3(ω2
1 + ω2

2))

(D(Ar)ω · ω)3/2
dH2(ω)

= −1

2

∫
S2

Ψ̂(QTω)

(D(Ar)ω · ω)3/2
dH2(ω) +

3

4

∫
S2

Ψ̂(QTω)(ω2
1 + ω2

2)

(D(Ar)ω · ω)3/2
dH2(ω)

=: −β1(r) + β2(r).

Note that β1(r), β2(r) > 0. To prove (3.15) we show that β1 dominates β2 for r small
enough.

Using spherical coordinates, the bounds (3.11), and the fact that A0
1, A

0
2 < 1, we have

β1(r) ≥ C0

2

∫ 2π

0

∫ π

0

sinψ

(sin2 ψ + r cos2 ψ)3/2
dψ dθ.
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As r → 0+, the right hand side goes to +∞, namely

lim
r→0+

C0

2

∫ 2π

0

∫ π

0

sinψ

(sin2 ψ + r cos2 ψ)3/2
dψ dθ =

C0

2

∫ 2π

0

∫ π

0

1

sin2 ψ
dψ dθ = +∞.

Hence

lim
r→0+

β1(r) = +∞. (3.16)

Instead, by the definition of a0 and since r < a0, we have

0 < β2(r) ≤ 3

4

∫ 2π

0

∫ π

0

C1 sin3 ψ

((a0/2) sin2 ψ + r cos2 ψ)3/2
dψ dθ ≤ 3π2C1

2(a0/2)3/2
. (3.17)

The claim (3.15) easily follows by (3.16) and (3.17), and the proof is concluded.

Step 3: The first Euler-Lagrange condition implies the second one. To conclude we show
that, if an ellipsoid E satisfies (3.3), then it also satisfies (3.4). In fact, assume that E
satisfies (3.3). It is enough to show that for any x ∈ R3 we have

∇P (x) · x = ∇(W ∗ χ)(x) · x+ |x|2 ≥ 0,

for P defined in (3.6). By (3.3) this property is obvious for x ∈ E, therefore it is enough
to prove it for x ∈ R3 \ E.

Let x ∈ R3 \E. We write x = tx0 with t > 1 and x0 ∈ ∂E. By (2.20) and (3.3) we know
that

− 1

|B|

√
π

2

∫
S2
α2(x0, ω)

Ψ̂(ω)

|D(a)RTω|
dH2(ω) + |x0|2 = 0, (3.18)

where we have used that for x0 ∈ ∂E we have |α(x0, ω)| < 1 except for ω on a set of
H2-measure zero. By (2.20) and (3.18) we deduce that

∇P (x) · x = − 1

|B|

√
π

2

∫
S2
α2(x, ω)χ(−1,1)(α(x, ω))

Ψ̂(ω)

|D(a)RTω|
dH2(ω) + |x|2

= t2

[
− 1

|B|

√
π

2

∫
S2
α2(x0, ω)χ(−1,1)(α(x, ω))

Ψ̂(ω)

|D(a)RTω|
dH2(ω) + |x0|2

]

= t2

[
1

|B|

√
π

2

∫
S2
α2(x0, ω)

(
1− χ(−1,1)(α(x, ω))

) Ψ̂(ω)

|D(a)RTω|
dH2(ω)

]
≥ 0.

The proof is complete. We point out that Step 3 works under the weaker assumption that

Ŵ ≥ 0 on S2. �

3.3. The loss of dimension in the degenerate case. In this section we consider the

degenerate case where the Fourier transform Ŵ is nonnegative, but not strictly positive.
Let us introduce the following further notation. For a given constant a1 > 0, we set

S0(a1) := [−a1, a1]×{0}×{0}. A general one-dimensional segment S centred at the origin
can be then obtained by rotating S0(a1) with respect to the coordinate axes, namely as

S = RS0(a1), (3.19)

for some rotation R ∈ SO(3).
We associate to S0 the probability measure

µS0(a1) :=
π

|B|a1

(
1− x2

1

a2
1

)
H1 S0(a1)⊗ δ0(x2, x3),

and to any segment S as in (3.19) the corresponding measure

µS(x) := µS0(a1)(R
Tx). (3.20)
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Proof of Theorem 1.1(b). LetW0 be a potential satisfying the assumptions of Theorem 1.1,

with Ŵ0 ≥ 0 on S2, but not strictly positive. We denote its profile by Ψ0 and the function

defined in (2.9) by Ψ̂0. We denote by I0 the energy defined as in (1.1), corresponding to
the potential W0.

