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Consider a standard Cantor set in the plane of Hausdorff dimension 1. If
the linear density of the associated measure µ vanishes, then the set of
points where the principal value of the Cauchy singular integral of µ exists
has Hausdorff dimension 1. The result is extended to Cantor sets in Rd of
Hausdorff dimension α and Riesz singular integrals of homogeneity −α,
0 < α < d: the set of points where the principal value of the Riesz singular
integral of µ exists has Hausdorff dimension α. A martingale associated with
the singular integral is introduced to support the proof.

1. Introduction

Our main result deals with the Cauchy singular integral on Cantor sets in the plane
and the proof extends with minor variations to the Riesz transforms in Rd . We first
proceed to formulate the result for the Cauchy integral and then we take care of the
Riesz transforms.

The appropriate Cantor sets for the Cauchy integral are defined as follows.
Let (λn)

∞

n=1 a sequence of real numbers satisfying 1
4 ≤ λn ≤ λ < 1

2 . Let Q0 :=

[0, 1] × [0, 1] be the unit square. Take the 4 squares contained in Q0 with sides
of length λ1 parallel to the coordinate axis having a vertex in common with Q0

(the 4 “corner squares” of side length λ1). Repeat in each of these 4 squares the
same procedure with the dilation factor λ1 replaced by λ2 to get 16 squares of
side length λ1λ2. Proceeding inductively we obtain at the n-th step 4n squares Qn

j ,
1 ≤ j ≤ 4n , of side length sn = λ1 · · · λn . Our Cantor set is

K =

∞⋂
n=1

4n⋃
j=1

Qn
j .
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Let µ be the Borel probability measure on K with µ(Qn
j ) = 4−n and denote by an

the linear density at generation n, that is,

an =
1

4nsn
=

µ(Qn
j )

sn
≤ 1.

Set Dn = {Qn
j : j = 1, . . . , 4n

} and D =
⋃

∞

n=1 Dn .

Theorem 1.1. If limn→∞ an = 0, then the set of points z ∈ K for which the
principal value

(1-1) lim
ε→0

∫
|w−z|>ε

1
w − z

dµw

exists has Hausdorff dimension greater than or equal to 1.

This solves a problem posed in [Cufí et al. 2022, Open problem 5.5, p. 1621].
If an = 1 for all n, then K is the famous Garnett–Ivanov Cantor set, which has

positive and finite one-dimensional Hausdorff measure but zero analytic capacity. In
this case it was noticed in [Cufí et al. 2022] that the principal value does not exist at
any point of K . If an →0, then the Hausdorff dimension of K is greater than or equal
to 1 and it has non-sigma finite one-dimensional Hausdorff measure. If in addition∑

n a2
n <∞, then the principal value exists µ almost everywhere. So Theorem 1.1 is

relevant only when an →0 slowly. That the condition
∑

n a2
n <∞ implies the almost

everywhere existence of principal values can be seen in two ways. First, we introduce
a martingale (Sn)

∞

n=0 (see (2-1)) and show that the increments |Sn+1(x)− Sn(x)| are
bounded by C an , with the constant C independent of n and x . In Lemma 2.4 we
prove that for any point x the principal value exists at x if and only if (Sn(x))∞n=0
converges. If

∑
n a2

n <∞, then Sn is an L2 martingale and consequently it converges
almost everywhere. Alternatively, the condition

∑
n a2

n <∞ implies that the Cauchy
singular integral operator is bounded in L2(µ). In [Mattila and Verdera 2009] it
was shown in a very general setting that L2 boundedness together with zero density
of the measure yields the almost everywhere existence of principal values.

The main argument in the proof of Theorem 1.1 deals with case where
∑

n a2
n =∞.

It is a variation of a line of reasoning used in other situations (see [Donaire et al.
2014]). We use a stopping time argument to show that (Sn(x))∞n=0 converges
to 0 in a set of Hausdorff dimension 1 (indeed, given any complex number z0 the
martingale (Sn(x))∞n=0 converges to z0 in a set of Hausdorff dimension 1). We get the
dimension 1 conclusion by applying a lemma of Hungerford [1988]. For the sake of
the reader we present a proof of Hungerford’s lemma in our context in Appendix A.

