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3 Dipartimento di Matematica, Università di Milano, via Saldini, 50, 20133 Milano, Italy
4 Department of Mathematics, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom

† This contribution is part of the Special Issue: Variational Models in Elasticity
Guest Editors: Lucia De Luca; Marcello Ponsiglione
Link: https://www.aimspress.com/newsinfo/1369.html

* Correspondence: Email: mariagiovanna.mora@unipv.it.

Abstract: In this paper we use an approach based on the maximum principle to characterise the
minimiser of a family of nonlocal and anisotropic energies Iα defined on probability measures in R2.
The purely nonlocal term in Iα is of convolution type, and is isotropic for α = 0 and anisotropic
otherwise. The cases α = 0 and α = 1 are special: The first corresponds to Coulombic interactions,
and the latter to dislocations. The minimisers of Iα have been characterised by the same authors in
an earlier paper, by exploiting some formal similarities with the Euler equation, and by means of
complex-analysis techniques. We here propose a different approach, that we believe can be applied to
more general energies.
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1. Introduction

We consider the family of nonlocal energies

Iα(µ) =

"
R2×R2

Wα(x − y) dµ(x) dµ(y) +

∫
R2
|x|2 dµ(x), (1.1)
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defined on probability measures µ ∈ P(R2), where the interaction potential Wα is given by

Wα(x) = W0(x) + α
x2

1

|x|2
, W0(x) = − log |x|, (1.2)

x = (x1, x2) ∈ R2, and α ∈ (−1, 1). The case α = 0 is very classical, and has been studied in a variety
of contexts, from random matrices to Coulomb gases, from orthogonal polynomials to Fekete sets in
interpolation theory, and for a variety of confining potentials (see, e.g., [11, 15], and the references
therein). We note that this is a very special case, as it is the only one for which the energy in (1.1) is
isotropic: The potential W0 is indeed radial, while Wα is anisotropic whenever α , 0.

Generally speaking, radiality of the interactions is a key assumption in most of the mathematical
literature on nonlocal energies (see, e.g., [1–6, 10, 17]), and the explicit characterisation, or the
derivation of some geometric properties of energy minimisers, has only been done under this
assumption. These problems are therefore more challenging in the case of anisotropic interactions, as
it is the case of (1.1).

The anisotropic energy (1.1) has been studied in [14] in the case α = 1, which corresponds to
interacting defects in metals, and in [7, 16] for any α ∈ [−1, 1]. The main result in these works is the
characterisation of the minimiser µα of Iα: µα ∈ P(R2) is unique, and for α ∈ (−1, 1) is of the form

µα :=
1
|Ωα|

χΩα
, Ωα =

{
x = (x1, x2) ∈ R2 :

x2
1

1 − α
+

x2
2

1 + α
< 1

}
. (1.3)

More precisely, the minimiser of Iα is the (normalised) characteristic function of an ellipse for α ∈
(−1, 1), and it converges to a singular, one-dimensional measure (the semi-circle law) for α → ±1.
This result has been proved in [7] by means of complex-analysis techniques, and in [16] via a more
direct proof, based on the explicit computation of the potential Wα ∗ µα in R2. An extension to the
n-dimensional case has been proved in [8].

In this paper we propose an alternative proof of the characterisation of the minimiser of Iα, based
on a maximum principle for biharmonic functions. We here explain the main idea behind this new
approach.

Since the energy Iα can be shown to be strictly convex on a class of measures that is relevant for the
minimisation, the (unique) minimiser of Iα is completely characterised by two conditions, called the
Euler-Lagrange conditions. Namely the minimality of the measure µα in (1.3) for Iα is equivalent to

(Wα ∗ µα)(x) +
|x|2

2
= Cα for every x ∈ Ωα, (1.4)

(Wα ∗ µα)(x) +
|x|2

2
≥ Cα for every x ∈ R2, (1.5)

for some constant Cα > 0. Conditions (1.4)–(1.5) essentially say that the function fα defined as fα(x) :=
(Wα ∗ µα)(x) + |x|2

2 is ‘minimal’ on Ωα. So, intuitively, if fα were harmonic outside Ωα and satisfied
the stationarity condition (1.4), then (1.5) would follow from the maximum principle for harmonic
functions applied in (a bounded subset of) R2 \ Ωα, since fα blows up at infinity. The function fα,
however, is not harmonic outside Ωα, and therefore this heuristic argument cannot be applied directly.
It is in fact biharmonic, which is an obstacle in the application of the maximum principle.
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The idea is then to construct an auxiliary function gα, harmonic outside Ωα, and to do so in such a
careful and clever way that the application of the standard maximum principle for harmonic functions
to gα gives, as a welcomed byproduct, the unilateral condition (1.5) for fα. The idea for this
construction is taken from the work [9], where the author formulates several variants of the maximum
principle that are valid for biharmonic functions.

