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Abstract

Analytic capacity is associated with the Cauchy kernel 1/z and the space

L∞. One has likewise capacities associated with the real and imaginary parts

of the Cauchy kernel and L∞. Striking results of Tolsa and a simple remark

show that these three capacities are comparable. We present an extension of

this fact to Rn , n ≥ 3, involving the vector valued Riesz kernel of homogeneity

−1 and n− 1 of its components.

1 Introduction

The analytic capacity of a compact subset E of the plane is defined by

γ(E) = sup |f ′(∞)|

where the supremum is taken over those analytic functions on C \ E such that
|f(z)| ≤ 1, z ∈ C \ E. Sets of zero analytic capacity are exactly the removable sets
for bounded analytic functions, as it is easily seen, and thus γ(E) quantifies the
non-removability of E. Early work on analytic capacity used basically one complex
variable methods (see, e.g., [A], [Ga1] and [Vi]). Analytic capacity may be written
as

γ(E) = sup |〈T, 1〉| (1)

where the supremum is taken over all complex distributions T supported on E
whose Cauchy potential f = 1/z ∗ T is in the closed unit ball of L∞(C ). The

transition from f to T and viceversa is performed through the formulae T =
1

π
∂f

and f = 1/z ∗ T .
Expression (1) shows that analytic capacity is formally an analogue of classical

logarithmic capacity, in which the logarithmic kernel has been replaced by the com-
plex kernel 1/z. This suggests that real variables techniques could help in studying
analytic capacity, in spite of the fact that the Cauchy kernel is complex. In fact,
significant progress in the understanding of analytic capacity was achieved when real
variables methods, in particular the Calderón-Zygmund theory of the Cauchy singu-
lar integral, were systematically used ([C], [Da], [MaMeV], [MTV], [T2] and [T4]). A
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striking result of Tolsa [T2] asserts that analytic capacity is comparable to a smaller
quantity, called positive analytic capacity, which is defined on compact sets E by

γ+(E) = supµ(E)

where the supremum is taken over those positive measures supported on E whose
Cauchy potential 1/z ∗ µ is in the closed unit ball of L∞(C ). In other words, there
exists a positive constant C such that

γ(E) ≤ C γ+(E), (2)

for each compact subset E of the plane. This implies, in particular, that analytic ca-
pacity is comparable to planar Lipschitz harmonic capacity. The Lipschitz harmonic
capacity of a compact subset of Rn is defined by

κ(E) = sup |〈T, 1〉| (3)

where the supremum is taken over those real distributions T supported on E such

that the vector field
x

|x|n
∗ T is in the unit ball of L∞(Rn ,Rn). The terminology

stems from the fact that κ(E) vanishes if and only if E is removable for harmonic
functions on Rn \ E satisfying a global Lipschitz condition. Notice that the fact
that analytic capacity and Lipschitz harmonic capacity in the plane are comparable
cannot be deduced just by inspection from (1) and (3). The reason is that the
distributions involved in the supremum in (1) are complex.

For a compact subset E of Rn and 1 ≤ i ≤ n set

κi(E) = sup |〈T, 1〉| (4)

where the supremum is taken over those real distributions T such that the scalar
signed i-th Riesz potential

xi
|x|2

∗ T (5)

is in the unit ball of L∞(Rn).
In the plane, in spite of what has been said before, it is precisely a simple complex

analytic argument that provides a complete characterization of the capacities κ1 and
κ2. For some positive constant C and for each compact subset E of the plane, we
have

C−1 κi(E) ≤ γ(E) ≤ C κi(E), i = 1, 2. (6)

Indeed, if T is a real distribution supported on E such that
x1
|x|2

∗ T is in the unit ball

of L∞(R2), then
1

z
∗ T is an analytic function on C \ E whose real part is bounded

in absolute value by 1. Mapping conformally the strip {z ∈ C : |Re(z)| ≤ 1}
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onto the unit disk we get a function f , bounded and analytic on C \ E, such that
|〈T, 1〉| ≤ C |f ′(∞)| ([G]). Hence C−1 κi(E) ≤ γ(E). The second inequality in (6)
is an immediate consequence of the striking inequality (2), because the real part of
the Cauchy potential of a positive measure µ is precisely x1/|x|

2 ∗ µ. Notice that
this is not the case if µ is a complex measure.

Although there are obvious formal similarities between the definitions of the set
functions in (1) and (4), very little is known about κi for n ≥ 3. The reader will find
in section 6.3 a proof of the elementary fact that κi(E) is finite for each compact
subset E of Rn . The reason why κi is difficult to understand in higher dimensions is
that boundedness of the potential (5) does not provide any linear growth condition
on T in dimensions n ≥ 2 (then, even in dimension 2). Concretely, it is not true
that boundedness of (5) implies that for each cube Q one has

|〈T, ϕQ〉| ≤ C l(Q), (7)

for each test function ϕQ ∈ C∞
0 (Q) satisfying ‖∂sϕQ‖∞ ≤ l(Q)−|s| for all multi-

indexes s of length not greater than some positive integerN . Here l(Q) stands for the
side length of Q and we are adopting the standard notation related to multi-indexes,
that is, s = (s1, . . . , sn), where each coordinate sj is a non-negative integer and
|s| = s1+ · · ·+ sn is the length of s. The reader will find in section 5 three exemples
of such phenomenon. The fact that this examples exist also in dimension 2, makes
the first inequality in (6) very surprising. Indeed, the natural conjecture that the
capacities κi, 1 ≤ i ≤ n, n ≥ 3 are semiadditive seems presently completely out of
reach. The reason is that one should develop real variables techniques which replace
the simple minded but extremely powerful complex variable argument described
above.

On the other hand, recall that if T is a compactly supported distribution with
bounded Cauchy potential then

|〈T, ϕQ〉| =

∣

∣

∣

∣

〈

T,
1

πz
∗ ∂ϕQ

〉∣

∣

∣

∣

=

∣

∣

∣

∣

〈

1

πz
∗ T, ∂ϕQ

〉∣

∣

∣

∣

≤
1

π

∥

∥

∥

∥

1

z
∗ T

∥

∥

∥

∥

∞

‖∂ϕQ‖L1(Q) ≤
1

π

∥

∥

∥

∥

1

z
∗ T

∥

∥

∥

∥

∞

l(Q),

(8)

whenever ϕQ is normalized by ‖∂ϕQ‖L1(Q) ≤ l(Q). The preceding argument ex-
tends to Rn for even dimensions n = 2N as follows. A standard Fourier transform
computation shows that, for some constant cn and each test function ϕ, one has

ϕ = cn

n
∑

j=1

xj
|x|2

∗ ∂j(△
N−1)ϕ ≡ cn

x

|x|2
∗ ∇(△N−1)ϕ. (9)

Let T be a compactly supported real distribution with bounded vector valued Riesz
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potential x/|x|2 ∗ T and let ϕQ a function in Cn−1(Q). Then

|〈T, ϕQ〉| =

∣

∣

∣

∣

〈

T, cn
x

|x|2
∗ ∇(△N−1)ϕQ

〉∣

∣

∣

∣

=

∣

∣

∣

∣

〈

cn
x

|x|2
∗ T,∇(△N−1)ϕQ

〉∣

∣

∣

∣

≤ C ‖
x

|x|2
∗ T‖∞ ‖∇n−1ϕQ‖L1(Q) ≤ C ‖

x

|x|2
∗ T‖∞ l(Q),

(10)

provided ϕQ is normalized by ‖∇n−1ϕQ‖L1(Q) ≤ l(Q). Here we are adopting the
standard convention of denoting by ∇mϕ the vector (∂sϕ)|s|=m of all m-th order
partial derivatives of ϕ and by |∇mϕ| its Euclidean norm.

For odd dimensions one has to require a stronger normalization condition. The
first remark is that (9) can be rewritten as

ϕ = cn
x

|x|2
∗ ∇(−∆)(n−2)/2ϕ, (11)

which makes sense for all dimensions. Since

(−∆)
1

2ϕ = dn

n
∑

j=1

Rj∂jϕ

for some dimensional constant dn, the Rj being the Riesz transforms (the Calderón-
Zygmund operators with Fourier multiplier ξj/|ξ|), we have

∇(−∆)(n−2)/2ϕ = cn

(

∂j

(

(
n
∑

k=1

Rk∂k)
n−2ϕ

))n

j=1

.

Each component of the vector in the right hand side above is a sum of terms of the
form T ∂sϕ, where s is a multi-index of length n − 1 and T is a product of n − 2
Riesz transforms. Hence, denoting by ‖ · ‖H1(Rn) the norm of the real Hardy space
H1(Rn), we get

‖∇(−∆)(n−2)/2ϕ‖L1(Rn) ≤ C ‖∇n−1ϕ‖H1(Rn), (12)

where we have set
‖∇n−1ϕ‖H1(Rn) =

∑

|s|=n−1

‖∂sϕ‖H1(Rn).

Recall that a function f ∈ H1(Rn) if and only if f ∈ L1(Rn) and all its Riesz
transforms are also in L1(Rn). The norm of f in H1(Rn) is defined as

‖f‖H1(Rn) = ‖f‖L1(Rn) +
n
∑

j=1

‖Rj(f)‖L1(Rn).

A basic result is that the Riesz transforms send continuously H1(Rn) into itself, and
this is what we used in (12).
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For even dimensions, as we have seen before, the Riesz transforms disappear
from the reproducing formula (11) and we get the better estimate

‖∇(−∆)(n−2)/2ϕ‖L1(Rn) ≤ C ‖∇n−1ϕ‖L1(Rn).

This accounts for the difference between even and odd dimensions.
Let T be a compactly supported real distribution with bounded vector valued

Riesz potential x/|x|2 ∗ T and let ϕQ a function in Cn−1(Q). Therefore

|〈T, ϕQ〉| =

∣

∣

∣

∣

〈

T, cn
x

|x|2
∗ ∇(−∆)(n−2)/2ϕQ

〉∣

∣

∣

∣

=

∣

∣

∣

∣

〈

cn
x

|x|2
∗ T,∇(−∆)(n−2)/2ϕQ

〉∣

∣

∣

∣

≤ C ‖
x

|x|2
∗ T‖∞ ‖∇n−1ϕQ‖H1(Rn) ≤ C ‖

x

|x|2
∗ T‖∞ l(Q),

(13)

provided ϕQ is normalized by ‖∇n−1ϕQ‖H1(Rn) ≤ l(Q).
We say that a distribution T has linear growth if

G(T ) = sup
ϕQ

|〈T, ϕQ〉|

l(Q)
<∞, (14)

where the supremum is taken over all ϕQ ∈ C∞
0 (Q) satisfying the normalization

inequalities
‖∂sϕQ‖H1(Rn) ≤ l(Q), |s| = n− 1. (15)

Notice that no distinction has been made between even or odd dimensions in
the preceding definition and that we have chosen the stronger Hardy space normal-
ization. This is due to the fact that, since we will assume in our main result that
the distributions we deal with satisfy the linear growth condition, the stronger the
normalization we require the weaker the assumption we get.

The normalization in the H1 norm is the right condition to impose, as will
become clear later on. For positive Radon measures µ in Rn the preceding notion
of linear growth is equivalent to the usual one (see (20) below). In subsection 6.5
complete details on this fact are provided.

For a compact set E in Rn we define g(E) as the set of all distributions supported
on E having linear growth with constant G(T ) at most 1.

Our main result is a higher dimensional version of (6). For a compact E ⊂ Rn

set
Γ(E) = sup {|〈T, 1〉|}

where the supremum is taken over those real distributions T supported on E such

that the vector field
x

|x|n
∗ T is in the unit ball of L∞(Rn ,Rn). Hence Γ(E) = κ(E)

for n = 2. Finally, for 1 ≤ k ≤ n, set

Γk̂(E) = sup

{

|〈T, 1〉| : T ∈ g(E) and

∥

∥

∥

∥

xi
|x|2

∗ T

∥

∥

∥

∥

∞

≤ 1, 1 ≤ i ≤ n, i 6= k

}

.
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Thus we require the boundedness of n− 1 components of the vector valued poten-
tial x/|x|2 ∗ T with Riesz kernel of homogeneity −1.

The requirement of the growth condition in the preceding definition is vital in
obtaining the localization result (24). In subsection 6.4 we show that a growth
condition is necessary for a localization estimate in L∞.
Our extension of (6) to Rn is the following.