For ε > 0, we set

Ψε := Ψ0 +

√
π

2
ε. (3.21)

We call Wε the corresponding potential as in (1.2), and Iε the corresponding energy. Note
that Wε > 0 and that its Fourier transform on S2 is

Ψ̂ε = Ψ̂0 + ε > 0,

where Ψ̂ε is defined as in (2.9). By Theorem 1.1(a) there exists an ellipsoid, that we denote
by Eε, such that µε = µEε minimises the energy Iε. As in (2.12), we write Eε = RεD(aε)B,
where Rε ∈ SO(3) and aε = (aε1, a

ε
2, a

ε
3) ∈ R3 with aεi > 0.

By Remark 3.2, up to subsequences, we have that, as ε → 0+, aε → a0 ∈ [0,+∞)3.
Depending on the number of zero components of a0 we have the following four cases.

(1) a0 = (0, 0, 0). In this case, as ε→ 0+, µε converges narrowly to µ0 = δ0.
(2) Up to a permutation of the variables, a0 = (a0

1, 0, 0) with a0
1 > 0. In this case there

exists a segment S as in (3.19) such that, as ε→ 0+, µε converges narrowly to µ0 = µS
as in (3.20).

(3) Up to a permutation of the variables, a0 = (a0
1, a

0
2, 0) with a0

1, a
0
2 > 0. In this case

there exists an ellipse Ẽ as in (2.14) such that, as ε → 0+, µε converges narrowly to
µ0 = µẼ as in (3.2).

(4) a0 = (a0
1, a

0
2, a

0
3) with a0

1, a
0
2, a

0
3 > 0. In this case, there exists an ellipsoid E as in (2.12)

such that, as ε→ 0+, µε converges to µ0 = µE = χE/|E| as in (3.1).

It is easy to see that

I0(µ0) ≤ lim inf
ε→0+

Iε(µε)

and that

I0(µ) = lim
ε→0+

Iε(µ) for any µ ∈ P(R3).

Hence µ0 is the unique minimiser of I0. In order to conclude the proof, it remains to show
that cases (1) and (2) cannot occur. This can be readily seen by showing that, in both
cases, I0(µ0) = +∞. This is trivial for case (1), since I0(δ0) = W0(0) = +∞. For case (2),
it is enough to prove that IC(µS0(a1)) = +∞ for any a1 > 0, where IC is the Coulomb
energy corresponding to WC(x) = 1/|x|. In fact, I0 is bounded from below by a positive
multiple of IC.

For the Coulomb energy we have

IC(µS0(a1)) ≥
∫ a1

−a1

(∫
R3

1

|x1e1 − y|
dµS0(a1)(y)

)
π

|B|a1

(
1− x2

1

a2
1

)
dx1 = +∞,

where we have used that for any |x1| < a1∫
R3

1

|x1e1 − y|
dµS0(a1)(y) =

∫ a1

−a1

1

|x1 − y1|
π

|B|a1

(
1− y2

1

a2
1

)
dy1 = +∞.

This completes the proof. �

Remark 3.3. The regularity assumption Ψ ∈ H3/2(S2) in Theorem 1.1 can be replaced

by assuming only the continuity of Ψ and Ψ̂ on S2. However, since the continuity of Ψ̂ on

S2 implies that Ψ̂ ∈ L2(S2), by the argument in Section 2.2 the profile Ψ has to be at least

H1/2(S2).



16 J. MATEU, M.G. MORA, L. RONDI, L. SCARDIA, AND J. VERDERA

We note that both cases in Theorem 1.1(b) can indeed occur. For instance, for the
potential

W (x) =
1

|x|
+

x2
1

|x|3
, x ∈ R3, x 6= 0,

whose Fourier transform is

Ŵ (ξ) =

√
8

π

(1− (ξ1/|ξ|)2)

|ξ|2
,

it is shown in [6] that the minimiser of I is the normalised characteristic function of a non-
degenerate ellipsoid, hence an ellipsoid law as in (3.1). Instead, in the following example
we exhibit an explicit profile for which loss of dimension occurs. The possible occurrence
of a two-dimensional minimiser was already shown in [8, Lemma 4.6], although with a less
explicit construction.

Example 3.4 (Loss of dimension for the minimiser). Let us consider the profile

Ψ0(x1, x2, x3) =
1

2

√
π

2

(
4 + 3x2

3 + 3x4
3

)
, x ∈ S2.

We will see below in Remark 3.5 that loss of dimensionality cannot occur for quadratic
profiles, hence a profile providing an example of a degenerate minimiser has to be a poly-
nomial of degree at least four.