2. Characterisation of the minimiser of Iα via the maximum principle

We recall that, as proved in [14, Section 2] and [7, Proposition 2.1], Iα is strictly convex on the class
of measures with compact support and finite interaction energy for α ∈ [−1, 1], and hence has a unique
minimiser in P(R2). Moreover, the minimiser has compact support and finite energy.

We now characterise the minimiser of the energy, for α ∈ (0, 1). Note that considering only positive
values of α is not restrictive, since changing sign to α corresponds to swapping x1 and x2 (up to a
constant in the energy), due to the zero-homogeneity of the energy. Hence the minimiser of Iᾱ for
ᾱ ∈ (−1, 0) can be obtained from the minimiser of I−ᾱ by means of a rotation of π

2 .

Theorem 2.1. Let 0 ≤ α < 1. The measure

µα :=
1

√
1 − α2π

χΩ(
√

1−α,
√

1+α), (2.1)

where

Ω
(√

1 − α,
√

1 + α
)

:=
{

x = (x1, x2) ∈ R2 :
x2

1

1 − α
+

x2
2

1 + α
< 1

}
,

is the unique minimiser of the functional Iα among probability measures P(R2), and satisfies the Euler-
Lagrange conditions

(Wα ∗ µα)(x) +
|x|2

2
= Cα for every x ∈ Ω

(√
1 − α,

√
1 + α

)
, (2.2)

(Wα ∗ µα)(x) +
|x|2

2
≥ Cα for every x ∈ R2, (2.3)

with

Cα = Iα(µα) −
1
2

∫
R2
|x|2 dµα(x) =

1
2
− log

( √
1 − α +

√
1 + α

2

)
+ α

√
1 − α

√
1 − α +

√
1 + α

.

Remark 2.2. The Euler-Lagrange conditions (2.2)–(2.3) are in general only a necessary condition for
minimality (see [15, Theorem 3.1], [14]), namely any minimiser µ of Iα must satisfy them. Due to
strict convexity of the energy Iα, they are also sufficient in our case. In other words, they are in fact
equivalent to minimality for α ∈ (−1, 1).

Our new proof consists of two main steps. In Section 2.1 we focus on (2.2): We first compute
explicitly the convolution of the potential Wα with the characteristic function of a general ellipse on
points within the ellipse. Then, we use this explicit expression to show that there exists a unique ellipse
for which (2.2) is satisfied. In Section 2.2 we show that the unique ellipse satisfying condition (2.2)
also satisfies (2.3), and consequently is the only minimiser of the energy Iα. The approach we use to
prove that (2.3) is satisfied is based on the maximum principle.
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2.1. The Euler-Lagrange condition (2.2)

We start by fixing some notation. For 0 < a < b we denote with

Ω(a, b) :=
{

x = (x1, x2) ∈ R2 :
x2

1

a2 +
x2

2

b2 < 1
}

the domain enclosed by an ellipse of semi-axes a and b. We also set

µa,b :=
1
πab

χΩ(a,b) (2.4)

for the normalised characteristic function of the ellipse. We observe that, since we focus on the case
α > 0, it is sufficient to consider a < b; the case a > b corresponds to α < 0 and is completely
analogous.