Theorem. There exists a positive constant C such that for each compact set E ⊂ Rn

and 1 ≤ k ≤ n
C−1 Γk̂(E) ≤ Γ(E) ≤ C Γk̂(E). (16)

The second inequality in (16) follows immediately from the definitions of Γ
and Γk̂, because any real distribution T with bounded vector valued Riesz potential
has linear growth as shown in (10) and (13).

The paper is organized as follows. In section 2 we present a sketch of the proof
of the Theorem. It becomes clear that the proof depends on two facts: the close
relationship between the quantities one obtains after symmetrization of the ker-
nels x/|x|2 and xi/|x|

2 and a localization L∞ estimate for the scalar kernels xi/|x|
2.

In section 3 we deal with the symmetrization issue and in section 4 with the local-
ization estimate. In section 5 we discuss three examples showing that boundedness
of (n − 1)-scalar signed Riesz potentials xi/|x|

2 ∗ T does not imply a linear growth
estimate on T . In section 6 we present various additional results and examples. We
show that κi(E) is finite for each compact E. We present counter-examples to two
natural inequalities. The first shows that the obvious extension of the Theorem to
the vector valued Riesz kernels x/|x|1+α and scalar kernels xi/|x|

1+α of homogeneity
α, 0 < α < 1, fails. The second counter-example shows that the obvious exten-
sion of (6) to kernels of homogeneity −d, where d is an integer greater than 1, also
fails. Finally we point out that a growth condition is necessary to have localization
inequalities in L∞.

Our notation and terminology are standard. For instance, Cm
0 (E), 0 ≤ m ≤ ∞,

denotes the set of all functions with compact support contained in the set E and
with continuous partial derivatives up to order m. Cubes will always be supposed
to have sides parallel to the coordinate axis, l(Q) is the side length of the cube Q
and |Q| = l(Q)n its volume. A good reference for the theory of the real Hardy space
H1(Rn) is [St2, Chapters 3 and 4].

We remind the reader that the convolution of two distributions T and S is well
defined if T has compact support. In this case the action of T ∗ S on the test
function ϕ is

〈T ∗ S, ϕ〉 = 〈T, S ∗ ϕ〉,

which makes sense because S ∗ ϕ is an infinitely differentiable function on Rn .
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2 Sketch of the proof of the Theorem

As we remarked before, one only has to prove that

Γk̂(E) ≤ C Γ(E). (17)

Clearly Γ(E) is larger than or equal to

Γ+(E) = sup µ(E) (18)

where the supremum is taken over those positive measures µ supported on E whose
vector valued Riesz potential x/|x|2 ∗ µ lies in the closed unit ball of L∞(Rn ,Rn).
Now, Γ+(E) is comparable to yet another quantity Γop(E), that is, for some positive
constant C one has

C−1 Γop(E) ≤ Γ+(E) ≤ C Γop(E), (19)

for each compact set E ⊂ Rn (see [T1]). Before giving the definition of Γop(E) we
need to introduce the Riesz transform with respect to an underlying positive Radon
measure µ satisfying the linear growth condition

µ(B(x, r)) ≤ C r, x ∈ Rn , r ≥ 0. (20)

Given ǫ > 0 we define the truncated Riesz transform at level ǫ as

Rǫ(f µ)(x) =

∫

|y−x|>ǫ

x− y

|x− y|2
f(y) dµ(y), x ∈ Rn , (21)

for f ∈ L2(µ). The growth condition on µ insures that each Rǫ is a bounded operator
on L2(µ) with operator norm ‖Rǫ‖L2(µ) possibly depending on ǫ. We say that the
Riesz transform is bounded on L2(µ) when

‖R‖L2(µ) = sup
ǫ>0

‖Rǫ‖L2(µ) <∞,

or, in other words, when the truncated Riesz transforms are uniformly bounded
on L2(µ). Call L(E) the set of positive Radon measures supported on E which
satisfy (20) with C = 1 . One defines Γop(E) by

Γop(E) = sup{µ(E) : µ ∈ L(E) and ‖R‖L2(µ) ≤ 1}.

From the first inequality in (19) we get that, for some constant C and all compact
sets E,

Γop(E) ≤ C Γ(E).

We remind the reader that the first inequality in (19) depends on a simple but inge-
nious duality argument due to Davie and Oksendal (see [DO, p.139], [Ch, Theorem
23, p.107] and [V3, Lemma 4.2]). To prove (17) we have to estimate Γk̂(E) by a
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constant times Γop(E). The natural way to perform that is to introduce the quantity
Γk̂,op(E) and try the two estimates

Γk̂(E) ≤ C Γk̂,op(E) (22)

and
Γk̂,op(E) ≤ C Γop(E). (23)

We define the truncated scalar Riesz transform Ri
ε(f µ)(x) associated with the

i-th coordinate as in (21) with the vector valued Riesz kernel replaced by the scalar

Riesz kernel
xi − yi
|x− y|2

. We also set

‖Ri‖L2(µ) = sup
ǫ>0

‖Ri
ε‖L2(µ),

and

Γk̂,op(E) = sup{µ(E) : µ ∈ L(E) and ‖Ri‖L2(µ) ≤ 1, 1 ≤ i ≤ n, i 6= k}.

One proves (23) by checking that symmetrization of a scalar Riesz kernel is
controlled by the symmetrization of the scalar Riesz kernels associated with all
other variables. This result was known to Stephen Semmes many years ago [S].
Here the fact that we are dealing with kernels of homogeneity −1 plays a key role,
because, as it is well-known, they enjoy a special positivity property which is missing
in general. See section 3 for complete details. For other homogeneities, either the
corresponding statements are false or open (see section 6).

The proof of (22) depends on Tolsa’s approach to the proof of (2), which extends
without any significant change to the higher dimensional setting to give

Γ(E) ≤ C Γ+(E).

The main technical point missing in our setting is a localization result for scalar
Riesz potentials. This turns out to be a delicate issue, which we deal with in
section 4. Specifically, we prove that there exists a positive constant C such that,
for each compactly supported distribution T and for each coordinate i, we have

∥

∥

∥

∥

xi
|x|2

∗ ϕQT

∥

∥

∥

∥

∞

≤ C

(∥

∥

∥

∥

xi
|x|2

∗ T

∥

∥

∥

∥

∞

+G(T )

)

(24)

for each cube Q and each ϕQ ∈ C∞
0 (Q) satisfying ‖∂sϕQ‖∞ ≤ l(Q)−|s|, 0 ≤ |s| ≤

n− 1.
This improves significantly a previous localization result in [MPrVe], which, in

particular, yields
∥

∥

∥

∥

x

|x|2
∗ ϕQT

∥

∥

∥

∥

∞

≤ C

∥

∥

∥

∥

x

|x|2
∗ T

∥

∥

∥

∥

∞

, (25)
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for ϕQ as above. Inequality (24) implies (25) because boudedness of the vector
valued potential x/|x|2 ∗ T provides a growth condition on T . Indeed one has (see
Lemma 3.2 in [Pr1] or (10) and (13))

G(T ) ≤ C

∥

∥

∥

∥

x

|x|2
∗ T

∥

∥

∥

∥

∞

.

Once (24) is at our disposition Tolsa’s machinery applies straightforwardly as
was already explained in [MPrVe, Section 2.2]. However we will again describe the
main steps in the proof of inequality (22) at the end of section 4.

3 Proof of Γk̂,op(E) ≤ C Γop(E)

The symmetrization process for the Cauchy kernel introduced in [Me] has been
succesfully applied to many problems of analytic capacity and L2 boundedness of
the Cauchy integral operator (see [MeV], [MaMeV] and the book [P], for example)
and also to problems concerning the capacities, γα, 0 < α < 1, (which are related
to the vector valued Riesz kernels x/|x|1+α) and the L2 boundedness of the α-Riesz
transforms (see [Pr1], [MPrVe], [Pr2] and [Pr3]). Given 3 distinct points in the
plane, z1, z2 and z3, one finds out, by an elementary computation that

c(z1, z2, z3)
2 =

∑

σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(26)

where the sum is taken over the permutations of the set {1, 2, 3} and c(z1, z2, z3)
is Menger curvature, that is, the inverse of the radius of the circle through z1, z2
and z3. In particular (26) shows that the sum on the right hand side is a non-negative
quantity.

In Rn and for 1 ≤ i ≤ n the quantity

∑

σ

xiσ(2) − xiσ(1)
|xσ(2) − xσ(1)|2

xiσ(3) − xiσ(1)
|xσ(3) − xσ(1)|2

(27)

where the sum is taken over the permutations of the set {1, 2, 3}, is the obvious ana-
logue of the right hand side of (26) for the i-th coordinate of the Riesz kernel x/|x|2.
Notice that (27) is exactly

2 pi(x1, x2, x3),

where pi(x1, x2, x3) is defined as the sum in (27) taken only on the three permuta-
tions (1, 2, 3), (3, 1, 2) and (2, 1, 3).

In Lemma 1, we will show that, given three distinct points x1, x2, x3 ∈ Rn , the
quantity pi(x1, x2, x3), 1 ≤ i ≤ n, is also non-negative. We will use this remarkable
fact to study the L2 boundedness of the operators associated with the scalar Riesz
kernels xi/|x|

2.
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The relationship between the quantity pi(x1, x2, x3), 1 ≤ i ≤ n, and the L2 esti-
mates of the operator with kernel xi/|x|

2 is as follows. Take a positive finite Radon
measure µ in Rn with linear growth. Given ε > 0 consider the truncated scalar
Riesz transform Ri

ε(µ) of µ associated with the kernel xi/|x|
2, as in section 2. Then

we have (see in [MeV] the argument for the Cauchy integral operator)

∣

∣

∣

∣

∫

|Ri
ε(µ)(x)|

2 dµ(x)−
1

3
pi,ε(µ)

∣

∣

∣

∣

≤ C‖µ‖, (28)

C being a positive constant depending only on n, and

pi,ε(µ) =

∫∫∫

Sε

pi(x, y, z) dµ(x) dµ(y) dµ(z),

with
Sε = {(x, y, z) : |x− y| > ε, |x− z| > ε and |y − z| > ε}.

Lemma 1. For 1 ≤ i ≤ n, and any three distinct points x1, x2, x3 ∈ Rn we have

pi(x1, x2, x3) ≥ 0.

Moreover,

1. If pi(x1, x2, x3) = 0 for n − 1 values of i ∈ {1, 2, . . . , n}, then x1, x2, x3 are

aligned.

2. If the three points x1, x2, x3 are aligned, then pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n.

Proof. Write a = x2 − x1 and b = x3 − x2. Then

pi(x1, x2, x3) =
ai(ai + bi)|b|

2 − biai|a+ b|2 + bi(ai + bi)|a|
2

|a|2|b|2|a+ b|2

=
aibi

(

−2
∑n

j=1 ajbj

)

+
∑n

j=1 a
2
i b

2
j + b2i a

2
j

|a|2|b|2|a+ b|2

=

∑n
j=1(aibj − biaj)

2

|a|2|b|2|a+ b|2
=

∑

j:j 6=i(aibj − biaj)
2

|a|2|b|2|a+ b|2
≥ 0.

Therefore, given three pairwise distinct points x1, x2, x3, the permutations
pi(x1, x2, x3) vanish if and only if aibj = biaj for all 1 ≤ j ≤ n.

Without loss of generality, assume that pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n−1. Then
the following n(n− 1)/2 conditions hold

aibj = ajbi 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n.
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These conditions imply that a = λb, for some λ ∈ R, which means the three
points x1, x2, x3 lie on the same line.

Assume now that the three points are aligned. Without loss of generality set
x1 = 0, x2 = y and x3 = λy for some λ > 0, and y ∈ Rn . Then for i, j ∈ {1, 2, . . . , n},
we have

aibj = yi(λ− 1)yj = (λ− 1)yiyj = biaj,

hence pi(x1, x2, x3) = 0 for 1 ≤ i ≤ n.

If we are in the plane, then Menger curvature can be written as

c(x1, x2, x3) =
4A

|x1 − x2||x1 − x3||x3 − x2|
,

where A denotes the area of the triangle determined by the points x1, x2, x3. A
consequence of Lemma 1 and its proof is the following.

Corollary 2. Given three different points x1, x2, x3 ∈ R2 , we have

p1(x1, x2, x3) = p2(x1, x2, x3) =
1

4
c(x1, x2, x3)

2.

Hence, the quantities p1(x1, x2, x3) and p2(x1, x2, x3) are non-negative, and vanish if

and only if x1, x2, x3 are aligned.

In the plane the singular Cauchy transform C with respect to the underlying
measure µ may be written as C(fµ) = R1(fµ) − iR2(fµ). By Corollary 2 and
the T (1)-Theorem , we see that C is bounded on L2(µ) if and only if one of its real
components, no matter which one, is bounded on L2(µ). We state this, for emphasis,
as a corollary.