Our proof extends with only technical modifications to cover the case of other
odd kernels, for instance,

zm

zm+1 , m = 1, 2, . . .
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But one of the ingredients of our method fails for the odd kernel (z + z)/z2 and we
do not know whether Theorem 1.1 holds in this case. The difficulty is indicated at
the fifth line after the statement of Lemma 3.1.

In Rd our proof works for the Riesz transforms of any homogeneity −α, 0<α<d .
These are the vector valued singular integrals with kernel

Rα(x) =
x

|x |1+α
, 0 < α < d.

The appropriate Cantor sets for the α-Riesz transform are those of Hausdorff
dimension α. They are constructed by the procedure outlined before in the planar
case with dilation factors that satisfy 2−d/α

≤ λn ≤ λ < 2−1. At generation n one
has 2dn cubes Qn

j of side length sn = λ1 · · · λn . The Cantor set is defined by

K =

∞⋂
n=1

2dn⋃
j=1

Qn
j

and the canonical measure on K by µ(Qn
j ) = 2−dn , 1 ≤ j ≤ 2dn . The α density

is an = 2−dns−α
n = µ(Qn

j )s
−α
n ≤ 1. For λn = 2−d/α , n = 1, 2 . . . , one gets the self

similar Cantor set of dimension α. If an → 0 then our Cantor set has Hausdorff
dimension ≥ α and non σ finite Hausdorff α-dimensional measure.

Theorem 1.2. If limn→∞ an = 0, then the set of points x ∈ K for which the
principal value

(1-2) lim
ε→0

∫
|y−x |>ε

Rα(y − x) dµy

exists has Hausdorff dimension greater than or equal to α.

In Appendix B we give some indications on how to adapt the proof for the
Cauchy kernel to the Riesz transforms in higher dimensions.

We let diam(A) denote the diameter and dim A the Hausdorff dimension of a
set A. We use the notation a ≲ b to mean that a ≤ C b for some constant C which
may depend on λ and d , and a ∼ b for a ≲ b and b ≲ a.

2. Martingales

Let C be the Cauchy kernel, C(x) = 1/x for x ∈ C, x ̸= 0. For each x ∈ K
let Qn(x) be the square in Dn containing x . Define the truncated Cauchy integral
at generation n as

Tn(x) =

∫
K\Qn(x)

C(x − y) dµy, x ∈ K ,

and a martingale (Sn(x))∞n=0 by

(2-1) Sn(x) = SQn(x) = /
∫

Qn(x)

Tn dµ, x ∈ K .
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Remark 2.1. That Sn is a martingale is easily checked. The reader will realise that
the martingale condition also holds for kernels K (x, y) satisfying the antisymmetry
condition K (x, y) = −K (y, x).

We shall prove:

Theorem 2.2. If limn→∞ an = 0, then the set of points x ∈ K for which (Sn(x))∞n=0
converges has Hausdorff dimension greater than or equal to 1.

We first show that the martingale (2-1) has uniformly bounded increments.

Lemma 2.3. There exists a positive constant C = C(λ) such that

(2-2) |Sn+1(x) − Sn(x)| ≤ Can, n = 0, 1, . . . and x ∈ K .

Thus if
∑

n an converges, (Sn(x))∞n=0 converges for all x ∈ K . As mentioned in
the introduction, even the weaker condition

∑
n a2

n < ∞ implies that (Sn(x))∞n=0
converges for µ almost all x ∈ K . Hence we shall assume that

∑
n a2

n = ∞. Under
this assumption one proves in [Cufí et al. 2022] that the set where the principal
values fail to exist has full µ measure. In Lemma 2.4 below we show that principal
values exist if and only if the martingale converges. Hence (Sn(x))∞n=0 is not
convergent for µ almost all x ∈ K . By a standard result in martingale theory (see,
for example, [Shiryaev 1996, Corollary 6, p. 561]) we get

(2-3) lim sup
n→∞

|Sn(x) − Sm(x)| = ∞, for all m = 0, 1, . . . and µ a.e.