2.1.1. The potential inside an ellipse

In this section we compute the potential (Wα ∗ µa,b)(x), for x ∈ Ω(a, b). We write

(Wα ∗ µa,b)(x) = Φa,b(x) + αΨa,b(x), with Ψa,b(x) := –
∫

Ω(a,b)

(x1 − y1)2

|x − y|2
dy. (2.5)

The explicit expression of Φa,b = W0 ∗ µa,b, namely of the logarithmic potential for any ellipse Ω(a, b),
is well-known in the whole of R2 (see, e.g., [12], [13, Section 159]) and is given by

Φa,b(x) =


−

bx2
1 + ax2

2

ab(a + b)
− log

(a + b
2

)
+

1
2

if x ∈ Ω(a, b),

−ξ − 1
2e−2ξ cos(2η) − log

c
2

if x ∈ R2 \Ω(a, b),

(2.6)

where, for a < b, c =
√

b2 − a2 andx1 = c sinh ξ sin η
x2 = c cosh ξ cos η

with ξ > 0, 0 ≤ η < 2π.

We now focus on the computation of the function Ψa,b defined in (2.5), namely of the convolution of
the anisotropic term of Wα with µa,b. We write

Ψa,b = H ∗ µa,b, with H(x) :=
x2

1

|x|2
.

It is easy to see that, since ∂x1(x1W0) = W0 − H,

∆H = −2∂2
x1

W0 − 2πδ0 (2.7)

in the sense of distributions. Hence, by (2.4), (2.6) and (2.7) we deduce that

∆Ψa,b(x) = −2∂2
x1

Φa,b(x) −
2

ab
=

2(b − a)
ab(a + b)

for x ∈ Ω(a, b), (2.8)
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namely the Laplacian of Ψa,b is constant in Ω(a, b). We now compute ∇Ψa,b on ∂Ω(a, b). The idea is to
derive an overdetermined boundary value problem satisfied by Ψa,b (namely the elliptic equation (2.8)
in Ω(a, b) coupled with the value of the gradient on ∂Ω(a, b)); at that point, if we can guess a solution
of the boundary value problem, by unique continuation, we can then determine the potential Ψa,b in
Ω(a, b), up to a constant.

To this aim, we compute the gradient of Ψa,b on ∂Ω(a, b). Let x ∈ ∂Ω(a, b); integration by parts
gives

∇Ψa,b(x) =
1
πab

∫
Ω(a,b)

∇xH(x − y) dy = −
1
πab

∫
∂Ω(a,b)

H(x − y)ν(y) dH1(y),

where ν is the outward unit normal. By rewriting x = x(ϕ) = (a cosϕ, b sinϕ), for some ϕ ∈ [−π, π),
and by parametrising ∂Ω(a, b) via y = y(θ) = (a cos θ, b sin θ), with θ ∈ [−π, π), we derive

∇Ψa,b(x(ϕ)) = −
1
πab

∫ π

−π

a2(cosϕ − cos θ)2

a2(cosϕ − cos θ)2 + b2(sinϕ − sin θ)2 (b cos θ, a sin θ) dθ. (2.9)

Using the trigonometric identities

cosϕ − cos θ = 2 sin
(
θ − ϕ

2

)
sin

(
θ + ϕ

2

)
sinϕ − sin θ = −2 sin

(
θ − ϕ

2

)
cos

(
θ + ϕ

2

)
in (2.9), we obtain, by means of elementary manipulations,

∇Ψa,b(x(ϕ)) = −
1
πab

∫ π

−π

a2 sin2
(
θ+ϕ

2

)
a2 sin2

(
θ+ϕ

2

)
+ b2 cos2

(
θ+ϕ

2

) (b cos θ, a sin θ) dθ

= −
1
πab

∫ π

−π

a2(1 − cos(θ + ϕ))
a2 + b2 + (b2 − a2) cos(θ + ϕ)

(b cos θ, a sin θ) dθ

= −
1
πab

(b cosϕ,−a sinϕ)
∫ π

−π

a2(1 − cos(θ + ϕ)) cos(θ + ϕ)
a2 + b2 + c2 cos(θ + ϕ)

dθ (2.10)

−
1
πab

(b sinϕ, a cosϕ)
∫ π

−π

a2(1 − cos(θ + ϕ)) sin(θ + ϕ)
a2 + b2 + c2 cos(θ + ϕ)

dθ. (2.11)

To simplify the previous expression, we note for (2.11) that∫ π

−π

a2(1 − cos(θ + ϕ)) sin(θ + ϕ)
a2 + b2 + c2 cos(θ + ϕ)

dθ =

∫ π

−π

a2(1 − cos θ) sin θ
a2 + b2 + c2 cos θ

dθ = 0,

since the integrand in the last integral is an odd function. On the other hand, by [15, Lemma IV.1.15]
one has ∫ π