Corollary 3. If µ is a compactly supported positive measure in the plane having

linear growth, the Cauchy transform of µ is bounded on L2(µ) if and only if Ri is

bounded on L2(µ) for one i ∈ {1, 2}.

For a positive measure µ with linear growth we have, by (28),

‖Rε(µ)‖
2
L2(µ) =

n
∑

j=1

∫

|Rj
ε(µ)(x)|

2 dµ(x)

=
1

3

n
∑

j=1

∫∫∫

Sε

pj(x, y, z) dµ(x) dµ(y) dµ(z) +O(‖µ‖)

≤
2

3

n
∑

j=1
j 6=i

∫∫∫

Sε

pj(x, y, z) dµ(x) dµ(y) dµ(z) +O(‖µ‖),
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where the last inequality follows easily from the formula

pi(x1, x2, x3) =

∑

j 6=i

(

(xi2 − xi1)(x
j
3 − xj2)− (xj2 − xj1)(x

i
3 − xi2)

)2

|x2 − x1|2|x3 − x2|2|x3 − x1|2
, 1 ≤ i ≤ n.

The above estimate can be localized replacing µ by χBµ for each ball B. Therefore,
appealing to the T (1)-Theorem for non necessarily doubling measures [NTV1], if
n − 1 components Rj are bounded on L2(µ) (no matter which n− 1 components),
then the whole vector valued operator R is bounded on L2(µ).

Theorem 4. Let µ be a non-negative measure with compact support in Rn and linear

growth. Then the vector valued Riesz operator R associated with the kernel x/|x|2

is bounded on L2(µ) provided any set of n− 1 components Rj of R are bounded on

L2(µ).

The inequality (23) is an immediate consequence of Theorem 4.

4 Proof of Γk̂(E) ≤ C Γk̂,op(E)

The proof of the inequality Γk̂(E) ≤ C Γk̂,op(E) is based in two ingredients, the
localization of scalar Riesz potentials and the exterior regularity of Γk̂, which we
discuss below.

4.1 Localization of scalar Riesz potentials

When analyzing the argument for the proof of (2) (see Theorem 1.1 in [T2]) one
realizes that one of the technical tools used is the fact that the Cauchy kernel 1/z
localizes in the uniform norm. By this we mean that if T is a compactly supported
distribution such that 1/z ∗ T is a bounded measurable function, then 1/z ∗ (ϕT )
is also bounded measurable for each compactly supported C1 function ϕ. This is
an old result, which is simple to prove because 1/z is related to the differential
operator ∂ (see [Ga1, Chapter V]). The same localization result can be proved
easily in any dimension for the kernel x/|x|n, which is, modulo a multiplicative
constant, the gradient of the fundamental solution of the Laplacian. Again the
proof is reasonably straightforward because the kernel is related to a differential
operator (see [Pa] and [V1]).

In [MPrVe, Lemma 3.1] we were concerned with the localization of the vector
valued α-Riesz kernel x/|x|1+α, 0 < α < n. For general values of α there is no differ-
ential operator in the background and consequently the corresponding localization
result becomes far from obvious (see Lemma 3.1 in [MPrVe]).

We now state the new localization lemma we need.

12



Lemma 5. Let T be a compactly supported distribution in Rn , with linear growth,

such that (xi/|x|
2) ∗ T is in L∞(Rn) for some i, 1 ≤ i ≤ n. Let Q be a cube and

assume that ϕQ ∈ C∞
0 (Q) satisfies ‖∂sϕQ‖∞ ≤ l(Q)−|s|, 0 ≤ |s| ≤ n − 1. Then

(xi/|x|
2) ∗ ϕQT is in L∞(Rn) and

∥

∥

∥

∥

xi
|x|2

∗ ϕQT

∥

∥

∥

∥

∞

≤ C

(∥

∥

∥

∥

xi
|x|2

∗ T

∥

∥

∥

∥

∞

+G(T )

)

,

for some positive constant C = C(n) depending only on n.

With analogous techniques and replacing G(T ) by Gα(T ) (see section 6 for a
definition) one can prove that the above lemma also holds in Rn for the scalar
α-Riesz potentials

xi
|x|1+α

∗ T, 0 < α < n, α ∈ Z.
For the proof of Lemma 5 we need the following.

Lemma 6. Let T be a compactly supported distribution in Rn with linear growth

and assume that Q is a cube and ϕQ ∈ C∞
0 (Q) satisfies ‖∂sϕQ‖∞ ≤ l(Q)−|s|, 0 ≤

|s| ≤ n− 1. Then, for each coordinate i, the distribution (xi/|x|
2) ∗ϕQT is a locally

integrable function and there exists a point x0 ∈
1
4
Q such that

∣

∣

∣

∣

(

xi
|x|2

∗ ϕQT

)

(x0)

∣

∣

∣

∣

≤ C G(T ),

where C = C(n) is a positive constant depending only on n.

Remark. Since the function f = (xi/|x|
2) ∗ ϕQT is only locally integrable, it may

look strange to evaluate f at a point. Indeed we show that the mean of f on
1

4
Q

is bounded by C G(T ) and then at many Lebesgue points of f the above stated
inequality holds, doubling the constant if necessary.

Proof of Lemma 6. Without loss of generality set i = 1 and write k1(x) = x1/|x|
2.

Since k1 ∗ ϕQT is infinitely differentiable off the closure of Q, we only need to show
that k1 ∗ ϕQT is integrable on 2Q. We will actually prove a stronger statement,
namely, that k1 ∗ ϕQT is in Lp(2Q) for each p in the interval 1 ≤ p < n

n−1
. Indeed,

fix any q satisfying n < q < ∞ and call p the dual exponent, so that 1 < p < n
n−1

.
We need to estimate the action of k1 ∗ ϕQT on functions ψ ∈ C∞

0 (2Q) in terms of
‖ψ‖q. We clearly have

〈k1 ∗ ϕQT, ψ〉 = 〈T, ϕQ(k
1 ∗ ψ)〉.

We claim that, for an appropriate dimensional constant C, the test function

ϕQ(k
1 ∗ ψ)

C l(Q)
n
p
−1‖ψ‖q

(29)

13



satisfies the normalization inequalities (15) in the definition of G(T ). Once this is
proved, by the definition of G(T ) we get

|〈k1 ∗ ϕQT, ψ〉| ≤ C l(Q)
n
p ‖ψ‖q G(T ),

and so
‖k1 ∗ ϕQT‖Lp(2Q) ≤ C l(Q)

n
pG(T ).

Hence

1

|1
4
Q|

∫

1

4
Q

|(k1 ∗ ϕQT )(x)| dx ≤ 4n
1

|Q|

∫

Q

|(k1 ∗ ϕQT )(x)| dx

≤ 4n
(

1

|Q|

∫

Q

|(k1 ∗ ϕQT )(x)|
p dx

)
1

p

≤ C G(T ),

which completes the proof of Lemma 6.
To prove the claim we need the following auxiliary remark. We let Ri stand

for the Riesz transforms, that is, the Calderón-Zygmund operators with kernel
cn xi/|x|

n+1 and multiplier ξi/|ξ|.

Sublemma. Assume that fQ is a test function supported on the square Q satisfying

‖∂sfQ‖L1(Q) ≤ l(Q), |s| = n− 1,

and

‖Ri(∂
sfQ)‖L1(2Q) ≤ Cl(Q). (30)

Then

‖Ri(∂
sfQ)‖L1(Rn) ≤ Cl(Q) for |s| = n− 1 and 1 ≤ i ≤ n.

Proof. For any multi-index s with |s| = n − 1, integrating by parts to take one
derivative on the Riesz kernel we obtain

‖Ri(∂
sfQ)‖L1((2Q)c) = cn

∫

(2Q)c
|

∫

Q

∂sfQ(z)
zi − yi

|z − y|n+1
dz| dy

≤ C‖∇n−2fQ‖L1(Q) l(Q)
−1

≤ C ‖∇n−2fQ‖Ln/n−1(Q),

where the last estimate follows from Hölder’s inequality.
A well known result of Maz’ya (see [Mz, 1.1.4, p. 15] and [Mz, 1.2.2, p. 24])

states that

‖∇mfQ‖ n
1+m

≤ C

∫

|∇n−1fQ|, 0 ≤ m ≤ n− 1. (31)
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Applying this for m = n− 2 we get

‖Ri(∂
sfQ)‖L1((2Q)c) ≤ C‖∇n−2fQ‖n/n−1

≤ C‖∇n−1fQ‖1 ≤ C l(Q).

By the Sublemma, to prove the claim we only have to show that for |s| = n− 1,

‖∂s
(

ϕQ (k1 ∗ ψ)
)

‖L1(Q) ≤ C l(Q)
n
p ‖ψ‖q. (32)

and
‖Ri(∂

s(ϕQ(k
1 ∗ ψ)))‖L1(2Q) ≤ C l(Q)

n
p ‖ψ‖q, 1 ≤ i ≤ n. (33)

By Hölder’s inequality and the fact that the Riesz transforms preserve Lq(Rn),
1 < q <∞, we get

‖Ri(∂
s(ϕQ(k

1 ∗ ψ)))‖L1(2Q) ≤ Cl(Q)
n
p ‖Ri(∂

s(ϕQ(k
1 ∗ ψ)))‖Lq(Rn)

≤ Cl(Q)
n
p ‖∂s(ϕQ(k

1 ∗ ψ))‖Lq(Q).

Hence (33) and (32) follow from

‖∂s(ϕQ(k
1 ∗ ψ))‖Lq(Q) ≤ C‖ψ‖q. (34)

By Leibnitz formula

∂s
(

ϕQ (k1 ∗ ψ)
)

= ϕQ ∂
s(k1 ∗ ψ) +

n−1
∑

|r|=1

cs,r ∂
rϕQ ∂s−r(k1 ∗ ψ)

≡ A+B,

where the last identity is a definition of A and B.
To estimate the Lq-norm of the function in B we remark that, since |s| = n− 1,

|∂s−rk1(x)| ≤ C |x|−(n−|r|), 1 ≤ |r| ≤ n− 1,

and then, by Hölder’s inequality and ‖∂rϕQ‖∞ ≤ l(Q)−|r|, 1 ≤ r ≤ n − 1, we see
that

‖∂rϕQ ∂
s−r(k1 ∗ ψ)‖Lq(Q) ≤ C ‖∂rϕQ‖∞

(
∫

Q

(
∫

2Q

|ψ(y)|

|x− y|n−|r|
dy

)q

dx

)1/q

≤ C‖∂rϕQ‖∞‖ψ‖q

(

∫

Q

(
∫

2Q

dy

|y − x|p(n−|r|)

)
q
p

dx

)
1

q

≤ C l(Q)−|r|‖ψ‖ql(Q)
n
q l(Q)

n
p
−n+|r|

= C‖ψ‖q,

15



for each 1 ≤ |r| ≤ n− 1. We therefore conclude that

‖B‖q ≤ C
n−1
∑

|r|=1

‖∂rϕQ ∂
s−r(k1 ∗ ψ)‖q ≤ C ‖ψ‖q.

We turn now to the term A. We remark that, for |s| = n− 1,

∂sk1 ∗ ψ = c ψ + S(ψ), (35)

where S is a smooth homogeneous convolution Calderón-Zygmund operator and c
a constant depending on s. This can be seen by computing the Fourier transform
of ∂sk1 and then using that each homogeneous polynomial can be decomposed in
terms of homogeneous harmonic polynomials of lower degrees (see [St, 3.1.2 p. 69]).
Since Calderón-Zygmund operators preserve Lq(Rn), 1 < q <∞, we get, using that
‖ϕQ‖∞ ≤ C,

‖A‖q ≤ C ‖ψ‖q.

This finishes the estimate of term A and the proof of (34).

Proof of Lemma 5. Without loss of generality take i = 1. Consider first a point
x ∈ Rn \ 3

2
Q. Then k1(x − y)ϕQ(y) is in C∞

0 (Q) as a function of y. We claim
that c l(Q) k1(x− y)ϕQ(y) satisfies the normalization condition (15) for some small
constant c depending only on n. Once the claim is proved we get

|(k1 ∗ ϕQT )(x)| = |〈T, k1(x− y)ϕQ(y)〉| ≤ c−1G(T ).

