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Abstract. We show that L2-bounded singular integrals in metric spaces with respect to general
measures and kernels converge weakly. This implies a kind of average convergence almost ev-
erywhere. For measures with zero density we prove the almost everywhere existence of principal
values.
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1. Introduction

Singular integrals with respect to general measures in Rn, and also in metric spaces, have
been widely studied (see, e.g., [C], [CW], [D1], [DS], [M], [P], [Ve] and [V]). In this
paper our setting is a separable metric space (X, d) with a finite Borel measure µ and a
Borel measurable antisymmetric kernelK : X×X\{(x, y) : x = y} → R. Antisymmetry
means that

K(x, y) = −K(y, x) for x, y ∈ X, x 6= y.

Moreover, we shall assume thatK is bounded in {(x, y) ∈ X×X : d(x, y) > δ} for every
δ > 0. We shall also always assume that Vitali’s covering theorem is valid for µ and the
family of closed balls. Although this is not automatically true even when X is compact, it
is true for example if X = Rn or µ is doubling (see, e.g., [F, Section 2.8]).

The singular integral operator T associated with µ and K is formally given by

T (f )(x) =

∫
K(x, y)f (y) dµy.

The problem which appears already in all classical cases such as the Hilbert transform
on R, i.e.,K(x, y) = 1/(y−x), is that usually this integral does not exist when x ∈ sptµ,

P. Mattila: Department of Mathematics and Statistics, P.O. Box 68, FI-00014 University of Helsinki,
Finland; e-mail: Pertti.Mattila@Helsinki.fi
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the support of µ. When µ is the Lebesgue measure Ln on Rn and K is a standard
Calderón–Zygmund kernel, this can be overcome by defining

T (f )(x) = lim
ε→0

Tεf (x), (1.1)

where

Tε(f )(x) =

∫
X\B(x,ε)

K(x, y)f (y) dµy.

Here B(x, ε) is the open ball with centre x and radius ε. In such a case the limit exists triv-
ially for smooth functions due to cancellations, and by the denseness of smooth functions
in L1(Ln) standard techniques can be used to show that it exists almost everywhere for
L1-functions f . For general measures this approach fails. Unless µ has strong symmetry
properties around points in its support, there are not enough cancellations to guarantee
the existence of the limit even for constant functions. However, when K is antisymmetric
one often defines T (f ) as a distribution by

(T (f ), g) =
1
2

∫∫
K(x, y)(f (x)g(y)− f (y)g(x)) dµx dµy (1.2)

when f and g are bounded Lipschitz functions (see [C] or [D1]).
A central concept in the theory of singular integrals is the boundedness inL2. This can

be formulated in several ways which all agree in the classical case of Calderón–Zygmund
kernels and the Lebesgue measure. One way is to say that the distributionally defined
operator T , as in (1.2), is bounded in L2(µ) if it has a bounded extension to L2(µ) →

L2(µ). Another way is to require that the truncated operators Tε , ε > 0, are uniformly
bounded in L2(µ). This agrees very generally with the boundedness in L2(µ) of the
sublinear maximal operator T ∗:

T ∗(f )(x) = sup
ε>0
|Tε(f )(x)| (1.3)

(see [NTV]).
A natural question is whether the L2-boundedness forces the limit limε→0 Tε(f )(x)

to exist for µ-almost all x ∈ X. One would expect this to be true at least if µ is an
m-dimensional Ahlfors–David-regular measure in Rn:

rm/C ≤ µ(B(x, r)) ≤ Crm for x ∈ sptµ, 0 < r < diam(sptµ),

and K is the vector-valued Riesz kernel |x − y|−m−1(x − y). In fact, by a result of Tolsa
(see [T1]), this is true whenm = 1 even for much more general measures, but the proof is
based on very special relations with the kernel x/|x|2 (essentially the Cauchy kernel 1/z
for z ∈ C = R2) and the so-called Menger curvature. We shall discuss some relations of
this problem to rectifiability at the end of the paper. And we shall mention some kernels
for which L2-boundedness does not give the almost everywhere convergence of principal
values.