−π

1 − cos θ
a2 + b2 + c2 cos θ

dθ = 2π
b − a
ac2 ,
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and so the integral in (2.10) reduces to∫ π

−π

a2(1 − cos(θ + ϕ)) cos(θ + ϕ)
a2 + b2 + c2 cos(θ + ϕ)

dθ =

∫ π

−π

a2(1 − cos θ) cos θ
a2 + b2 + c2 cos θ

dθ

=
a2

c2

∫ π

−π

(1 − cos θ) dθ −
a2(a2 + b2)

c2

∫ π

−π

1 − cos θ
a2 + b2 + c2 cos θ

dθ

= 2π
a2

c2 − 2π
a
c4 (b − a)(a2 + b2) = −2π

ab
(a + b)2 .

This leads to the simplified expression for the gradient of Ψa,b on ∂Ω(a, b)

∇Ψa,b(x(ϕ)) =
2

(a + b)2 (b cosϕ,−a sinϕ).

Since
(b cosϕ,−a sinϕ) =

1
ab

(b2x1,−a2x2),

we deduce that
∇Ψa,b(x) =

2
ab(a + b)2 (b2x1,−a2x2) for x ∈ ∂Ω(a, b). (2.12)

Combining (2.8) and (2.12), by unique continuation, we deduce that there exists a constant ca,b ∈ R

such that

Ψa,b(x) =
b2x2

1 − a2x2
2

ab(a + b)2 + ca,b for x ∈ Ω(a, b). (2.13)

We can also compute the constant ca,b in (2.13): indeed,

ca,b = Ψa,b(0) =
1
πab

∫
Ω(a,b)

H(y) dy =
1
π

∫ π

−π

∫ 1

0

a2 cos2 θ

a2 cos2 θ + b2 sin2 θ
ρ dρdθ

=
1

2π

∫ π

−π

a2(1 + cos θ)
a2 + b2 − c2 cos θ

dθ =
a

a + b
,

where in the last equality we applied again [15, Lemma IV.1.15]. In conclusion,

Ψa,b(x) =
b2x2

1 − a2x2
2

ab(a + b)2 +
a

a + b
for x ∈ Ω(a, b). (2.14)

2.1.2. The Euler-Lagrange condition (2.2)

We now show that for every α ∈ (0, 1) there exists a unique pair (a, b) ∈ R2, with 0 < a < b, such
that the potential Wα ∗ µa,b satisfies the first Euler-Lagrange condition, i.e.,

(Wα ∗ µa,b)(x) +
|x|2

2
= Cα(a, b) for every x ∈ Ω(a, b), (2.15)

for some constant Cα(a, b). By (2.6) and (2.14) we have that

(Wα ∗ µa,b)(x) = −
bx2

1 + ax2
2

ab(a + b)
+ α

b2x2
1 − a2x2

2

ab(a + b)2 − log
(a + b

2

)
+

1
2

+ α
a

a + b
(2.16)
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for every x ∈ Ω(a, b). Therefore, Wα ∗ µa,b satisfies (2.15) if and only if
−

1
a(a + b)

+ α
b

a(a + b)2 = −
1
2
,

−
1

b(a + b)
− α

a
b(a + b)2 = −

1
2
.

(2.17)

Multiplying the first equation by a, the second equation by b, and taking the difference yield

c2 = b2 − a2 = 2α. (2.18)

Subtracting the two equations in (2.17) we deduce that

α(a2 + b2) − c2 = 0. (2.19)

It is immediate to see that the unique solution to (2.18)–(2.19), and hence to (2.17), is given by the pair
a =

√
1 − α and b =

√
1 + α. Hence the measure µα defined as in (2.1) is a solution of (2.15), and in

fact of (2.2).

2.2. The Euler-Lagrange condition (2.3)

In this section we show that for every α ∈ (0, 1)

(Wα ∗ µα)(x) +
1
2
|x|2 ≥ Cα for every x ∈ R2 \Ω

(√
1 − α,

√
1 + α

)
, (2.20)

where µα is defined as in (2.1) and, from (2.16),

Cα = − log
( √

1 − α +
√

1 + α

2

)
+

1
2

+ α

√
1 − α

√
1 − α +

√
1 + α

.