Straightforward estimates yield

|∂sy(k
1(x− y)ϕQ(y))| ≤ C l(Q)−n, |s| = n− 1,

which shows that ∂sy(k
1(x− y)ϕQ(y)) is a constant multiple of an atom, whence the

claim.
We are then left with the case x ∈ 3

2
Q. Since k1 ∗ T and ϕQ are bounded

functions, we can write

|(k1 ∗ ϕQT )(x)| ≤ |(k1 ∗ ϕQT )(x)− ϕQ(x)(k
1 ∗ T )(x)|+ ‖ϕQ‖∞‖k1 ∗ T‖∞.

Let ψQ ∈ C∞
0 (Rn) be such that ψQ ≡ 1 in 2Q, ψQ ≡ 0 in (4Q)c and ‖∂sψQ‖∞ ≤

Cs l(Q)
−|s|, for each multi-index s. Then one is tempted to write

|(k1 ∗ ϕQT )(x)− ϕQ(x)(k
1 ∗ T )(x)| ≤ |〈T, ψQ(y)(ϕQ(y)− ϕQ(x))k

1(x− y)〉|

+ ‖ϕQ‖∞|〈T, (1− ψQ(y))k
1(x− y)〉|.

The problem is that the first term in the right hand side above does not make
any sense because T is acting on a function of y which is not necessarily differen-
tiable at the point x. To overcome this difficulty one needs to resort to a standard
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regularization process. Take χ ∈ C∞(B(0, 1)) such that
∫

χ(x) dx = 1 and set
χε(x) = ε−n χ(x/ε). The plan is to estimate, uniformly on x and ǫ,

|(χε ∗ k
1 ∗ ϕQT )(x)− ϕQ(x)(χε ∗ k

1 ∗ T )(x)|. (36)

Clearly (36) tends, as ε tends to zero, to

|(k1 ∗ ϕQT )(x)− ϕQ(x)(k
1 ∗ T )(x)|,

for almost all x ∈ Rn , which allows the transfer of uniform estimates. We now have

|(χε ∗ k
1 ∗ ϕQT )(x)− ϕQ(x)(χε ∗ k

1 ∗ T )(x)|

≤ |〈T, ψQ(y)(ϕQ(y)− ϕQ(x))(χε ∗ k
1)(x− y)〉|

+ ‖ϕQ‖∞|〈T, (1− ψQ(y))(χε ∗ k
1)(x− y)〉|

= A1 + A2,

where the last identity is the definition of A1 and A2. To deal with term A1 set

k1,xε (y) = (χε ∗ k
1)(x− y).

We claim that, for an appropriate small dimensional constant c, the test function

fQ(y) = c l(Q)ψQ(y)(ϕQ(y)− ϕQ(x))k
1,x
ε (y),

satisfies the normalization inequalities (15) in the definition of G(T ), with ϕQ re-
placed by fQ and Q by 4Q. If this is the case, then

A1 ≤ c−1l(Q)−1|〈T, fQ〉| ≤ C G(T ).

To prove the normalization inequalities (15) for the function fQ it is enough, by
the Sublemma, to show that the following holds

‖∂sfQ‖L1(4Q) ≤ Cl(Q) (37)

‖Ri(∂
sfQ)‖L1(8Q) ≤ Cl(Q), (38)

for 1 ≤ i ≤ n and |s| = n− 1.
For each q > 1 let p be its dual exponent. By Hölder’s inequality we have

‖Ri(∂
sfQ)‖L1(8Q) ≤ Cl(Q)

n
p ‖Ri(∂

sfQ)‖Lq(Rn) ≤ Cl(Q)
n
p ‖∂sfQ‖Lq(4Q),

because the Riesz transforms preserve Lq(Rn). Therefore, (37) and (38) are a con-
sequence of

‖∂sfQ‖Lq(4Q) ≤ Cl(Q)
n
q
−|s|, |s| = n− 1. (39)
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To prove (39) we first notice that the regularized kernel χε ∗ k
1 satisfies the

inequalities

|(χε ∗ ∂
s k1)(x)| ≤

C

|x|1+|s|
, x ∈ Rn \ {0} and 0 ≤ |s| < n− 1, (40)

where C is a dimensional constant, which, in particular, is independent of ǫ. This
can be proved by standard estimates which we omit. For |s| = n − 1 the situation
is a little bit more complicated. By (35) we have

(χε ∗ ∂
s k1)(x) = c χε(x) + (χε ∗ S)(x),

where S is a smooth homogeneous convolution Calderón-Zygmund operator. As
such, its kernel H satisfies the usual growth condition |H(x)| ≤ C/|x|n. From this
is not difficult to show that

|(χε ∗ S)(x)| ≤
C

|x|n
, x ∈ Rn \ {0}, (41)

for a dimensional constant C.
By Leibnitz formula, for |s| = n− 1,

∂s
(

ψQ(ϕQ − ϕQ(x))k
1,x
ε

)

= ψQ (ϕQ − ϕQ(x))∂
s k1,xε

+

n−1
∑

|r|=1

cr,s ∂
r(ψQ(ϕQ − ϕQ(x))) ∂

s−r k1,xε ,
(42)

and so

‖∂sfQ‖Lq(4Q) ≤ Cl(Q)

(
∫

4Q

|ψQ(y) (ϕQ(y)− ϕQ(x)) ∂
sk1,xε (y)|q dy

)
1

q

+ Cl(Q)

n−1
∑

|r|=1

(
∫

4Q

|∂r (ψQ(ϕQ − ϕQ(x)) ∂
s−rk1,xε (y)|q dy

)
1

q

= A11 + A12.

Using (40) one obtains

A12 ≤ Cl(Q)
n−1
∑

|r|=1

1

l(Q)|r|

(
∫

4Q

|(∂s−rk1,xε )(y)|q dy

)
1

q

≤ Cl(Q)
n
q
−|s|.
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To estimate A11 we resort to (41), which yields

A11 = Cl(Q)

(
∫

4Q

|ψQ(y)(ϕQ(y)− ϕQ(x))∂
sk1,xε (y)|q dy

)
1

q

≤ Cl(Q)‖∂ϕQ‖∞

(
∫

4Q

dy

|y − x|q(n−1)
dy

)
1

q

≤ Cl(Q)
n
q
−|s|

We now turn to A2. By Lemma 6, there exists a point x0 ∈ Q such that
|(k1 ∗ ψQT )(x0)| ≤ C G(T ). Then

|(k1 ∗ (1− ψQ)T )(x0)| ≤ C (‖k1 ∗ T‖∞ +G(T )).

The analogous inequality holds as well for the regularized potentials appearing in
A2, uniformly in ǫ, and therefore

A2 ≤ C |〈T, (1− ψQ)(k
1,x
ε − k1,x0

ε )〉|+ C (‖k1 ∗ T‖∞ +G(T )).

To estimate |〈T, (1− ψQ)(k
1,x
ε − k1,x0

ε )〉|, we decompose Rn \ {x} into a union of
rings

Nj = {z ∈ Rn : 2j l(Q) ≤ |z − x| ≤ 2j+1 l(Q)}, j ∈ Z,
and consider functions ϕj in C∞

0 (Rn), with support contained in

N∗
j = {z ∈ Rn : 2j−1 l(Q) ≤ |z − x| ≤ 2j+2 l(Q)}, j ∈ Z,

such that ‖∂sϕj‖∞ ≤ C (2j l(Q))−|s|, |s| ≥ 0, and
∑

j ϕj = 1 on Rn \ {x}. Since

x ∈ 3
2
Q the smallest ring N∗

j that intersects (2Q)c is N∗
−3. Therefore we have

|〈T, (1− ψQ)(k
1,x
ε − k1,x0

ε )〉| =

∣

∣

∣

∣

∣

〈

T,
∑

j≥−3

ϕj(1− ψQ)(k
1,x
ε − k1,x0

ε )

〉∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

〈

T,
∑

j∈I

ϕj(1− ψQ)(k
1,x
ε − k1,x0

ε )

〉∣

∣

∣

∣

∣

+
∑

j∈J

|〈T, ϕj(k
1,x
ε − k1,x0

ε )〉|,

where I denotes the set of indices j ≥ −3 such that the support of ϕj intersects 4Q
and J the remaining indices, namely those j ≥ −3 such that ϕj vanishes on 4Q.
Notice that the cardinality of I is bounded by a dimensional constant.

Set
g = C l(Q)

∑

j∈I

ϕj(1− ψQ) (k
1,x
ε − k1,x0

ε ),
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and for j ∈ J
gj = C 22j l(Q)ϕj (k

1,x
ε − k1,x0

ε ).

We show now that the test functions g and gj, j ∈ J , satisfy the normalization
inequalities (15) in the definition of G(T ) for an appropriate choice of the (small)
constant C . Once this is available, using the linear growth condition of T we obtain

|〈T, (1− ψQ)(k
1,x
ε − k1,x0

ε )〉| ≤ Cl(Q)−1|〈T, g〉|

+ C
∑

j∈J

(22jl(Q))−1|〈T, gj〉|

≤ C G(T ) + C
∑

j≥−3

2−j G(T ) ≤ C G(T ),

which completes the proof of Lemma 5.
Checking the normalization inequalities for g and gj is easy. First notice that the

support of g is contained in a square λQ for some dilation factor λ depending only
on n. On the other hand the support of gj is conained in 2j+2Q. By the Sublemma,
we have to show that for |s| = n− 1, 1 ≤ i ≤ n,

‖∂sg‖L1(λQ) ≤ Cl(Q), ‖Ri(∂
sg)‖L1(2λQ) ≤ Cl(Q) (43)

and for 1 ≤ j ≤ n,

‖∂sgj‖L1(2j+2 Q) ≤ C2jl(Q), ‖Ri(∂
sgj)‖L1(2j+3 Q) ≤ C2jl(Q). (44)

As before, let 1 < q < ∞ and call p the dual exponent to q. Apply Hölder’s
inequality and the fact that the Riesz transforms preserve Lq(Rn) to obtain

‖Ri(∂
sg)‖L1(2λQ) ≤ Cl(Q)

n
p ‖Ri(∂

sg)‖Lq(Rn) ≤ Cl(Q)
n
p ‖∂sg‖Lq(λQ)

and

‖Ri(∂
sgj)‖L1(2j+3Q) ≤ C

(

2jl(Q)
)

n
p ‖Ri(∂

sgj)‖Lq(Rn) ≤ C
(

2jl(Q)
)

n
p ‖∂sgj‖Lq(2j+2 Q)

hold. Therefore, (43) and (44) follow from

‖∂sg‖Lq(λQ) ≤ C l(Q)
n
q
−|s| (45)

and
‖∂sgj‖Lq(2j+2Q) ≤ C

(

2jl(Q)
)

n
q
−|s|

(46)

respectively.
To show (45) we take ∂s in the definition of g, apply Leibnitz’s formula and

estimate in the supremum norm each term in the resulting sum . We get

‖∂sg‖∞ ≤ C l(Q)

n−1
∑

|r|=0

1

l(Q)|r|
1

l(Q)1+|s|−|r|
= C

1

l(Q)|s|
,
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which yields (45) immediately.
For (46), applying a gradient estimate, we get

|∂s−rk1,xε (y)− ∂s−rk1,x0

ε (y)| ≤ C
l(Q)

(2j l(Q))2+|s|−|r|
, y ∈ N∗

j , j ∈ J.

Hence

‖∂sgj‖∞ ≤ C 22j l(Q)
n−1
∑

|r|=0

1

(2j l(Q))|r|
l(Q)

(2j l(Q))2+|s|−|r|
= C

1

(2j l(Q))|s|
,

which yields (46) readily.

4.2 A continuity property for the capacity Γk̂

In this section we prove a continuity property for the capacity Γk̂, 1 ≤ k ≤ n, which
will be used in the proof of inequality (22). Although we state the result only for
the capacities Γk̂, 1 ≤ k ≤ n, Lemma 7 below holds for the capacities κi, 1 ≤ i ≤ n,
defined in the Introduction, because the proof does not use any growth condition
on distributions with bounded scalar Riesz potential.

Lemma 7. Let {Ej}j be a decreasing sequence of compact sets, with intersection

the compact set E ⊂ Rn . Then, for 1 ≤ k ≤ n,

Γk̂(E) = lim
j→∞

Γk̂(Ej).

Proof. Since, by definition, the set function Γk̂ in non-decreasing

lim
j→∞

Γk̂(Ej) ≥ Γk̂(E),

and the limit clearly exists. For each j ≥ 1, let Tj be a distribution such that the
potentials xi/|x|

2 ∗ Tj are in the unit ball of L∞(Rn), i 6= k, and

Γk̂(Ej)−
1

j
< |〈Tj, 1〉| ≤ Γk̂(Ej).