Proof of Lemma 2.3. Set Qn = Qn(x), x ∈ K , n = 1, 2, . . . Then

Sn+1(x)−Sn(x) = /
∫

Qn+1

∫
K\Qn+1

C(z−y)dµy dµz−/
∫

Qn

∫
K\Qn

C(w−y)dµy dµw

=

∫
K\Qn

(
/
∫

Qn+1

C(z−y)dµz−/
∫

Qn

C(w−y)dµw

)
dµy

+

∫
Qn\Qn+1

/
∫

Qn+1

C(z−y)dµz dµy.

The last double integral is ≲ an , where the implicit constant depends on λ here and
for the rest of the proof.

To estimate the first summand above we remark that for each z′
∈ Qn+1 and

w′
∈ Qn we have

/
∫

Qn+1

C(z − y) dµz − /
∫

Qn

C(w − y) dµw

= /
∫

Qn+1

(
C(z − y) − C(z′

− y)
)

dµz − /
∫

Qn

(
C(w − y) − C(w′

− y)
)

dµw

+ C(z′
− y) − C(w′

− y).
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Clearly ∣∣C(z′
− y) − C(w′

− y)
∣∣ ≲ sn |x − y|

−2, y ∈ K \ Qn, x ∈ Qn.

Hence ∣∣∣∣ /
∫

Qn+1

(
C(z − y) − C(z′

− y)
)

dµz
∣∣∣∣ ≲ sn |x − y|

−2

and ∣∣∣∣ /
∫

Qn

(
C(w − y) − C(w′

− y)
)

dµz
∣∣∣∣ ≲ sn |x − y|

−2.

Setting
R j = Q j \ Q j+1,

the absolute value of the first summand of Sn+1(x) − Sn(x) is

≲ sn

∫
K\Qn

|x − y|
−2 dµy ∼ sn

n−1∑
j=0

s−2
j µ(R j )

= sn

n−1∑
j=0

s−2
j 4− j ≲ sns−2

n 4−n
= an,

because s−2
j 4− j

≤ (s−2
j+1λ

2)4− j
= (4λ2)s−2

j+14− j−1, so s−2
j 4− j ≲ (4λ2)n− j s−2

n 4−n .
Hence |Sn+1(x) − Sn(x)| ≲ an . □

By the following lemma Theorem 2.2 is equivalent to Theorem 1.1.

Lemma 2.4. If limn→∞ an = 0, then for each x ∈ K the principal value (1-1) exists
if and only if the sequence (Sn(x))∞n=0 converges.

Proof. Set Qn = Qn(x) for x ∈ K and n = 1, 2, . . . Then by the proof of Lemma 2.3∣∣∣∣Sn(x) −

∫
K\Qn

1
x − y

dµy
∣∣∣∣ =

∣∣∣∣ /
∫

Qn

∫
K\Qn

(
1

x ′ − y
−

1
x − y

)
dµy dµx ′

∣∣∣∣
≤ C an,

where the constant depends on λ. Compare now a given truncation
∫

K\B(x,ε)
1

x−y dµy,
0 < ε < 1, with

∫
K\Qn

1
x−y dµy where n is chosen so that diam(Qn) ≤ ε <

diam(Qn−1). Since Qn ⊂ B(x, ε) we have∣∣∣∣∫
K\Qn

1
x − y

dµy −

∫
K\B(x,ε)

1
x − y

dµy
∣∣∣∣ =

∣∣∣∣∫
B(x,ε)\Qn

1
x − y

dµy
∣∣∣∣

≤ C
µB(x, ε)

sn
,
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with C = C(λ). To complete the proof just remark that, since ε < diam(Qn−1),
B(x, ε) can intersect at most N squares in Dn , with N an absolute constant. Hence
µB(x, ε) ≤ C µ(Qn). □

We proceed now to discuss relative martingales.
For x ∈ R ⊂ Q, Q ∈ Dm , R ∈ Dn , m < n, we define the relative martingale

starting at Q as

SQ,R(x) = SQ,R = /
∫

R

∫
Q\R

C(z − y) dµy dµz.