In this paper we prove some substitutes for (1.1) under the L2-boundedness:



Convergence of singular integrals with general measures 3

1.4. Theorem. Suppose that T ∗ (defined by (1.3)) is bounded in L2(µ), that is, there
exists a constant C0 such that∫

T ∗(f )2dµ ≤ C0

∫
f 2 dµ (1.5)

for f ∈ L2(µ). Then the truncated operators Tε converge weakly in L2(µ), that is, there
exists a bounded linear operator T : L2(µ)→ L2(µ) such that

lim
ε→0

∫
Tε(f )g dµ =

∫
T (f )g dµ

for f, g ∈ L2(µ). Moreover,

T (f )(z) = lim
r→0

1
µ(B(z, r))

∫
B(z,r)

(∫
X\B(z,r)

K(x, y)f (y) dµy

)
dµx

for µ-almost all z ∈ X.

So even if we do not know that T (f ) would exist as the limit of the simpler integrals
Tε(f ), we know that it is almost everywhere the limit of the more complicated but still
concrete integrals of Theorem 1.4.

Observe that with some natural estimates the limit operator T satisfies (1.2). This is
so if, for example, ∫∫

|K(x, y|d(x, y) dµy dµx <∞,

as one easily checks. In many cases also the converse in the first part of Theorem 1.4 is
true. Namely, by the Banach–Steinhaus theorem the weak convergence implies that the
truncated operators Tε are uniformly bounded and, as said before, this is often equivalent
to the L2-boundedness of T ∗.

We prove Theorem 1.4 in Section 2. We first establish the weak convergence. Then
we deduce from it the average convergence using the Lebesgue differentiation theorem.
We shall also indicate in Section 3 another way of getting the average convergence via
the martingale convergence theorem.

In Section 4 we apply Theorem 1.4 to prove the following result on the existence of
principal values for measures with zero density:

1.6. Theorem. Suppose X = Rn or µ is doubling. Let h : (0,∞) → (0,∞) be an
increasing function such that limr→0 h(r) = 0 and h(2r) ≤ Ch(r) for r > 0 and suppose
that for x, y ∈ X, x 6= y,

|K(x, y)| ≤
1

h(d(x, y))
, (1.7)

and for z ∈ X, z 6= x with d(x, y) > 2d(y, z),

|K(x, y)−K(x, z)| ≤
d(y, z)

d(x, y)h(d(x, y))
. (1.8)
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Suppose also that for all x ∈ X and r > 0,

µ(B(x, r)) ≤ h(r) (1.9)

and for µ-almost all x ∈ X,

lim
r→0

µ(B(x, r))

h(r)
= 0. (1.10)

If T ∗ : L2(µ)→ L2(µ) is bounded, then for f ∈ L1(µ) and for µ-almost all x ∈ X,

lim
ε→0

Tε(f )(x) = T (f )(x)

where T is the weak limit operator of Theorem 1.4.

Note that originally T (f ) was only defined for f ∈ L2(µ), but under the assumptions of
the theorem it has a unique extension to L1(µ) because we have the weak L1-inequality:
for t > 0,

µ({x ∈ X : |T ∗(f )(x)| > t}) ≤ C‖f ‖1/t. (1.11)

For doubling measures in metric spaces this was proved in [CW] and for general measures
in Rn in [NTV]. The assumptions on the kernels in [NTV] are not quite the same as above
but it is easy to check that the proofs can be modified.

Quite often the growth condition (1.9) is a consequence of the L2-boundedness of T ∗

(see [D1, p. 56]).
For general kernels K as above the assumption (1.10) is necessary, as an example of

David, which we discuss at the end of the paper, shows.
A particular but interesting instance of the above result arises in the following situa-

tion. We take X = Rn and an underlying measure µ which satisfies the growth condition
µ(B(x, r)) ≤ Crm for each x and each r > 0. The kernel is a standard smooth antisym-
metric m-dimensional kernel satisfying the usual conditions

|K(x, y)| ≤
1

|x − y|m
,

and
|K(x, y)−K(x, z)| ≤

|y − z|

|x − y|m+1 , |x − y| > 2|y − z|. (1.12)

Then (1.10) says that m-dimensional density vanishes for µ-almost all x, namely,

lim
r→0

µ(B(x, r))

rm
= 0.

This, of course, excludes m-dimensional Ahlfors–David regular sets. See the remarks in
Section 5.