We want to show that for each test function ϕ,

〈Tj , ϕ〉 −→
j→∞

〈T, ϕ〉, (47)

for some distribution T whose potentials xi/|x|
2 ∗ T are in the unit ball of L∞(Rn)

for i 6= k. If (47) holds and ϕ is a test function satisfying ϕ ≡ 1 in a neighbourhood
of E, then

lim
j→∞

Γk̂(Ej) = lim
j→∞

|〈Tj, 1〉| = lim
j→∞

|〈Tj, ϕ〉| = |〈T, ϕ〉| ≤ Γk̂(E).
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To show (47), fix i 6= k and assume, without loss of generality, that i = 1. Set
k1(x) = x1/|x|

2 and fj = k1 ∗ Tj . Write a point x ∈ Rn as x = (x1, x2), with x1 ∈ R
and x2 ∈ Rn−1 . Finally notice that c k1 = ∂1E where E = log|x| and c is a constant.
Moreover, for each test function ϕ one has

ϕ = c∆
n
2ϕ ∗E, (48)

for some constant c. For n = 2k, identity (48) says that E is the fundamental
solution of the k-Laplacian in Rn , and for n = 2k + 1, (48) means that

ϕ = c∆k+1ϕ ∗
1

|x|n−1
∗ E. (49)

We will only deal with the even case n = 2k, since, by using the reproduction
formula (49), the arguments for the odd case turn to be very similar. Therefore, for
each test function ϕ,

(Tj ∗ ϕ)(x1, x2) =

∫ x1

−∞

∂1(Tj ∗ ϕ)(t, x2) dt = c

∫ x1

−∞

∆k(ϕ ∗ fj)(t, x2) dt.

Setting ϕ(x) = ϕ(−x) we get

〈Tj, ϕ〉 = (Tj ∗ ϕ)(0, 0) = c

∫ 0

−∞

∆k(ϕ ∗ fj)(t, 0) dt. (50)

We remark, incidentally, that the above formula tells us how to recover a distribution
from one of its scalar Riesz potentials.

Passing to a subsequence, we can assume that fj −→ f in the weak ∗ topology
of L∞(Rn). But then (fj ∗ ∆kϕ)(x) −→ (f ∗ ∆kϕ)(x), x ∈ Rn . This pointwise
convergence is bounded because |(fj ∗∆

kϕ)(x)| ≤ ‖∆kϕ‖1‖fj‖∞ ≤ ‖∆kϕ‖1. Hence
the dominated convergence theorem yields

lim
j→∞

〈Tj , ϕ〉 = c lim
j→∞

∫ 0

−∞

∆k(ϕ ∗ fj)(t, 0) dt = c

∫ 0

−∞

∆k(ϕ ∗ f)(t, 0) dt.

Define the distribution T by

〈T, ϕ〉 = c

∫ 0

−∞

∆k(ϕ ∗ f)(t, 0) dt.

Now we want to show that f = k1 ∗ T . For that we regularize fj and Tj . Take
χ ∈ C∞

0 (B(0, 1)) with
∫

χ(x) dx = 1 and set χε(x) = ε−nχ(x/ε). Then we have, as
j → ∞,

(

χε ∗ k
1 ∗ Tj

)

(x) = (χε ∗ fj) (x) −→ (χε ∗ f) (x), x ∈ Rn ,
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because fj converges to f weak ∗ in L∞(Rn). On the other hand, since χε ∗ k1 ∈
C∞(Rn) and Tj tends to T in the weak topology of distributions, with controlled
supports, we have

(

χε ∗ k
1 ∗ Tj

)

(x) −→
(

χε ∗ k
1 ∗ T

)

(x), x ∈ Rn .

Hence
χε ∗ k

1 ∗ T = χε ∗ f, ε > 0,

and so, letting ε → 0, k1 ∗ T = f .

4.3 End of the proof of the inequality Γk̂ ≤ C Γk̂,op

We claim that the inequality in the title of this subsection can be proved by adapting
the scheme of the proof of Theorems 1.1 in [T2] and 7.1 in [T3]. As Lemma 7 shows,
the capacities Γk̂, 1 ≤ k ≤ n, enjoy the exterior regularity property. This is also
true for the capacities Γk̂,+, 1 ≤ k ≤ n, defined by

Γk̂,+(E) = sup

{

µ(E) : µ ∈ L(E),

∥

∥

∥

∥

xj
|x|2

∗ µ

∥

∥

∥

∥

∞

≤ 1, 1 ≤ j ≤ n, j 6= k

}

,

just by the weak ⋆ compactness of the set of positive measures with total variation
not exceeding 1. We can approximate a general compact set E by sets which are
finite unions of cubes of the same side length in such a way that the capacities Γk̂

and Γk̂,+ of the approximating sets are as close as we wish to those of E. As in (19),
one has, using the Davie-Oksendal Lemma for several operators [MaPa, Lemma 4.2],

C−1 Γk̂,op(E) ≤ Γk̂,+(E) ≤ C Γk̂,op(E). (51)

Thus we can assume, without loss of generality, that E is a finite union of cubes
of the same size. This will allow to implement an induction argument on the size
of certain (n-dimensional) rectangles. The first step involves rectangles of diameter
comparable to the side length of the cubes whose union is E.

The starting point of the general inductive step in the proof of Tolsa’s Theorem
in [T2] (and [T3]) consists in the construction of a positive Radon measure µ sup-
ported on a compact set F which approximates E in an appropriate sense. The con-
struction of F and µ gives readily that Γk̂(E) ≤ C µ(F ), and Γk̂,+(F ) ≤ C Γk̂,+(E),
which tells us that F is not too small but also not too big. However, one cannot
expect, in the context of [T2] and [T3], the Cauchy singular integral to be bounded
on L2(µ). In our case one cannot expect the operators Rj to be bounded on L2(µ),
for 1 ≤ j ≤ n, j 6= k. Here Rj is the operator associated with the scalar Riesz kernel
(xj − yj)/|x− y|2.One has to carefully look for a compact subset G of F such that
µ(F ) ≤ C µ(G), the restriction µG of µ to G has linear growth and the operators
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Rj , 1 ≤ j ≤ n, j 6= k , are bounded on L2(µG) with dimensional constants. This
completes the proof because then

Γk̂(E) ≤ C µ(F ) ≤ C µ(G) ≤ C Γk̂,op(G) ≤ C Γk̂,op(F )

≤ C Γk̂,+(F ) ≤ C Γk̂,+(E) ≤ C Γk̂,op(E).

In [T2] and [T3] the set F is defined as the union of a special family of cubes
{Qi}

N
i=1 that cover the set E and approximate E at an appropriate intermediate

scale. One then sets

F =
N
⋃

i=1

Qi.

This part of the proof extends without any obstruction to our case because of the
positivity properties of the symmetrization of the scalar Riesz kernels (see section 3).
As in Lemma 7.2 in [T3], just by how the approximating set F is constructed, one
gets Γk̂,+(F ) ≤ C Γk̂,+(E). By the definition of Γk̂(E) it follows that there exists a
real distribution T0 supported on E such that

1. Γk̂(E) ≤ 2|〈T0, 1〉|.

2. T0 has linear growth and G(T0) ≤ 1.

3. ‖
xj
|x|2

∗ T0‖∞ ≤ 1, 1 ≤ j ≤ n, j 6= k.

Consider now functions ϕi ∈ C∞
0 (2Qi), 0 ≤ ϕi ≤ 1, ‖∂sϕi‖∞ ≤ C l(Qi)

−|s|, 0 ≤
|s| ≤ n−1 and

∑N
i=1 ϕi = 1 on

⋃

iQi. We define now simultaneously the measure µ
and an auxiliary measure ν, which should be viewed as a model for T0 adapted to
the family of cubes {Qi}

N
i=1. For each cube Qi take a concentric segment Σi of length

a small fixed fraction of Γk̂(E ∩Qi) and set

µ =
N
∑

i=1

H1
|Σi

and

ν =

N
∑

i=1

〈T0, ϕi〉

H1(Σi)
H1

|Σi
.

We have dν = bdµ, with b =
〈ϕi, ν0〉

H1(Σi)
on Σi. At this point we need to show that our

function b is bounded, to apply later a suitable T (b) Theorem. To estimate ‖b‖∞
we use the localization inequalities

∥

∥

∥

∥

xj
|x|2

∗ ϕiT0

∥

∥

∥

∥

∞

≤ C, 1 ≤ j ≤ n, j 6= k, 1 ≤ i ≤ N.
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This was proved in Lemma 5 of Section 4.1. Since it is easily seen that ϕiT0 has
linear growth and G(ϕiT0) ≤ C, we obtain, by the definition of Γk̂,

|〈T0, ϕi〉| ≤ C Γk̂(2Qi ∩ E), for 1 ≤ i ≤ N. (52)

It is now easy to see why Γk̂(E) ≤ C µ(F ):

Γk̂(E) ≤ 2 |〈T0, 1〉| = 2

∣

∣

∣

∣

∣

N
∑

i=1

〈T0, ϕi〉

∣

∣

∣

∣

∣

≤ C

N
∑

i=1

Γk̂(2Qi ∩ E) = C µ(F ).

(53)

We do not insist in summarizing the intricate details, which can be found in [T2]
and [T3], of the definition of the set G and of the application of the T (b) Theorem
of [NTV2].

5 Counter-examples to the growth estimate

As we explained in the introduction, if T is a compactly supported distribution such
that x/|x|2 ∗T is bounded, then T satisfies the linear growth condition (7) (see (10)
and (13)). This is no longer true under the assumption that n − 1 components of
x/|x|2 ∗ T are bounded, as the following examples show.

Proposition 8. There exist a compactly supported real Radon measure µ in Rn ,

such that for 1 ≤ i ≤ n− 1, xi/|x|
2 ∗ µ is in L∞(Rn) and G(µ) = ∞.

Proof. The idea of the proof is that there is no relation, in general, between the
derivatives of a function with respect to different variables. The technical details of
the proof differ according to the parity of the dimension, so we deal separately with
even and odd dimensions. Indeed, we work in R3 and R4 , the general case being a
straightforward extension of these two.

1. The odd case:

Set x = (x1, x2, x3) ∈ R3 and let h(x) = f(x1)f(x2)g(x3), where f is the
compactly supported infinitely differentiable function defined by

f(t) =

{

1 if t ∈ [0, 1]

0 if t ∈ [−1, 2]c
. (54)

To define g, let ψ be an infinitely differentiable function supported on [1/2, 1],
increasing for x ∈ [1/2, 3/4], decreasing for x ∈ [3/4, 1] and such that ψ(3/4) =
1. Define g on Ij = [2−j−1, 2−j], j ≥ 0, by

g(t) =
ψ(2jt)

(j + 1)3
, t ∈ Ij. (55)

25



Set µ = ∂33h = f(x1)f(x2)g
3)(x3), and write ki(x) = xi/|x|

2, 1 ≤ i ≤ 3, so
that, for i = 1, 2,

(µ ∗ ki)(x) = (∂33h ∗ k
i)(x) = (∂i∂3h ∗ ∂3k

3)(x).

We claim that ‖ki ∗ µ‖∞ ≤ C, 1 ≤ i ≤ 2. Since for m ≥ 0,

gm)(t) =
2mj

(j + 1)3
ψm)(2jt), t ∈ Ij, (56)

we have,

|(µ ∗ ki)(x)| ≤ C

∫ 1

0

∫ 2

−1

∫ 2

−1

|f ′(y1)||f(y2)||g
′(y3)|

|y − x|2
dy1dy2dy3

≤ C
∑

j

2j

(j + 1)3

∫ 2

−1

∫ 2

−1

∫

Ij

dy3dy1dy2
|y − x|2

≤ C
∑

j

1

(j + 1)2
≤ C.

The next to the last inequality follows by decomposing the domain of integra-

tion into ”annuli” (|y1 − x1|
2 + |y2 − x2|

2)
1/2

≃ 2k 2−j, |y3−x3| ≃ 2−j, 0 ≤ k.

Hence ‖ki ∗ µ‖∞ ≤ C for i = 1, 2.

To see that the linear growth condition fails for the measure µ, take an interval
I∗j ⊂ Ij such that, for some fixed small positive number δ, one has l(I∗j ) ≥

δ l(Ij) and g
3)(t) ≥ δ 23j/(1+j)3, t ∈ I∗j . The existence of such δ and I

∗
j follows

readily from the definition of g on Ij . Take a non-negative function φ ∈ C∞
0 (I∗j )

with φ(t) = 1 on I∗j /2 (interval with the same center of I∗j and half the length).
Let Qj be the cube (I∗j )

3, j ≥ 0 and set ϕQj
(x1, x2, x3) = φ(x1)φ(x2)φ(x3).