Then for some constant C ,

(2-4) |SR − SQ − SQ,R| ≤ C am .

Indeed, we have

SR − SQ = /
∫

R

∫
K\R

C(z − y) dµy dµz − /
∫

Q

∫
K\Q

C(w − y) dµy dµw

=

∫
K\Q

(
/
∫

R
C(z − y) dµz − /

∫
Q

C(w − y) dµw

)
dµy

+

∫
Q\R

/
∫

R
C(z − y) dµz dµy

=

∫
K\Q

(
/
∫

R
C(z − y) dµz − /

∫
Q

C(w − y) dµw

)
dµy + SQ,R.

The first summand above is bounded in absolute value by a constant times am by
the same argument as in the proof of (2-2).

As for (2-2) we have for R ⊂ R̃ ⊂ Q, Q ∈ Dm, R̃ ∈ Dn, R ∈ Dn+1,

(2-5) |SQ,R − SQ,R̃| ≤ C an.

3. The stopping time argument

The proof of Theorem 2.2 is based on a stopping time argument for which we need
some preliminary facts.

Given a nonzero complex number z consider the sector σ(z, θ), 0 < θ < π , with
vertex at z and aperture θ whose axis is the semiline emanating from z and passing
through 0. That is, w ∈ σ(z, θ) if and only if〈

w − z
|w − z|

,
−z
|z|

〉
≥ cos

(
θ

2

)
where ⟨ ·, · ⟩ denotes the scalar product in the plane.
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The octants with vertex 0 are the eight sectors

σ j =

{
w ∈ C : w = |w|eiφ, ( j − 1)

π

4
≤ φ ≤ j π

4

}
, 1 ≤ j ≤ 8.

These are the sectors with vertex the origin of amplitude 45◦ degrees and having an
edge over a coordinate axis. It will be convenient to expand these octants so that
they have the same axis and amplitude of 75◦. In other words, we are adding 15◦

in each direction. Denote the expanded sectors by σ̃ j . The octants with vertex z are
the sectors σ j (z) = z + σ j , 1 ≤ j ≤ 8, and the expanded octants σ̃ j (z) = z + σ̃ j .

We have the following obvious lemma.

Lemma 3.1. Given any sector σ of vertex z and amplitude 120◦ there exists an
octant with vertex z, say σ j (z) for some index j between 1 and 8, such that σ̃ j (z)⊂σ .

Consider the symmetries with respect to the coordinate axis and the main diagonal.
That is, f1(x + iy) = −x + iy, f2(x + iy) = x − iy and f3(x + iy) = y + i x for
x + iy ∈ C. For any j, k = 1, . . . , 8, by composing two such symmetries we obtain
a linear mapping f j,k that maps the octant σ j onto the octant σk . Observe that
C( f j (z)) = f j (C(z)) for j = 1, 2, and C( f3(z)) = − f3(C(z)). It is precisely this
last identity that fails for the kernel (z + z)/z2.

Let Q ∈ D and let cQ be its centre. Define

fQ, j,k(x) = f j,k(x − cQ) + cQ, x ∈ Q, j, k = 1, . . . , 8,

so that

fQ, j,k(x) − fQ, j,k(y) = f j,k(x − y), x, y ∈ Q, j, k = 1, . . . , 8.

We claim that

(3-1) SQ, fQ, j,k(R) = ε j,k f j,k(SQ,R), R ⊂ Q, Q, R ∈ D,

where ε j,k = ±1. We check (3-1) by the general formula for the image (push-
forward) ν♯, f of a measure ν under a Borel map f (see, for example, [Mattila 1995,
Theorem 1.19]) ∫

f (A)

g dν♯, f
=

∫
A
(g ◦ f ) dν.