Clearly Ψ0 is even and strictly positive. To compute Ψ̂0, we express Ψ0 in terms of
spherical harmonics. The homogeneous polynomials

P0(x) = 1, P2(x) = 3x2
3 − |x|2, P4(x) = 35x4

3 − 30x2
3|x|2 + 3|x|4

are harmonic and so, being of different degrees, their restrictions to the unit sphere

P0(x) = 1, P2(x) = 3x2
3 − 1, P4(x) = 35x4

3 − 30x2
3 + 3

are orthogonal spherical harmonics. It is easily seen that Ψ0 is a linear combination of P0,
P2, and P4. More precisely,

Ψ0(x) =

√
π

2

1

35

(
98 +

65

2
P2(x) +

3

2
P4(x)

)
, x ∈ S2.

The polynomials P0, P2, P4 are eigenvectors of the mapping Ψ 7→ Ψ̂ with eigenvalues√
2
π ,−2

√
2
π ,

8
3

√
2
π , respectively. Hence

Ψ̂0(ξ) =
1

35
(98− 65P2(ξ) + 4P4(ξ))

= 5− 9ξ2
3 + 4ξ4

3 = (1− ξ2
3) + 4(1− ξ2

3)2 = (ξ2
1 + ξ2

2) + 4(ξ2
1 + ξ2

2)2, ξ ∈ S2,

which is nonnegative on S2, but not strictly positive. Hence the potential W0 associated
with the profile Ψ0 via (1.2) satisfies the assumptions of Theorem 1.1(b).

Let I0 be the energy corresponding to the potential W0. We claim that the minimiser
of I0 is not the normalised characteristic function of an ellipsoid and so, by Theorem 1.1,
it is of the form (3.2).

First of all, if the minimiser were of the form χE/|E|, with E an ellipsoid as in (2.12),
then by symmetry and uniqueness E would be a spheroid of equation

x2
1

a2
0

+
x2

2

a2
0

+
x2

3

b20
≤ 1

for some a0 > 0 and b0 > 0. Moreover, from the first Euler-Lagrange condition for min-
imality for χE/|E|, a0 and b0 would satisfy the system of equations (3.8), with M =
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D(a2
0, a

2
0, b

2
0), and in particular∫

S2

(ω2
1 + ω2

2 − 2ω2
3)Ψ̂0(ω)

(Mω · ω)3/2
dH2(ω) = 0.

Using spherical coordinates and the expression of Ψ̂0, this condition can be written as

0 =

∫ π

0

(sin2 ψ − 2 cos2 ψ)(sin2 ψ + 4 sin4 ψ)

(a2
0 sin2 ψ + b20 cos2 ψ)3/2

sinψ dψ =
p(t∗)

a3
0

,

where t∗ := b20/a
2
0 and the function p : [0,+∞)→ R is defined as

p(t) :=

∫ π

0

(sin2 ψ − 2 cos2 ψ)(sin2 ψ + 4 sin4 ψ)

(sin2 ψ + t cos2 ψ)3/2
sinψ dψ

for every t ≥ 0.
We now show that p(t) 6= 0 for every t > 0, which implies that the minimiser of I0 is

not the normalised characteristic function of an ellipsoid.
To this aim, we first note that p is a continuous function in [0,+∞) and

p(0) =

∫ π

0
(sin2 ψ − 2 cos2 ψ)(1 + 4 sin2 ψ) dψ = 0.

Moreover, it is easy to show that the following formula holds:

(2 + t)p′(t) = −3

2
p(t) +

3

2

∫ π

0

(sin2 ψ − 2 cos2 ψ)2(sin2 ψ + 4 sin4 ψ)

(sin2 ψ + t cos2 ψ)5/2
sinψ dψ

for every t > 0. From this equation one can immediately see that p′(t) > 0 for t ∈ (0, ε0)
for some ε0 > 0, hence p(t) > 0 for t ∈ (0, ε0). Moreover, if p(t0) = 0 for some t0 > 0, then
p′(t0) > 0. We conclude that p(t) = 0 only at t = 0 and this proves the claim.

Remark 3.5 (Quadratic profiles). We now show that for any quadratic profile Ψ(x) =
c0 + P2(x), where c0 is a constant and P2 is a homogeneous polynomial of degree 2,

with Ψ > 0 and Ψ̂ ≥ 0 on S2 the minimiser of the corresponding energy has always a
full-dimensional support, and hence loss of dimension does not occur in this case. This
extends the result of [6], where the profile Ψα(x) = 1+αx2

1 was considered for α ∈ (−1, 1].
Since c0 = c0|x|2 for x ∈ S2 and by means of a diagonalisation procedure, we can always

reduce to the canonical form where Ψ(x) = α1x
2
1 + α2x

2
2 + α3x

2
3, x ∈ S2. The assumption

Ψ > 0 on S2 corresponds to αi > 0 for i = 1, 2, 3.

To compute Ψ̂ it is convenient to rewrite Ψ as a sum of homogeneous harmonic poly-
nomials

Ψ(x) =
1

3

3∑
i=1

αi +
1

3

3∑
i=1

αi

(
2x2

i −
∑
j 6=i

x2
j

)
.