Let now α ∈ (0, 1); for simplicity of notation we set

Ωα := Ω
(√

1 − α,
√

1 + α
)

and
fα(x) := (Wα ∗ µα)(x) +

1
2
|x|2 for every x ∈ R2. (2.21)

It is easy to see that fα ∈ C1(R2) and fα ∈ C∞
(
R2 \ Ωα

)
. We also recall that in Section 2.1 we have

proved that
fα(x) = Cα for every x ∈ Ωα. (2.22)

Moreover, by (2.7), we have that

∆ fα = ∆(W0 ∗ µα) + α∆(H ∗ µα) + 2 = −2α∂2
x1

(W0 ∗ µα) + 2 in R2 \Ωα, (2.23)

hence,
∆2 fα = 0 in R2 \Ωα. (2.24)
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Let now x0 ∈ R2 \Ωα. We write x0 as x0 = y0 + tν, where y0 ∈ ∂Ωα, t > 0, and ν denotes the external
unit normal to ∂Ωα at y0. In view of (2.22), the second Euler-Lagrange condition (2.20) is proved if we
show that

∂ν fα(x0) ≥ 0. (2.25)

We prove (2.25) by means of a subtle use of the maximum principle applied to an auxiliary, harmonic
function, see [9, Theorem 4]. Let R > 0 be a large enough parameter that will be chosen later, such
that x0 ∈ BR(0) \Ωα. We consider the auxiliary function gα : BR(0) \Ωα → R defined by

gα(x) := ∂ν fα(x) −
1
2

(x − x0) · ν∆ fα(x) (2.26)

for every x ∈ BR(0) \Ωα. From (2.24) it follows that

∆gα = ∆(∂ν fα) −
1
2

(x − x0) · ν∆2 fα − ν · ∇(∆ fα) = 0 in BR(0) \Ωα,

in other words, gα is harmonic in BR(0) \Ωα. Therefore, by the maximum principle we deduce that

gα(x0) ≥ min{gα(x) : x ∈ ∂BR(0) ∪ ∂Ωα}. (2.27)

Note that the value of gα on ∂Ωα is intended as a limit from R2 \Ωα.
We claim that the function in the right-hand side of (2.27) is nonnegative for large enough R. This

claim clearly implies (2.25), since gα(x0) = ∂ν fα(x0).
To show that gα is nonnegative on ∂BR(0), we start by rewriting it more explicitly, by using the

definition (2.21) of fα, as

gα(x) = x0 · ν + ∂ν(Wα ∗ µα)(x) −
1
2

(x − x0) · ν∆(Wα ∗ µα)(x). (2.28)

Using the fact that |∇Wα(x)| ≤ (1 + α)/|x| and |∆Wα(x)| ≤ 2α/|x|2 for every x , 0, one can easily check
that

lim
|x|→+∞

∂ν(Wα ∗ µα)(x) = lim
|x|→+∞

(x − x0) · ν∆(Wα ∗ µα)(x) = 0.

From (2.28) we immediately conclude that

lim
|x|→+∞

gα(x) = x0 · ν > 0,

which implies that for R large enough

min{gα(x) : x ∈ ∂BR(0)} > 0.

It remains to show that min{gα(x) : x ∈ ∂Ωα} ≥ 0. To see this note that, since fα ∈ C1(R2) and satisfies
(2.22), we have that ∂ν fα(x) = 0 for every x ∈ ∂Ωα. Hence, from the definition (2.26) of gα, we have
that

gα(x) = −
1
2

(x − x0) · ν∆ fα(x) for x ∈ ∂Ωα.

Moreover, (x − x0) · ν ≤ 0 for every x ∈ ∂Ωα, by the convexity of Ωα. Therefore,

gα ≥ 0 on ∂Ωα if and only if ∆ fα ≥ 0 on ∂Ωα.
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By (2.23) it remains to show that

α lim
x→∂Ωα

x∈R2\Ωα

∂2
x1

(W0 ∗ µα)(x) ≤ 1. (2.29)

To prove (2.29) we use the expression (2.6) of the logarithmic potential of the ellipse Ωα for points

x ∈ R2 \ Ωα. By symmetry it is enough to work in the first quadrant, where it is convenient to use an
alternative set of coordinates, namelyz = sinh ξ

ρ = sin η
with ξ > 0, 0 ≤ η ≤

π

2
,

which are then related to the Cartesian coordinates by the transformationx1 = czρ

x2 = c
√

(1 + z2)(1 − ρ2)
with z > 0, 0 ≤ ρ ≤ 1.