2. Proof of Theorem 1.4

Let B be a closed ball in X. We denote by χA the characteristic function of a set A and
by Ac its complement in X. We have, for all ε > 0 (1 denotes the constant function
identically 1),
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Tε(1)χB dµ = −

∫
Tε(χB) dµ = −

∫
Bc
Tε(χB) dµ,

because by antisymmetry ∫
B

Tε(χB) dµ = 0.

Clearly, for all x ∈ Bc, (since B is closed) the limit

T (χB)(x) := lim
ε→0

Tε(χB)(x)

exists. As |Tε(χB)| ≤ T ∗(χB) ∈ L1(µ), the dominated convergence theorem yields

lim
ε→0

∫
Tε(1)χB dµ = − lim

ε→0

∫
Bc
Tε(χB) dµ = −

∫
Bc
T (χB) dµ. (2.1)

Let S be the dense subspace of L2(µ) consisting of the finite linear combinations of
the characteristic functions of closed balls. (It is easy to verify that S is dense since we
have assumed Vitali’s covering theorem for µ.) Fix f in L2(µ) and take b in S extremely
close to f in L2(µ). Then for 0 < ε < δ,∫

(Tδ(1)− Tε(1))f dµ=
∫
(Tδ(1)− Tε(1))(f − b) dµ+

∫
(Tδ(1)− Tε(1))b dµ.

By (2.1), the second term goes to 0 as δ→ 0. For the first term we have, by the Schwarz
inequality and the L2-boundedness (1.5) of T ∗,∣∣∣∣∫ (Tδ(1)− Tε(1))(f − b) dµ∣∣∣∣ ≤ ‖Tδ(1)− Tε(1)‖2‖f − b‖2

≤ 2‖T ∗(1)‖2‖f − b‖2 ≤ 2(C0µ(X))
1/2
‖f − b‖2,

which we can make as small as we want. This implies that the limit

lim
ε→0

∫
Tε(1)f dµ

exists and is finite for all f ∈ L2(µ).
Let again B be a closed ball and f ∈ L2(µ). Then for ε > 0,∫

Tε(χB)f dµ =

∫
B

∫
B\B(x,ε)

K(x, y) dµy f (x) dµx

+

∫
Bc

∫
B\B(x,ε)

K(x, y) dµy f (x) dµx.

Applying what we proved above to the measure χBµ we conclude that the first integral
converges as ε → 0. The second integral converges again by the dominated convergence
theorem, since ∣∣∣∣∫

B\B(x,ε)

K(x, y) dµy f (x)

∣∣∣∣ ≤ T ∗(χB)(x)|f (x)|
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and T ∗(χB)f ∈ L1(µ). Then also

lim
ε→0

∫
Tε(b)f dµ

exists for all f ∈ L2(µ), b ∈ S. Arguing as above with the L2-boundedness we find that

lim
ε→0

∫
Tε(g)f dµ

exists for all f, g ∈ L2(µ). This implies easily that there exists a bounded linear operator
T : L2(µ)→ L2(µ) such that∫

T (g)f dµ = lim
ε→0

∫
Tε(g)f dµ

for all f, g ∈ L2(µ), and we have established the required weak convergence.
Let B = B(z, r) be an open ball with µ(B) > 0. Using the antisymmetry of K we

have, for all ε > 0,∫
B

Tε(f χBc ) dµ = −

∫
f χBcTε(χB) dµ = −

∫
f Tε(χB) dµ+

∫
f χBTε(χB) dµ

=

∫
B

Tε(f ) dµ+

∫
B

(f − fB)Tε(χB) dµ,

where fB = 1
µ(B)

∫
B
f dµ and

∫
B
Tε(χB) dµ = 0. Letting ε → 0, we obtain, for the

weak limit operator T ,∫
B

T (f χBc ) dµ =

∫
B

T (f ) dµ+

∫
B

(f − fB)T (χB) dµ.

Dividing by µ(B) = µ(B(z, r)) and letting r → 0, we have for µ-almost all z for the
first term of the right hand side, by the Lebesgue differentiation theorem,

lim
r→0

1
µ(B(z, r))

∫
B(z,r)

T (f ) dµ = T (f )(z),

and for the second term, by the Schwarz inequality, L2-boundedness of T and the Le-
besgue differentiation theorem,

lim
r→0

1
µ(B(z, r))

∫
B(z,r)

(f − fB(z,r))T (χB(z,r)) dµ = 0.