Then, by (2.10) and (2.8) we have that for ξ ∈ S2

Ψ̂(ξ) =
1

3
b0

3∑
i=1

αi +
1

3
b2

3∑
i=1

αi

(
2ξ2
i −

∑
j 6=i

ξ2
j

)

=

√
2

π

3∑
i=1

ξ2
i

(
− αi +

∑
j 6=i

αj

)
. (3.22)

Note that the condition Ψ̂ ≥ 0 on S2 is guaranteed by requiring that −αi +
∑

j 6=i αj ≥ 0
for every i = 1, 2, 3.
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To analyse the case of a degenerate Fourier transform we assume, with no loss of gen-
erality, that the coefficient of ξ2

3 in (3.22) is zero, namely, that α3 = α1 + α2. In this case
we have that

Ψ(x) = α1x
2
1 + α2x

2
2 + (α1 + α2)x2

3

and

Ψ̂(ξ) = 2

√
2

π

(
α2ξ

2
1 + α1ξ

2
2

)
.

Under the assumption that α1 > 0 and α2 > 0 the profile Ψ then satisfies the assumptions
of Theorem 1.1(b).

Let I be the energy corresponding to the quadratic profile Ψ. We claim that the min-
imiser of I is the normalised characteristic function of a non-degenerate ellipsoid. To prove
the claim, we first note that, if the minimiser had a lower dimensional support, then the
support would be in the plane orthogonal to the x3 axis, since the coefficient of x2

3 in the
expression of Ψ is larger than the coefficients of x2

1 and x2
2. Hence it remains to show that

a semi-ellipsoid law supported in the x1x2-plane cannot be a minimiser.
We define a perturbed potential Ψε as in (3.21) and write the system (3.7) for Ψε. We

know that the system has a solution Mε = diag(Aε) with Aε = (Aε1, A
ε
2, A

ε
3) ∈ R3 such

that Aεi = (aεi )
2 > 0, aεi being the semi-axes of the minimising ellipsoid.

In particular, we have that for any ε > 0

0 =

∫
S2

(ω2
1 − ω2

3)Ψ̂ε(ω)

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω) =

∫
S2

(ω2
1 − ω2

3)(Ψ̂(ω) + ε)

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω).

By contradiction, we assume that (aε1, a
ε
2, a

ε
3)→ (a1, a2, 0), as ε→ 0+, with a1 > 0, a2 > 0.

Setting Ai := a2
i , by the Dominated Convergence Theorem we have that∫

S2

(ω2
1 − ω2

3)Ψ̂(ω)

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω)→
∫
S2

(ω2
1 − ω2

3)Ψ̂(ω)

(A1ω2
1 +A2ω2

2)3/2
dH2(ω)

and ∫
S2

ω2
1

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω)→
∫
S2

ω2
1

(A1ω2
1 +A2ω2

2)3/2
dH2(ω).

Since the remaining term

−
∫
S2

εω2
3

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω)

is negative, we conclude that

0 = lim
ε→0+

∫
S2

(ω2
1 − ω2

3)Ψ̂ε(ω)

(Aε1ω
2
1 +Aε2ω

2
2 +Aε3ω

2
3)3/2

dH2(ω) ≤
∫
S2

(ω2
1 − ω2

3)Ψ̂(ω)

(A1ω2
1 +A2ω2

2)3/2
dH2(ω) =

p(t∗)

a3
2

where t∗ := a2
1/a

2
2 and the function p : (0,+∞)→ R is defined as

p(t) :=

∫
S2

(ω2
1 − ω2

3)Ψ̂(ω)

(tω2
1 + ω2

2)3/2
dH2(ω)

for every t > 0. By using spherical coordinates and the explicit expression of Ψ̂ we have
that

p(t) = 2

√
2

π

∫
S2

(ω2
1 − ω2

3)
(
α2ω

2
1 + α1ω

2
2

)
(tω2

1 + ω2
2)3/2

dH2(ω)

= 2

√
2

π

∫ 2π

0

∫ π

0

(sin2 ψ cos2 θ − cos2 ψ)
(
α2 cos2 θ + α1 sin2 θ

)
(t cos2 θ + sin2 θ)3/2

dψ dθ

=
√

2π

∫ 2π

0

α2 cos2 θ + α1 sin2 θ

(t cos2 θ + sin2 θ)3/2
(cos2 θ − 1) dθ < 0.
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Hence p(t) < 0 for any t > 0 and we obtain a contradiction.
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Email address: luca.rondi@unipv.it

(L. Scardia) Department of Mathematics, Heriot-Watt University, United Kingdom
Email address: L.Scardia@hw.ac.uk
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