Then ϕQj
∈ C∞

0 (Qj) and ϕQj
/C satisfies the normalization condition (15) for

some absolute big constant C. Then, since l(Qj) = l(I∗j ) ≈ l(Ij) = 2−j, by
(56) for m = 3 we obtain,

〈µ, ϕQj
〉 =

(

∫

I∗j

φ(t)dt

)2
∫

I∗j

φ(t)g3)(t)dt ≈ l(Qj)
2 23j

(j + 1)3
l(Qj) =

2j

(j + 1)3
l(Qj).

Thus
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|〈µ, ϕQj
〉|

l(Qj)
−→
j→∞

∞,

which implies G(µ) = ∞.

2. The even case:

For x = (x1, x2, x3, x4) ∈ R4 let h(x) = f(x1)f(x2)f(x3)g(x4), where f is the
function defined by (54) and g is defined by

g(t) = ψ(2jt), t ∈ Ij ,

that is, as in (55) except that the denominator (j + 1)3 is not needed in this
case.

Define µ = ∆2h , the bilaplacian of h. Then

µ = g(x4)
(

f 4)(x1)f(x2)f(x3) + f(x1)f
4)(x2)f(x3) + f(x1)f(x2)f

4)(x3)
)

+ 2g(x4) (f
′′(x1)f

′′(x2)f(x3) + f ′′(x1)f(x2)f
′′(x3) + f(x1)f

′′(x2)f
′′(x3))

+ 2g′′(x4) (f
′′(x1)f(x2)f(x3) + f(x1)f

′′(x2)f(x3) + f(x1)f(x2)f
′′(x3))

+ g4)(x4)f(x1)f(x2)f(x3).

Write ki(x) = xi/|x|
2, 1 ≤ i ≤ 4. Notice that ki(x) = c ∂iE, where E is the

fundamental solution of the bilaplacian and c a constant. Then, for 1 ≤ i ≤ 3,

‖ki∗µ‖∞ = ‖ki∗∆2h‖∞ = ‖c ∂i(∆
2h∗E)‖∞ = c‖∂ih‖∞ = c‖f‖2∞‖f ′‖∞‖g‖∞ ≤ C.

Although this is not necessary for the argument, notice that, by (56), we have

‖k4∗µ‖∞ = ‖k4∗∆2h‖∞ = ‖c ∂4(∆
2h∗E)‖∞ = c‖∂4h‖∞ = c‖f‖3∞‖g′‖∞ = ∞.

Take an interval I∗j ⊂ Ij such that, for some fixed small positive number

δ, one has l(I∗j ) ≥ δ l(Ij) and g4)(t) ≥ δ 24j , t ∈ I∗j . The existence of
such δ and I∗j follows readily from the definition of g on Ij. Take a non-
negative function φ ∈ C∞

0 (I∗j ) with φ(t) = 1 on I∗j /2 (interval with the same
center of I∗j and half the length). Let Qj be the cube (I∗j )

4, j ≥ 0 and set
ϕQj

(x1, x2, x3, x4) = φ(x1)φ(x2)φ(x3)φ(x4). Then ϕQj
∈ C∞

0 (Qj) and ϕQj
/C

satisfies the normalization condition (15) for some absolute constant C. Then,
since f ′′ and f 4) are zero on I∗j and l(Qj) = l(I∗j ) ≈ l(Ij) = 2−j, by (56) for
m = 4 we obtain,

〈µ, ϕQj
〉 =

(

∫

I∗j

φ(t)f(t)dt

)3
∫

I∗j

φ(t)g4)(t)dt

≈ l(Qj)
3 24j l(Qj) ≈ 2j l(Qj).
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Thus

|〈µ, ϕQj
〉|

l(Qj)
−→
j→∞

∞,

which implies G(µ) = ∞.

On the plane, we do also have a counterexample in the setting of positive mea-
sures, based on a completely different idea.

Proposition 9. There exists a positive Radon measure µ such that x1/|x|
2 ∗µ is in

L∞(R2) and G(µ) = ∞.

Proof. Consider the function f(t) = log+
1

|t|
, t ∈ R. Then f ∈ BMO(R) \ L∞(R)

and f is supported on the interval [−1, 1]. If y > 0, then

(

i

πz
∗ f

)

(x, y) =
1

π
(k2 ∗ f)(x, y) +

i

π
(k1 ∗ f)(x, y)

=
1

π

∫R y

(x− t)2 + y2
f(t) dt+

i

π

∫R x− t

(x− t)2 + y2
f(t) dt

= (Pyf)(x) + i(Qyf)(x),

where Pyf(x) and Qyf(x) are the Poisson transform and the conjugate Poisson
transform of f respectively.

Therefore, if Hf =
1

π
p.v.

1

x
∗ f is the Hilbert transform of f ,

(k1 ∗ fdt)(x, y) = (Qyf)(x) = Py(Hf)(x).

We claim that
H(f) ∈ L∞(R). (57)

If (57) holds, then the positive measure µ = f(t) dt satisfies

|(k1 ∗ µ)(x, y)| = |Py(Hf)(x)| ≤ ‖Hf‖∞, x ∈ R, y > 0.

Since (k1 ∗ µ)(x,−y) = (k1 ∗ µ)(x, y), we get k1 ∗ µ ∈ L∞(R2) and, on the other
hand, µ has not linear growth, just because f is unbounded.

To show (57), we first observe that integrating by parts we have

p.v.

∫ 1

−1

log
1

|t|

dt

x− t
= lim

ǫ→0

∫

1>|t|>ǫ

log |x− t|
dt

t
.
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The function above is odd and so we can assume that x is positive. Making first the
change of variables τ = −t and then u = t/x we get

lim
ǫ→0

∫

1>|t|>ǫ

log |x− t|
dt

t
= − lim

ǫ→0

∫

1>|t|>ǫ

log |x+ t|
dt

t

=
1

2

∫ 1

−1

log
|x− t|

|x+ t|

dt

t

=
1

2

∫ 1

x

− 1

x

log
|u− 1|

|u+ 1|

du

u
.

Hence
∣

∣

∣

∣

p.v.

∫ 1

−1

log
1

|t|

dt

x− t

∣

∣

∣

∣

≤
1

2

∫ ∞

−∞

∣

∣

∣

∣

log
|u− 1|

|u+ 1|

1

u

∣

∣

∣

∣

du,

which completes the proof because the last integral above is finite.

It is worth mentioning that we do not know whether there exists a positive
measure µ in Rn , n ≥ 3, with the n − 1 potentials µ ∗ xi/|x|

2, 1 ≤ i ≤ n − 1, in
L∞(Rn), but not having linear growth.

6 Miscellaneous related results

As we have seen in the previous sections, the fact that the Cauchy kernel is complex
is not as relevant as the fact that it is odd and has homogeneity −1. Indeed, in
the plane, (6) shows that one recovers the theory of analytic capacity by replacing
the Cauchy kernel 1/z by any of the real kernels Re(1/z) or Im(1/z). In Rn , n ≥
3, the Theorem shows that an analogue of (6) holds in higher dimensions adding
appropriate growth conditions on the admissible distributions.

A natural question is how one can extend this kind of results to the higher
dimensional real variable setting in which the kernel x/|x|2 is replaced by the vector
valued Riesz kernel of homogeneity −α

kα(x) =
x

|x|1+α
, x ∈ Rn , 0 < α < n,

and the capacity associated with this kernel is defined by (see [Pr1])

Γα(E) = sup

{

|〈T, 1〉| : spt(T ) ⊂ E,

∥

∥

∥

∥

x

|x|1+α
∗ T

∥

∥

∥

∥

∞

≤ 1

}

.

The case α = n − 1, n ≥ 2, is especially interesting, because it gives Lipschitz
harmonic capacity (see (3)).

Unfortunately, as we show in subsections 6.1 and 6.2 below, the most obvious
analogues of (6) and the Theorem fail in this setting.
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6.1 Capacities associated with scalar α-Riesz potentials

Let T be a compactly supported distribution in Rn and 0 < α < n. As it was
explained in the Introduction, the natural notion of distribution T of growth α should
involve Hardy spaces. In our present case, one should replace the reproduction
formula (11) by the following ones, depending on the nature of the parameter α:

• α ∈ Z. A standard Fourier transform computation shows that, for some
constant cn and each test function ϕ, one has

ϕ = cn

n
∑

j=1

xj
|x|1+α

∗ ∂j(∆
(n−1−α)/2)ϕ ≡ cn

x

|x|1+α
∗ ∇(∆(n−α−1)/2)ϕ.

• α /∈ Z. A standard Fourier transform computation shows that, for some
constant dn and each test function ϕ, one has

ϕ = dn

n
∑

j=1

xj
|x|1+α

∗
1

|x|n−{α}
∗ ∂j(∆

(n−[α]−1)/2)ϕ

≡ dn
x

|x|1+α
∗

1

|x|n−{α}
∗ ∇(∆(n−[α]−1)/2)ϕ,

where α = [α] + {α}, with [α] ∈ Z and {α} ∈ (0, 1).

Now we are able to define the notion of a compactly supported distribution with
growth α, 0 < α < n. We say that T has growth α provided

Gα(T ) = sup
ϕQ

|〈T, ϕQ〉|

l(Q)α
<∞, (58)

where the supremum is taken over all ϕQ ∈ C∞
0 (Q) satisfying the following normal-

ization inequalities :

1. For α ∈ Z, we require

‖∂sϕQ‖H1(Rn) ≤ l(Q)α, |s| = n− α. (59)

2. For α /∈ Z, we require

‖∂sϕQ ∗
1

|x|n−{α}
‖H1(Rn) ≤ l(Q)α, |s| = n− [α]. (60)

For positive Radon measures µ in Rn the preceding notion of growth α is equiv-
alent to the usual one. In subsection 6.5 complete details on this fact are provided.

For a compact set E in Rn we define gα(E) as the set of all distributions T
supported on E having growth α with constant Gα(T ) at most 1.
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For each coordinate k set

Γα, k̂(E) = sup{|〈T, 1〉|},

where the supremum is taken over those distributions T ∈ gα(E), such that the j-th
component of the α-Riesz potential xj/|x|

1+α∗T is in the unit closed ball of L∞(Rn),
for 1 ≤ j ≤ n, j 6= k.

The proof of Lemma 3.2 in [Pr1] tells us that if kα ∗ T is in the unit ball
L∞(Rn ,Rn), then the distribution T has α-growth and Gα(T ) ≤ C. Hence Γα(E) ≤
C Γα, k̂(E). In this section we prove the following

Proposition 10. Given 0 < α < 1, there exists a set E ⊂ Rn such that Γα(E) = 0
and Γα, k̂(E) > 0.

Therefore Γα and Γα, k̂ are not comparable and thus the direct analogue of the
Theorem fails in this setting.

We proceed now to symmetrize the scalar α-Riesz kernels in order to get a better
understanding of the capacities Γα, k̂ for 1 ≤ k ≤ n and 0 < α < 1.

For 0 < α < n and 1 ≤ i ≤ n the quantity

∑

σ

xiσ(2) − xiσ(1)
|xσ(2) − xσ(1)|1+α

xiσ(3) − xiσ(1)
|xσ(3) − xσ(1)|1+α

(61)

where the sum is taken over the permutations of the set {1, 2, 3}, is the analogue
of the right hand side of (27) for the i-th coordinate of the Riesz kernel kα. Notice
that (61) is exactly

2 pα, i(x1, x2, x3),

where pα, i(x1, x2, x3) is defined as the sum in (61) only taken on the three permu-
tations (1, 2, 3), (2, 3, 1) and (3, 1, 2).

We will now show that given three distinct points x1, x2, x3 ∈ Rn , for 1 ≤ i ≤ n
and 0 < α ≤ 1, the quantity pα, i(x1, x2, x3) is non-negative. We will use this to
study the L2 boundedness of the scalar Riesz integral operator of homogeneity −α.

The relationship between the quantity pα, i(x, y, z), 0 < α ≤ 1, 1 ≤ i ≤ n, and
the L2 estimates of the operator with kernel kiα = xi/|x|

1+α is as in (28). That is, if
µ is a positive finite Radon measure in Rn with α-growth, ε > 0 and we set

Ri
α, ε(µ)(x) =

∫

|y−x|>ε

kiα(y − x) dµ(y),

then (see in [MeV] the argument for the Cauchy singular integral operator)

∣

∣

∣

∣

∫

|Ri
α, ε(µ)(x)|

2 dµ(x)−
1

3
pα, i, ε(µ)

∣

∣

∣

∣

≤ C‖µ‖, (62)
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C being a positive constant depending only on n and α, and

pα, i, ε(µ) =

∫∫∫

Sε

pα, i(x, y, z) dµ(x) dµ(y) dµ(z),

with
Sε = {(x, y, z) : |x− y| > ε, |x− z| > ε and |y − z| > ε}.