On the other hand,

Tε(f χBc )(x) =

∫
Bc\B(x,ε)

K(x, y)f (y) dµy →

∫
Bc
K(x, y)f (y) dµy
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as ε → 0 for x ∈ B with |Tε(f χBc )(x)| ≤ |T ∗(f χBc )(x)|, and so by the dominated
convergence theorem,∫

B

T (f χBc ) dµ = lim
ε→0

∫
B

Tε(f χBc ) dµ =

∫
B

∫
Bc
K(x, y)f (y) dµy dµx.

Combining the above equations, we obtain

lim
r→0

1
µ(B(z, r))

∫
B(z,r)

∫
B(z,r)c

K(x, y)f (y) dµy dµx = Tf (z)

for µ-almost all z ∈ X. This proves the theorem.

For further reference we record that for every ball B,∫
B

T (1) dµ =
∫
B

T (χBc ) dµ = −

∫
Bc
T (χB) dµ, (2.2)

which follows by antisymmetry.

3. Martingales

We introduce a general nested system of sets. Standard examples are dyadic lattices of
cubes in Rn. For each k ∈ N = {1, 2, . . . } let Dk be a countable disjoint partition of X
into µ-measurable sets D such that µ(∂D) = 0. Let D =

⋃
∞

k=1 Dk . We assume that the
system {Dk} is nested in the sense that every D ∈ Dk+1 is contained in some D′ ∈ Dk .
Then every D′ ∈ Dk is a disjoint union of sets in Dk+1.

Suppose that T ∗ is bounded in L2(µ). Let f ∈ L2(µ) and D ∈ Dk . As µ(∂D) = 0
we have, for µ-almost all x ∈ D,∫

Dc
K(x, y)f (y) dµy = lim

ε→0

∫
Dc\B(x,ε)

K(x, y)f (y) dµy.

Moreover,∣∣∣∣∫
Dc\B(x,ε)

K(x, y)f (y) dµy

∣∣∣∣ ≤ T ∗(f χDc )(x) ≤ T ∗(f )(x)+ T ∗(f χD)(x).
If also g ∈ L2(µ), by the dominated convergence theorem we get∫

D

∣∣∣∣∫
Dc
K(x, y)f (y) dµy g(x)

∣∣∣∣ dµx
≤

∫
D

T ∗(f )|g| dµ+

∫
D

T ∗(f χD)|g| dµ <∞. (3.1)

Suppose now in addition that f is non-negative. Then by (3.1) we can define, for k ∈ N,

Skf (z) =

(∫
D

f dµ

)−1 ∫
D

∫
Dc
K(x, y)f (y) dµy f (x) dµx

when z ∈ D ∈ Dk , where we interpret Skf (z) as 0 when z ∈ D ∈ Dk and
∫
D
f dµ = 0.
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Let ν be the finite Borel measure on X such that

ν(B) =

∫
B

f dµ

for Borel sets B ⊂ X. Let Ak be the σ -algebra generated by Dk . We shall check that
(Skf,Ak) is a martingale (with respect to ν).

Let D ∈ Dk and let D1,D2, . . . be sets in Dk+1 which form a disjoint partition of D.
Then∫

D

Sk+1f dν =
∑
i

∫
Di

Sk+1f dν =
∑
i

∫
Di

1
ν(Di)

∫
Di

∫
Dci

K(x, y) dνy dνx dν

=

∑
i

∫
Di

∫
Dci

K(x, y) dνy dνx

=

∑
i

∫
Di

∑
j :i 6=j

∫
Dj

K(x, y) dνy dνx +
∑
i

∫
Di

∫
Dc
K(x, y) dνy dνx

= 0+
∫
D

∫
Rn\D

K(x, y) dνy dνx,

where 0 comes from the antisymmetry of K . This gives

1
ν(D)

∫
D

Sk+1f dν = Skf (z) for z ∈ D

and implies that (Skf,Ak) is a martingale.
Now we check that the martingale (Skf,Ak) is L1(ν)-bounded. Using (3.1), the