Note that, in the (z, ρ) coordinates

R2 \Ωα =

{
z ≥

a
c

}
,

and the logarithmic potential in (2.6) outside Ωα, in the first quadrant, becomes

(W0 ∗ µα)(x) = − log
(
z +

√
z2 + 1

)
−

1
2

1 − 2ρ2

(z +
√

z2 + 1)2
− log

c
2
,

for 0 ≤ ρ ≤ 1 and z ≥ a
c . Now we recall that the gradient of the (z, ρ)-coordinates with respect to the

Cartesian coordinates is given by the following formulas:

∇ρ(x) =
1

c(z2 + ρ2)

(
z(1 − ρ2),−ρ

√
(1 + z2)(1 − ρ2)

)
,

∇z(x) =
1

c(z2 + ρ2)

(
ρ(1 + z2), z

√
(1 + z2)(1 − ρ2)

)
.

Then, since

∂z(W0 ∗ µα) =
−2

(
z2 + ρ2 + z

√
z2 + 1

)
(z +

√
z2 + 1)2

√
z2 + 1

,

∂ρ(W0 ∗ µα) =
2ρ

(z +
√

z2 + 1)2
,

we have that

∂x1(W0 ∗ µα)(x) = −
2
c

(
ρ

z +
√

z2 + 1

)
.

After similar computations, we obtain

∂2
x1

(W0 ∗ µα)(x) = −
2
c
∂x1

(
ρ

z +
√

z2 + 1

)
=

2
c2

(
1 −

z
√

z2 + 1
z2 + ρ2

)
.
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Since the expression at the right-hand side achieves its maximum value at ρ = 1, we have that for
x ∈ R2 \Ωα

∂2
x1

(W0 ∗ µα)(x) ≤
2
c2

(
1 −

z
√

z2 + 1

)
. (2.30)

On the other hand,
2α
c2 lim

z→ a
c

+

(
1 −

z
√

z2 + 1

)
=

2α
c2

(
1 −

a
b

)
≤ 1 (2.31)

for a =
√

1 − α and b =
√

1 + α (and c2 = 2α). Inequalities (2.30) and (2.31) prove the claim (2.29).

Remark 2.3 (The higher-dimensional case). For the case n ≥ 3, one could in principle try to adapt the
maximum-principle approach adopted in this section to prove (2.3), where now

Wα(x) = W0(x) + α
x2

1

|x|n
, W0(x) =

1
|x|n−2 . (2.32)

Let α ≥ 0. Proceeding as in Section 2.2 one can define, for n ≥ 3, an auxiliary function gα : BR(0) \
Ωα → R as

gα(x) := ∂ν fα(x) −
1
2

(x − x0) · ν∆ fα(x) −
(
1 −

n
2

)
(x − x0) · ν. (2.33)

It is easy to see that gα is harmonic in BR(0) \Ωα and that, for R large enough

min{gα(x) : x ∈ ∂BR(0)} > 0.

To complete the maximum-principle argument, in analogy with the two-dimensional case, it would
remain to show that min{gα(x) : x ∈ ∂Ωα} ≥ 0. Similarly as in (2.29), this condition can be equivalently
rewritten as

α

n − 2
lim

x→∂Ωα

x∈R2\Ωα

∂2
x1

(W0 ∗ µα)(x) ≤ 1. (2.34)

Using the explicit expression of W0 ∗ µα outside Ωa,b (see, e.g., [8, Section 3.2.2]), proving (2.34) is
equivalent (modulo lengthy computations) to showing that

nα
2

(
2

abn−1 −

∫ ∞

a2

dσ

σ3/2(σ + c2)
n−1

2

)
≤ 1. (2.35)

It is however not so immediate to verify whether (2.35) holds true, in particular since in higher
dimension the first Euler condition does not determine the semi-axes a and b as explicit functions of
α. Moreover, condition (2.34) is not a necessary condition for (2.3), it is only sufficient, and so is
(2.35). For these reasons we developed an alternative approach for the higher-dimensional case
(see [8]).
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