Lemma 11. Let 0 < α < 1 and x1, x2, x3 three different points in Rn . For 1 ≤ i ≤ n
we have

(2− 2α)m2

L(x1, x2, x3)2+2α
≤ pα, i(x1, x2, x3) ≤

3m2

L(x1, x2, x3)2+2α
, (63)

where m = max(|xi2 − xi1|, |x
i
3 − xi2|, |x

i
3 − xi1|) and L(x1, x2, x3) is the length of the

largest side of the triangle determined by the three points x1, x2, x3.

Moreover, pα, i(x1, x2, x3) = 0 if and only if the three points lie on a (n − 1)-hyper-
surface perpendicular to the i axis, i.e. xi1 = xi2 = xi3.

Proof. Without loss of generality fix i = 1. Write a = x2 −x1 and b = x3 −x2, then
a+ b = x3 − x1. A simple computation yields

pα,1(x1, x2, x3) =
a21|b|

1+α + b21|a|
1+α + a1b1 (|b|

1+α + |a|1+α − |a+ b|1+α)

|a|1+α|b|1+α|a+ b|1+α
, (64)

which makes the second inequality in (63) obvious. To prove the first inequality
in (63), assume without loss of generality, that 1 = |a| ≤ |b| ≤ |a+ b|. Then

pα,1(x1, x2, x3) =
1

|b|1+α|a+ b|1+α

(

a21|b|
1+α + b21 + a1b1(1 + |b|1+α − |a+ b|1+α)

)

.

We distinguish now two cases,

• Case a1b1 ≤ 0. Notice that since |b| ≤ |a+ b|,

a1b1(1 + |b|1+α − |a+ b|1+α) ≥ a1b1.

Then, since |b| ≥ 1,

pα,1(x1, x2, x3) =
1

|b|1+α|a+ b|1+α

(

a21|b|
1+α+b21+a1b1(1+|b|1+α−|a+ b|1+α)

)

≥
a21|b|

1+α + b21 + a1b1
|b|1+α|a+ b|1+α

≥
a21 + b21 + a1b1
|b|1+α|a+ b|1+α

=
1

2

(a1 + b1)
2 + a21 + b21

|b|1+α|a+ b|1+α
.
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• Case a1b1 > 0. Then max{a21, b
2
1, (a1 + b1)

2} = (a1 + b1)
2. Write t = |b| ≥ 1

and
f(t) = a21t

1+α + b21 + a1b1
(

1 + t1+α − (1 + t)1+α
)

.

By the triangle inequality,

pα,1(x1, x2, x3) ≥
f(t)

|b|1+α|a+ b|1+α
≥

mint≥1 f(t)

|b|1+α|a+ b|1+α
.

Our function f has a minimum at the point t∗ =

(

(

a1
b1

+ 1
)1/α

− 1

)−1

.

1. If a1/b1 ≥ 2α − 1, then t∗ ≤ 1. Therefore

pα,1(x1, x2, x3) ≥
f(1)

|b|1+α|a+ b|1+α

=
a21 + b21 + 2a1b1(1− 2α)

|b|1+α|a+ b|1+α

= (2α − 1)
(a1 − b1)

2

|b|1+α|a+ b|1+α
+ (2− 2α)

a21 + b21
|b|1+α|a+ b|1+α

≥
2− 2α

2

(a1 + b1)
2

|b|1+α|a+ b|1+α
.

2. If a1/b1 < 2α − 1, then t∗ > 1. Hence,

pα,1(x1, x2, x3) ≥
f(t∗)

|b|1+α|a+ b|1+α
.

Since

f(t∗) = b21

(

1 +
a1
b1

)



1−
a1

(

(a1 + b1)1/α − b
1/α
1

)α



 ,

then

f(t∗) ≥ b21 min
a1<b1(2α−1)



1−
a1

(

(a1 + b1)1/α − b
1/α
1

)α





= b21(2− 2α) ≥
2− 2α

22α
(a1 + b1)

2,

since the function

g(x) = 1−
x

(

(x+ b1)1/α − b
1/α
1

)α

is decreasing and (a1 + b1)
2 ≤ (2αb1)

2.
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Now, If x11 = x12 = x13, then a1 = b1 = 0. Hence (64) gives us pα,1(x1, x2, x3) = 0. On
the other hand, if pα,1(x1, x2, x3) = 0, inequality (63) gives us max((xi2 − xi1)

2, (xi3 −
xi2)

2, (xi3−x
i
1)

2) = 0, hence a21 = b21 = (a1+b1)
2 = 0, which implies x11 = x12 = x13.

We are now ready to prove Proposition 10. Take a compact subset E of the x1-
axis with positive finite α-dimensional Hausdorff measure. Then by [Pr1, Theorem
1.1], Γα(E) = 0. It remains to show that Γα,1̂(E) > 0. For this let µ be the α-
dimensional Hausdorff measure restricted to E. Choosing appropriately E we can
assume in addition that µ satisfies the Ahlfors regularity condition µ(B(x, r)) ≃ rα,
0 < r < diam(E). In particular, µ has growth α and is doubling. It is enough
to show that the singular integral operator Ri

α associated with the scalar kernel
kiα = xi/|x|

1+α, i 6= 1, is bounded on L2(µ). This reduction is possible because
the Davie-Oksendal Lemma extends straightforwardly to several operators [MaPa,
Lemma 4.2]. By Lemma 11 we have pα, i(x1, x2, x3) = 0 for x1, x2 and x3 in E and
i 6= 1 and thus (62) yields

∫

|Ri
α, ε(µ)(x)|

2 dµ(x) ≤ C ‖µ‖, ǫ > 0.

Replacing in the above inequality µ by χB µ where B is any ball we get
∫

B

|Ri
α, ε(χB µ)(x)|

2 dµ(x) ≤ C µ(B), ǫ > 0.

By the standard T (1)-Theorem of [DaJ] we conclude that Ri
α is bounded on L2(µ).

6.2 Lipschitz harmonic capacity is not comparable to the

capacity associated with a scalar Riesz-potential

Inequality (6) says that in the plane, analytic capacity can be characterized in
terms of either capacity κi, i = 1, 2. In particular this implies a weaker qualitative
statement, namely, that if E is a compact set in the plane and there exists a non-
zero distribution T supported on E with bounded potential xi/|x|

2 ∗ T , for i = 1
or i = 2, then there exists another non-zero distribution S supported on E with
bounded potentials xi/|x|

2 ∗ S, i = 1, 2.
In Rn Lipschitz harmonic capacity is an excellent replacement for analytic ca-

pacity. Thus one may ask whether Lipschitz harmonic capacity can be described in
terms of one of the capacities associated with a component of the kernel x/|x|n in
which the growth condition n − 1 has been required on the distributions involved.
In a qualitative way we ask the following question. Assume that E is a compact set
in Rn and that there exists a non-zero distribution T supported on E with growth
n−1 and bounded potential xn/|x|

n∗T . Is it true that there exists another non-zero
distribution S supported on E with bounded vector valued potential x/|x|n ∗ T ?
The answer is no for n ≥ 3. We describe the example in R3 .
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Proposition 12. There exists a compact set E ⊂ R3 which supports a non-zero

distribution T with growth 2 and bounded scalar Riesz potential x3/|x|
3 ∗T , but does

not support any non-zero distribution S with bounded vector valued Riesz potential

x/|x|3 ∗ S.

Proof. Let K ⊂ H = {(x1, x2, x3) ∈ R3 : x3 = 0} be the classical 1-dimensional
planar Cantor set defined by taking the “corner quarters” at each generation. Then
K has finite positive length but zero analytic capacity (see [Ga1], [Ga2] or [I]). In
particular, K has zero Lipschitz harmonic capacity and by [MaPa] the same happens
to E = K×[−1, 1]. Thus E does not support any distribution S with bounded vector
valued Riesz potential x/|x|3 ∗ S.

Let µ denote 2-dimensional Hausdorff measure restricted to K ×R ⊂ R3 and let
ν denote the restriction of µ to E. It is a simple matter to check that µ satisfies the
growth condition

µ(B(x, r)) ≤ C r2, x ∈ K × R, 0 < r.

Although the reverse inequality does not hold for large r, µ is a doubling measure.
Indeed, µ(B(x, r)) is comparable to r2 for 0 < r ≤ 1 and to r for 1 ≤ r. Our goal is to
show that the scalar Riesz singular integral operator R3 with kernel k3(x) = x3/|x|

3

is bounded on L2(ν). Once this is established the Davie-Oksendal lemma (see [Ch,
Theorem 33 ] or [V3, Lemma 4.2]) provides a non-negative function b ∈ L∞(ν) such
that x3/|x|

3 ∗ bν is in L∞(R3) , which completes the proof.
The boundedness of R3 on L2(ν) follows directly from the boundedness of R3 on

L2(µ). To show this we check that R3(1) = 0 and then we apply the standard T (1)-
Theorem for doubling measures (see [DaJ]). The computation of R3(1) is performed
as follows. Set K(x, ǫ) = {(y1, y2) ∈ K : |x1 − y1| > ǫ and |x2 − y2| > ǫ}, Then

R3(1)(x) = lim
ǫ→0

∫

|y−x|>ǫ

x3 − y3
|x− y|3

dµ(y)

= lim
ǫ→0

∫

K(x,ǫ)

(∫

|y3−x3|>ǫ

x3 − y3
|x− y|3

dy3

)

dH1(y1, y2) = 0,

for each x ∈ K × R.
Remarks

• Notice that in the above example one obtains that R3 is bounded on L2(ν),
while the whole vector R is not bounded on L2(ν). Therefore, the above
example shows that corollary 3 does not hold if n ≥ 3, namely, we cannot get
L2(ν) boundedness of the vector valued Riesz operator Rn−1 associated with
a Riesz kernel of homogeneity −(n − 1) from L2(ν) boundedness of only one
component Ri

n−1.
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• It is an open question to decide whether, for n ≥ 3, Lipschitz harmonic capac-
ity is comparable to the capacities associated with (n− 1)-components of the
vector valued Riesz potential x/|x|n ∗ T .

6.3 Finiteness of the capacities κi

Indeed, we give a proof of a more general result, stating that for compact sets
E ⊂ Rn , 0 < α < n and 1 ≤ i ≤ n, the capacities

κα, i(E) = sup

{

|〈T, 1〉| : spt(T ) ⊂ E,

∥

∥

∥

∥

xi
|x|1+α

∗ T

∥

∥

∥

∥

∞

≤ 1

}

,

are finite.

Proposition 13. For any cube Q ⊂ Rn , 0 < α < n and 1 ≤ i ≤ n, we have

κα, i(Q) ≤ Cl(Q)α.

Proof. Without loss of generality assume i = 1. Assume also momentarily that the
dimension n is odd, say n = 2k + 1. Our argument uses a reproduction formula for
test functions involving the kernel ki(y) = yi/|y|

1+α, 1 ≤ i ≤ n, [Pr1, Lemma 3.1].
For a test function g, the formula reads

g(x) = cn,α

n
∑

j=1

(

∆k∂jg ∗
1

|y|n−α
∗ kj

)

(x), (65)

for some constant cn,α depending only on the dimension n and on α. For n =
2k, there is an analogous reproduction formula that settles the even case [Pr1,
Lemma 3.1].