Schwarz inequality and the L2-boundedness of T ∗, we estimate∣∣∣∣∫ Skf dν

∣∣∣∣ = ∣∣∣∣ ∑
D∈Dk

1
ν(D)

∫
D

∫
Dc
K(x, y) dνy dνx ν(D)

∣∣∣∣
=

∣∣∣∣ ∑
D∈Dk

∫
D

∫
Dc
K(x, y)f (y) dµy f (x) dµx

∣∣∣∣
≤

∑
D∈Dk

(∫
D

T ∗(f )f dµ+

∫
D

T ∗(f χD)f dµ

)

≤

∑
D∈Dk

((∫
D

T ∗(f )2 dµ

)1/2(∫
D

f 2 dµ

)1/2

+

(∫
D

T ∗(f χD)
2 dµ

)1/2(∫
D

f 2 dµ

)1/2)
≤

∑
D∈Dk

((∫
D

T ∗(f )2 dµ

)1/2

+

(
C0

∫
D

f 2 dµ

)1/2)(∫
D

f 2 dµ

)1/2
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≤

(( ∑
D∈Dk

∫
D

T ∗(f )2 dµ

)1/2

+

( ∑
D∈Dk

C0

∫
D

f 2 dµ

)1/2)( ∑
D∈Dk

∫
D

f 2 dµ

)1/2

=

((∫
T ∗(f )2 dµ

)1/2

+

(
C0

∫
f 2 dµ

)1/2)(∫
f 2 dµ

)1/2

≤ 2C1/2
0

∫
f 2 dµ.

This proves theL1-boundedness. Hence by the martingale convergence theorem (Skf (z))

converges for µ-almost all z ∈ X.
Now we also assume that

lim
k→∞

sup{diam(D) : D ∈ Dk} = 0. (3.2)

For f ∈ L2(µ) and k ∈ N, we define

Akf (z) =
1

µ(D)

∫
D

∫
Dc
K(x, y)f (y) dµy dµx when z ∈ D ∈ Dk,

where Akf (z) = 0 if µ(D) = 0. Using the convergence of (Skf (z)) we shall now verify
that for f ∈ L2(µ) the limit

Tf (z) = lim
k→∞

Akf (z) (3.3)

exists and is finite for µ-almost all z ∈ X. Clearly, we may assume that f is non-negative.
Moreover, since Ak(f ) = Ak(f +1)−Ak(1), we may assume that f ≥ 1. To prove (3.3)
for such an f , write fD = 1

µ(D)

∫
D
f dµ for D ∈ Dk with µ(D) > 0. Then by (3.1), the

Schwarz inequality and (1.5) we have, for z ∈ D,

|Skf (z)− Akf (z)| =

∣∣∣∣(∫
D

f dµ

)−1 ∫
D

∫
Dc
K(x, y)f (y) dµy (f (x)− fD) dµx

∣∣∣∣
≤

1
µ(D)

(∫
D

T ∗(f )|f − fD| dµ+

∫
D

T ∗(f χD)|f − fD| dµ

)
≤

1
µ(D)

((∫
D

T ∗(f )2 dµ

)1/2

+

(∫
D

T ∗(f χD)
2 dµ

)1/2)(∫
D

(f − fD)
2 dµ

)1/2

≤

(
1

µ(D)

(
2
∫
D

(T ∗(f )2 + C0f
2) dµ

)1/2( 1
µ(D)

∫
D

(f − fD)
2 dµ

)1/2)
.

Here for µ-almost all z ∈ X, as k → ∞, the first factor goes to 21/2 (T ∗(f )(z)2 +

C0f (z)
2)1/2, and the second goes to 0. Hence Skf (z) − Akf (z) → 0, which proves

(3.3) for non-negative functions f ∈ L2(µ) and of course then also for all f ∈ L2(µ).
Moreover, T : L2(µ)→ L2(µ) is bounded.

To get from this the average convergence with balls one needs to approximate balls
with nested systems. At least in Rn this approximation procedure can be done with dyadic
cubes. The argument is quite technical and will be omitted.
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4. Proof of Theorem 1.6

We shall first make two reductions using the weak type inequality (1.11). Firstly, we
may assume that f = 1. To see this, note that we may of course assume that f is non-
negative. Bounded functions f such that f > δ for some δ > 0 are dense in the space
of non-negative L1(µ)-functions, whence standard techniques (as for (4.1) below) allow
us to assume that f is such a function. Replacing µ by fµ then gives the reduction to
f = 1.

Secondly, we may assume the uniform condition

µ(B(x, r)) ≤ η(r)h(r) ≤ h(r) for x ∈ X, r > 0, (4.1)

where η is a non-decreasing function such that η(r) → 0 as r → 0. To see this, we use
Egorov’s theorem to select closed sets Ek, k = 1, 2, . . . , such that µ(X \Ek) < 1/k and
µ(B(x, r))/h(r) → 0 as r → 0 uniformly on Ek . Then using (1.11) we have, for all
t > 0,

µ({x : lim sup
ε,δ→0

|Tε(1)(x)− Tδ(1)(x)| > t})

= µ({x : lim sup
ε,δ→0

|Tε(1− χEk )(x)− Tδ(1− χEk (x)| > t})

≤ µ({x : T ∗(1− χEk )(x) > t/2}) ≤ Cµ(X \ Ek)/t,

provided the limit limε→0 Tε(χEk )(x) exists for µ-almost all x ∈ Ek . (It also exists for all
x ∈ Eck since Ek is closed.) That is, if we have the convergence for the measures χEkµ,
which satisfy (4.1), we have it also for µ. Then it is easy to check that the limit must be
T (1)(x) µ-almost everywhere.

Thus it is enough to prove that limε→0 Tε(1)(a) = T (1)(a) for µ-almost all a ∈ X
assuming (4.1). It is enough to consider points a ∈ X such that

T (1)(a) = lim
ε→0

1
µ(B(a, ε))

∫
B(a,ε)

T (1) dµ.

Let 0 < δ < 1/2 and choose p > 1/δ. Using (2.2) we can write, for ε > 0,

φ(ε) := Tε(1)(a)−
1

µ(B(a, ε))

∫
B(a,ε)

T (1) dµ

=

∫
B(a,pε)\B(a,ε)

K(a, x) dµx

+

(∫
B(a,pε)c

K(a, x) dµx +
1

µ(B(a, ε))

∫
B(a,pε)c

T (χB(a,ε)) dµ

)
+

1
µ(B(a, ε))

∫
B(a,pε)\B(a,ε)

T (χB(a,ε)) dµ

=: φ1(ε)+ φ2(ε)+ φ3(ε).



Convergence of singular integrals with general measures 11

The first term is easy to estimate:

|φ1(ε)| ≤
µ(B(a, pε))

h(ε)
≤ Cp

µ(B(a, pε))

h(pε)
< δ

by (1.7) and (1.10) for sufficiently small ε. Here and later,Cq for q > 1 denotes a constant
such that h(qr) ≤ Cqh(r) for r > 0. We estimate φ2 using (1.8) and (4.1):

|φ2(ε)| =

∣∣∣∣ 1
µ(B(a, ε))

∫
B(a,ε)

(∫
B(a,pε)c

K(a, x) dµx −

∫
B(a,pε)c

K(y, x) dµx

)
dµy

∣∣∣∣
≤

1
µ(B(a, ε))

∫
B(a,ε)

∫
B(a,pε)c

d(a, y)

d(a, x)h(d(a, x))
dµx dµy

≤ ε

∞∑
i=0

µ(B(a, 2i+1pε))

2ipεh(2ipε)
≤

∞∑
i=0

µ(B(a, 2i+1pε))

2ipC−1
2 h(2i+1pε)

≤ 2C2/p < 2C2δ.

To estimate φ3 we first show that at almost every point, µ is doubling at some small
scales. Then we only need to treat the case X = Rn. More precisely, let C > 2C2 be a
constant and let F be the set of those a ∈ Rn for which there exists ε, 0 < ε < 1, such
that

µ(B(a, 21−kε)) ≥ Cµ(B(a, 2−kε) for k = 0, 1, . . . .

We also assume that C > 2n+1. We now show that µ(F) = 0. To prove this we may
assume that the support of µ is bounded, say sptµ ⊂ B(0, R). For a ∈ F let ε = ε(a)
be as above. Fix a large positive integer m and pick for each a ∈ F an integer k(a) ≥ m
such that for k ≥ k(a),

C−k ≤ (2−kε(a))n+1.