Let T be a real distribution supported on Q such that k1 ∗ T ∈ L∞(Rn). Write
the cube Q as Q = I1×Q

′, with I1 being an interval in R and Q′ an n−1 dimensional
cube in Rn−1 , and let ϕQ ∈ C∞

0 (2Q) be such that ‖∂sϕQ‖∞ ≤ Csl(Q)
−|s| and

ϕQ(x) = ϕ1(x1)ϕ2(x2, . . . , xn)

with ϕ1(x1) = 1 on I1, ϕ1(x1) = 0 on (2I1)
c and

∫∞

−∞
ϕ1 = 0, and ϕ2 ≥ 0, ϕ2 ≡ 1

on Q′ and ϕ2 ≡ 0 on (2Q′)c. Then, since our distribution T is supported on Q, using
the reproduction formula (65),

|〈T, 1〉| = |〈T, ϕQ〉| ≤ C

n
∑

j=1

∣

∣

∣

∣

〈

T,∆k∂jϕQ ∗
1

|y|n−α
∗ kj

〉∣

∣

∣

∣

= C

∣

∣

∣

∣

〈

k1 ∗ T,∆k∂1ϕQ ∗
1

|y|n−α

〉∣

∣

∣

∣

+ C

n
∑

j=2

∣

∣

∣

∣

〈

T,∆k∂jϕQ ∗
1

|y|n−α
∗ kj

〉∣

∣

∣

∣

= A+B.
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We first estimate the term A. We have

∫

(k1 ∗ T )(x)∆k∂1ϕQ ∗
1

|y|n−α
(x) dx =

∫

3Q

(k1 ∗ T )(x) (∆k∂1ϕQ ∗
1

|y|n−α
)(x) dx

+

∫Rn\3Q

(k1 ∗ T )(x) (ϕQ ∗∆k∂1(
1

|y|n−α
))(x) dx.

Let Q0 be the unit cube centered at 0. Dilating to bring the integrals on 3Q0 and
2Q0, and using |∂sϕQ| ≤ Csl(Q)

−|s|, we get

A ≤ ‖k1 ∗ T‖∞

(
∫

3Q

∫

2Q

|∆k∂1ϕQ(y)|

|x− y|n−α
dy dx+

∫Rn\3Q

∫

2Q

|ϕQ(y)|

|x− y|2n−α
dy dx

)

≤ Cl(Q)α
(
∫

3Q0

∫

2Q0

dy dx

|x− y|n−α
+

∫Rn\3Q0

∫

2Q0

dy dx

|x− y|2n−α

)

≤ Cl(Q)α.

We turn now to the estimate of B . The homogeneous differential operator ∆k

can be written as ∆k =
∑

|s|=2k as ∂
s, for certain constants as. Divide the set of

multi-indexes s of length 2k into two classes I and J according to whether s1 ≥ 1
or s1 = 0. In other words, s ∈ I if ∂s contains at least one partial derivative with
respect to first variable. Thus ∆k =

∑

s∈I as ∂
s +

∑

s∈J as ∂
s, and so B = B1 + B2

where

B1 = C
n
∑

j=2

∣

∣

∣

∣

∣

〈

T,
∑

s∈I

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣

∣

∣

∣

∣

and

B2 = C

n
∑

j=2

∣

∣

∣

∣

∣

〈

T,
∑

s∈J

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣

∣

∣

∣

∣

.

To estimate B1 we bring in each term of the sum in s ∈ I one derivative with respect
to the first variable into the kernel kj and use ∂1k

j = ∂jk
1 to take back a derivative

with respect to j into ϕQ. The effect of these moves is to replace kj by k1. Therefore

B1 = C
n
∑

j=2

∣

∣

∣

∣

∣

∣

〈

k1 ∗ T,
∑

|s|=2k

bs ∂
s∂jϕQ ∗

1

|y|n−α

〉

∣

∣

∣

∣

∣

∣

,

for some numbers bs. This expression can be estimated as we did before with A.
To estimate B2 we need to replace in some way the kernel kj by k1. We do this

by showing that, for each j there exists a function ψj
Q ∈ C∞

0 (2Q) satisfying

kj ∗ ϕQ = k1 ∗ ψj
Q, 1 ≤ j ≤ n, (66)
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and ‖∂sψj
Q‖∞ ≤ Csl(Q)

−|s|. Before proving (66) we show how to estimate B2.
By (66)

B2 = C

n
∑

j=2

∣

∣

∣

∣

∣

〈

T,
∑

s∈J

as ∂
s∂jϕQ ∗

1

|y|n−α
∗ kj

〉∣

∣

∣

∣

∣

= C

n
∑

j=2

∣

∣

∣

∣

∣

〈

T,
∑

s∈J

as ∂
s∂jψ

j
Q ∗

1

|y|n−α
∗ k1

〉∣

∣

∣

∣

∣

= C

n
∑

j=2

∣

∣

∣

∣

∣

〈

k1 ∗ T,
∑

s∈J

as ∂
s∂jψ

j
Q ∗

1

|y|n−α

〉∣

∣

∣

∣

∣

,

which can be estimated as the term A.
We are left with proving (66). Taking Fourier transforms in (66) we obtain for

some constant a,

a ϕ̂Q(ξ)ξj = ψ̂j
Q(ξ)ξ1,

which becomes
a ∂jϕQ = ∂1ψ

j
Q.

Hence, for the non-trivial case 2 ≤ j ≤ n,

ψj
Q(x) = a

∫ x1

−∞

∂jϕQ(t, x2, . . . , xn) dt = a ∂jϕ2(x2, . . . , xn)

∫ x1

−∞

ϕ1(t) dt,

and the key remark is that the function above has support contained in 2Q because
the integral of ϕ1 on the real line vanishes.

We conclude with the following corollary.

Corollary 14. For any compact set E ⊂ Rn , 0 < α < n and 1 ≤ i ≤ n, we have

κα, i(E) ≤ C diam(E)α.

When n = 2 and α = 1, (6) implies that κi(E) ≤ CM1(E), i = 1, 2, where M
stands for the one dimensional Hausdorff content. In general, we do not know
whether in the preceding inequality the diameter of E can be replaced by the
α−dimensional Hausdorff content of E.

6.4 Localization and growth

The growth assumption on the distribution T in the localization lemma (Lemma 5)
cannot be completely dispensed with. Indeed, if xi/|x|

2 ∈ L∞(Rn) and one has the
inequality

∥

∥

∥

∥

xi
|x|2

∗ ϕQT

∥

∥

∥

∥

∞

≤ C

∥

∥

∥

∥

xi
|x|2

∗ T

∥

∥

∥

∥

∞

, (67)
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for all ϕQ ∈ C∞
0 (Q) satisfying the normalization condition (15), then necessarily T

has linear growth. This can be shown by an argument very close to that of the
previous subsection. We only deal with the details of the case n = 2. The case
of even dimensions is very similar, while the case of odd dimensions needs some
additional care. We also assume i = 1.

Let Q be square and ϕQ a function in C∞
0 (Q) satisfying the normalization con-

dition (15). Set Q = I1 × I2 and ψ(x1, x2) = ψ1(x1)ψ(x2), where, for j = 1, 2,
ψj ∈ C∞

0 (Ij), ψj = 1 on Ij,
∫∞

−∞
ψ(x1) dx1 = 0 and ‖dkψj/(dxj)

k‖∞ ≤ C l(Ij)
−k,

0 ≤ k ≤ 2. We then have

〈T, ϕQ〉 = 〈ϕQ T, 1〉 = 〈ϕQ T, ψ〉.

We want now to find a function χ such that ψ = k1 ∗χ, where k1 = x1/|x|
2. Taking

the Fourier transform we get ψ̂(ξ) = a(ξ1/|ξ|
2) χ̂(ξ) for some constant a . Hence

∂1χ = b∆ψ, for some other constant b. Thus

χ = b

∫ x1

−∞

∆ψ(t, x2) dt

= b

(

∂1ψ1(x1)ψ2(x2) +

(
∫ x1

−∞

ψ1(t) dt

)

∂22ψ2(x2)

)

.

Notice that χ is supported on Q and ‖χ‖∞ ≤ C l(Q)−1. Therefore

|〈T, ϕQ〉| = |〈k1 ∗ ϕQT, χ〉| ≤ C ‖k1 ∗ ϕQT‖∞ ‖χ‖L1(Q) ≤ C l(Q).

6.5 The growth condition for positive measures

We start by showing that the usual linear growth condition for a positive Radon
measure is equivalent to the linear growth condition for distributions as defined in
(14). Later on we treat also the case of the α-growth condition for 0 < α < n.

Given a positive Radon measure µ set

L(µ) = sup
Q

µ(Q)

l(Q)
,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axis.

If ϕ ∈ C∞
0 (Rn), then by an inequality of Mazya [Mz, 1.2.2, p. 24]

|〈µ, ϕ〉| = |

∫

ϕdµ| ≤

∫

|ϕ| dµ ≤ C L(µ)

∫

|∇n−1ϕ(x)| dx,

where ∇n−1ϕ denotes, as usual , the vector of all derivatives ∂sϕ of order |s| = n−1.
Thus

G(µ) ≤ C L(µ).
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The reverse inequality is immediate. Indeed, given a cube Q let ϕQ be a function in
C∞
0 (2Q) such that 1 ≤ ϕQ on Q and ‖∂sϕQ‖∞ ≤ Cs l(Q)

−|s|, |s| ≥ 0. Then

µ(Q) ≤

∫

ϕQ dµ = |〈µ, ϕQ〉| ≤ C G(µ) l(Q)

because C−1
s l(Q)−1 ∂sϕ is an atom for |s| = n−1, and so ‖∂sϕ‖H1(Rn) ≤ C l(Q), |s| =

n− 1.
We proceed now to treat the case of a general α-growth condition, 0 < α < n.

Set

Lα(µ) = sup
Q

µ(Q)

l(Q)α
,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axis. We consider first the inequality Lα(µ) ≤ C Gα(µ). The definition of Gα is
in (58). Given a cube Q let ϕQ be a function in C∞

0 (2Q) such that 1 ≤ ϕQ on Q
and ‖∂sϕQ‖∞ ≤ Cs l(Q)

−|s|, |s| ≥ 0. We claim that c ϕQ satisfies the normalization
inequalities (59) or (60) for a sufficiently small positive constant c. If this is the
case, then

µ(Q) ≤

∫

ϕQ dµ = |〈µ, ϕQ〉| ≤ c−1Gα(µ) l(Q).

We treat first the case of integer α. Clearly ‖∂sϕQ‖L1 ≤ Cl(Q)α, |s| = n−α. By
Hölder’s inequality and the fact that Riesz transforms preserve Lq(Rn), 1 < q <∞,

‖Rj(∂
sϕQ)‖L1(4Q) ≤ Cl(Q)

n
p ‖Rj(∂

sϕQ)‖Lq(Rn) ≤ Cl(Q)
n
p ‖∂sϕQ‖Lq(Rn) ≤ Cl(Q)α.

Then, by the Sublemma in subsection 4.1, the function ϕQ satisfies the normalization
inequalities (59).

If α /∈ Z, write α = [α] + {α}, with [α] ∈ Z and 0 < {α} < 1. For the claim we
have to show that for |s| = n− [α], and 1 ≤ j ≤ n,

‖∂sϕQ ∗
1

|x|n−{α}
‖L1(Rn) ≤ l(Q)α (68)

‖Rj(∂
sϕQ ∗

1

|x|n−{α}
)‖L1(Rn) ≤ l(Q)α. (69)

Inequality (68) is proven as follows. By Fubini,

∫

4Q

|(∂sϕQ ∗
1

|x|n−{α}
)(x)|dx ≤ Cl(Q)α.

As in the Sublemma, integrating by parts to take one derivative from ∂sϕQ to the
kernel 1/|x|n−{α} we obtain

∫

(4Q)c
|(∂sϕQ ∗

1

|x|n−{α}
)(x)|dx ≤ Cl(Q)α,
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which proves (68).
The prove of inequality (69) we use that, for some constant c = c(n, α),

Rj(∂
sϕQ ∗

1

|x|n−{α}
) = c ∂sϕQ ∗

xj
|x|n+1−{α}

.

This can be easily checked by taking the Fourier transform. Now the argument
described above to prove (68) applies with small changes to prove (69).

For the reverse inequality, namely Gα(µ) ≤ C Lα(µ), it is convenient to distin-
guish two cases.

• α is integer. The argument is exactly as in the case α = 1. If ϕ ∈ C∞
0 (Rn),

then by an inequality of Mazya [Mz, 1.2.2, p. 24]

|〈µ, ϕ〉| = |

∫

ϕdµ| ≤

∫

|ϕ| dµ ≤ C Lα(µ)

∫

|∇n−[α]ϕ(x)| dx.

Thus
Gα(µ) ≤ C Lα(µ).

• α is not integer. If ϕ ∈ C∞
0 (Rn), then by another inequality of Mazya [Mz,

3.4.1, p. 134]

|〈µ, ϕ〉| = |

∫

ϕdµ| ≤

∫

|ϕ| dµ ≤ C Lα(µ)

∫

|∇n−[α]ϕ(x) ∗
1

|x|n−{α}
| dx.

Thus
Gα(µ) ≤ C Lα(µ).
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laterra (Barcelona), Catalonia.

E-mail: mateu@mat.uab.cat, laurapb@mat.uab.cat, jvm@mat.uab.cat.

44