By Vitali’s covering theorem (which holds in our setting, as we said at the beginning of
the introduction) we can find disjoint balls B(ai, 2−ki εi) ⊂ B(0, R) with εi = ε(ai) and
ki ≥ k(ai) which cover µ-almost all of F . Then

µ(F) ≤
∑
i

µ(B(ai, 2−ki εi)) ≤
∑
i

C−kiµ(B(a, εi))

≤

∑
i

(2−ki εi)n+1µ(Rn) ≤ Rn2−mµ(Rn).

Letting m→∞ we get µ(F) = 0.
Let now a ∈ F c and 0 < ε < 1. Then there is k = 0, 1, . . . such that

µ(B(a, 21−kε)) ≤ Cµ(B(a, 2−kε))

and
µ(B(a, 21−j ε)) ≥ Cµ(B(a, 2−j ε)) for j = 0, . . . , k − 1,

whence
µ(B(a, 2−j ε)) ≤ C−jµ(B(a, ε)) for j = 0, . . . , k − 1.
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Let ε1 = 2−kε. Then µ(B(a, 2ε1)) ≤ Cµ(B(a, ε1)) and, since C > 2C2, we get

|Tε(1)(a)− Tε1(1)(a)| ≤
k∑

j=1

|T21−j ε(1)(a)− T2−j ε(1)(a)|

≤

k∑
j=1

∫
B(a,21−j ε)\B(a,2−j ε)

|K(a, x)| dµx ≤

k∑
j=1

µ(B(a, 21−j ε))

h(2−j ε)

≤

k∑
j=1

C1−jµ(B(a, ε))

C
−j

2 h(ε)
≤ Cη(ε)

k∑
j=1

2−j ≤ Cη(ε) < δ

when ε is small enough. Consequently,

|φ(ε)− φ(ε1)| ≤ |Tε(1)(a)− Tε1(1)(a)|

+

∣∣∣∣ 1
µ(B(a, ε))

∫
B(a,ε)

T (1) dµ−
1

µ(B(a, ε1))

∫
B(a,ε1)

T (1) dµ
∣∣∣∣ < δ

when ε is small enough. Now we estimate the average of |φ3(t)| over [ε1, 2ε1] by

1
ε1

∫ 2ε1

ε1

|φ3(t)| dt ≤
1
ε1

∫ 2ε1

ε1

1
µ(B(a, t))

∫
B(a,pt)\B(a,t)

∫
B(a,t)

|K(x, y)| dµx dµy dt

=
1
ε1

∫∫∫
A

1
µ(B(a, t))

|K(x, y)| dµx dµy dt

where

A = {(x, y, t) : d(x, a) < t ≤ d(y, a) < pt, ε1 ≤ t ≤ 2ε1}

⊂ {(x, y, t) : d(x, a) < 2ε1, d(y, a) < 2pε1, d(x, a) < t ≤ d(y, a)}.

Thus by Fubini’s theorem, (1.7) and (4.1),

1
ε1

∫ 2ε1

ε1

|φ3(t)| dt ≤
1

ε1µ(B(a, ε1))

∫
B(a,2pε1)

∫
B(a,2ε1)

|K(x, y)|

∫ d(y,a)

d(x,a)

dt dµx dµy

=
1

ε1µ(B(a, ε1))

∫
B(a,2ε1)

∫
B(a,2pε1)

|K(x, y)|(d(y, a)− d(x, a)) dµy dµx

≤
1

ε1µ(B(a, ε1))

∫
B(a,2ε1)

∫
B(x,2(p+1)ε1)

|K(x, y)|d(x, y) dµy dµx

≤
1

ε1µ(B(a, ε1))

∫
B(a,2ε1)

∞∑
i=0

∫
B(x,21−i (p+1)ε1)\B(x,2−i (p+1)ε1)

|K(x, y)|d(x, y) dµy dµx

≤
1

ε1µ(B(a, ε1))

∫
B(a,2ε1)

∞∑
i=0

21−i(p + 1)ε1µ(B(x, 21−i(p + 1)ε1))

h(2−i(p + 1)ε1)
dµx
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≤
1

ε1µ(B(a, ε1))

∞∑
i=0

21−i(p + 1)ε1η(21−i(p + 1)ε1)h(21−i(p + 1)ε1)

h(2−i(p + 1)ε1)
µ(B(a, 2ε1))

≤
4C2(p + 1)η(2(p + 1)ε1))µ(B(a, 2ε1))

µ(B(a, ε1))
≤ 4CC2(p + 1)η(2(p + 1)ε) < δ

when ε is small enough. So there is ε2 with ε1 ≤ ε2 ≤ 2ε1 such that |φ3(ε2)| < δ. Then
|φ(ε1)− φ(ε2)| < δ as above and so

|φ(ε)| ≤ |φ(ε)− φ(ε1)| + |φ(ε1)− φ(ε2)| + |φ(ε2)|

< 2δ + |φ1(ε2)| + |φ2(ε2)| + |φ3(ε2)| < (4+ 2C2)δ.

This completes the proof of Theorem 1.6.

5. Remarks on rectifiability

One motivation for the developments in this paper was to find some new insight into the
following problem:

Let m be an integer, 0 < m < n, and let µ be an m-dimensional Ahlfors–David-
regular Borel measure on Rn, as in Section 1. For i = 1, . . . , n let T ∗i be the maximal
operator related toµ and the kernel |x−y|−m−1(xi−yi). Suppose that each T ∗i is bounded
inL2(µ). Doesµ have to be rectifiable, or even uniformly rectifiable in the sense of David
and Semmes?

By the rectifiability of µ we mean that there are m-dimensional C1-surfaces M1,

M2, . . . such that µ(Rn \
⋃
iMi) = 0. For the definitions of uniform rectifiability,

see [DS].
If m = 1, the answer to the above question is yes by [MMV], and the regularity

assumptions on µ can be considerably relaxed (see [T2]). The problem is open form ≥ 2.
It was shown in [MPr] (see also [M]) that the rectifiability of an Ahlfors–David-

regular measure µ follows from the existence of the principal values

lim
ε→0

∫
Rn\B(x,ε)

|x − y|−m−1(xi − yi) dµy, i = 1, . . . , n,

for µ-almost all x ∈ Rn. But it is not known whether the L2-boundedness implies the
above almost everywhere convergence. Thus Theorem 1.4 is a kind of replacement for
this. Unfortunately we do not know if the almost everywhere convergence of the aver-
ages in Theorem 1.4 implies rectifiability, nor do we know whether it implies the almost
everywhere existence of the principal values in this particular case.

These questions are also related to geometric properties of removable sets of bounded
analytic functions in C (see [MMV], [P] and [T3]) and of Lipschitz harmonic functions
in Rn (see [MP]).

The L2-boundedness does not always imply the almost everywhere existence of prin-
cipal values in the setting of Theorem 1.4. This can be seen by considering a standard
example of a purely unrectifiable 1-dimensional Ahlfors–David-regular set in the plane,
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which is the Cantor set obtained by starting with the unit square, taking four squares of
side-length 1/4 inside it in its corners, then taking the squares of side-length 1/16 in the
corners of these, and so on. The final Cantor set C is the compact set inside all these
squares of all generations. In [D2] David constructed a 1-dimensional odd Calderón–
Zygmund kernel K such that the operator T ∗ related to K is bounded in L2(µ) where
µ is the natural (1-dimensional Hausdorff) measure on C. However, it is easy to check
that the principal values

lim
ε→0

∫
B(x,ε)c

K(x − y) dµy

fail to exist at µ-almost all points x ∈ R2.
In [H2] Huovinen considered homogeneous kernels such as

K(z) = Re(z/|z|2 − z3/|z|4)

for z ∈ C. He showed that there exist purely unrectifiable 1-dimensional Ahlfors–David-
regular sets on which for such a kernel the principal values exist almost everywhere and
the related operator is bounded in L2 on some subset of positive measure. On the other
hand, he showed in [H1] that for the kernels z2k−1/|z|2k , k = 1, 2, . . . , and their linear
combinations the almost everywhere convergence of principal values on 1-dimensional
AD-regular sets implies their rectifiability.
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