The restriction of µ to Q is invariant under the maps fQ, j,k , i.e., (µ|Q)♯, fQ, j,k =µ|Q.
Hence, since Q \ fQ, j,k(R) = fQ, j,k(Q \ R) and

C
(

fQ, j,k(z) − fQ, j,k(w)
)
= ε j,k f j,k(C(z − w)),

we obtain∫
Q\ fQ, j,k(R)

∫
fQ, j,k(R)

C(z −w) dµz dµw = ε j,k f j,k

(∫
Q\R

∫
R

C(z −w) dµz dµw

)
,

from which (3-1) follows.
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Assume that we have fixed an octant σ j and that for some square R ∈D contained
in Q we have SQ,R ∈ σk with k ̸= j . We claim that we can find a square R′

∈ D
contained in Q, of the same size as R, such that |SQ,R′ | = |SQ,R| and SQ,R′ ∈ σk .

If ε j,k = 1 then the value of the relative martingale at the square fQ, j,k(R)

is f j,k(SQ,R) ∈ σ j . Note that the size of fQ, j,k(R) is exactly the size of R and
|SQ, fQ, j,k(R)| = |SQ,R|.

To treat the case ε j,k = −1 let us introduce the mapping γ : Q → Q defined by
γ (x)=−(x−cQ)+cQ . Then γ 2 is the identity mapping on Q and SQ,γ (R) =−SQ,R

for each square R ∈ D contained in Q. Setting R′
= (γ ◦ fQ, j,k)(R) we get

f jk(SQ,R) = −SQ, fQ, j,k(R) = SQ,(γ ◦ fQ, j,k)(R) = SQ,R′ .

We shall need the following elementary lemma.

Lemma 3.2. If z ∈ C, w ∈ σ(z, 120◦) and 0 < |w − z| < |z|/2, then |w| ≤

|z| − |w − z|/4.

Proof. Let R = |z|, r = |w − z| and let v be the third vertex, in addition to 0 and z,
of the equilateral triangle containing w. Under the assumptions of the lemma |w|

is maximized when w lies on the side connecting z and v. Assuming that w is on
that side, project w on the side connecting 0 and z and apply Pythagoras to obtain

|w|
2
= (R − r/2)2

+ (
√

3r/2)2
= r2

+ R2
− r R ≤ (R − r/4)2

= (|z|− |w − z|/4)2

because of the assumption r < R/2. □

Proof of Theorem 2.2. We assume, as we may, that
∑

n a2
n = ∞. Then for µ almost

all x the sequence (Sn(x))∞n=0 diverges and (2-3) holds.
Let M be a big positive integer to be chosen later. We replace (an)

∞

n=0 by the
nonincreasing sequence bn = C maxm≥n am , where C is as in inequalities (2-2),
(2-4) and (2-5), which now read

|Sn+1(x) − Sn(x)| ≤ bn, n = 0, 1, . . . and x ∈ K ,(3-2)

|SR − SQ − SQ,R| ≤ bm, Q ∈ Dm, R ∈ Dn, R ⊂ Q,(3-3)

|SQ,R − SQ,R̃| ≤ bn, Q ∈ Dm, R ∈ Dn+1, R̃ ∈ Dn, R ⊂ R̃ ⊂ Q.(3-4)

We plan to define a sequence of stopping time conditions. At each step a family
of stopping time squares will arise, which is going to be the family Fn in Lemma A.1
(Hungerford’s lemma). The first stopping time is special and its goal is to have a
family of squares with relatively large |SQ | for each square Q in the family.

The first stopping time condition is

(3-5) |SQ | > M b0.

Declare Q a stopping time square of first generation if Q is a square in D for which
|SQ | > M b0 and |SQ′ | ≤ M b0, Q⊊ Q′. We call F1 the set of stopping time squares
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of first generation. One may think of this as a process as follows. One takes a
point x ∈ K and looks at the squares in D containing x . One examines all those
squares, starting at Q0 and checks whether condition (3-5) is satisfied. If it is not,
then one proceeds to the square containing x in the next generation. The process
stops when one finds a square Q containing x for which (3-5) holds. Note that
the set of x for which the process never stops has vanishing µ measure by (2-3).
Hence

∑
Q∈F1

µ(Q) = 1. Since SQ0 = 0, it follows from (3-2) that it is necessary
to descend at least M + 1 generations to find the first stopping time square.

The second stopping time condition is slightly different. Let Q ∈F1. The second
stopping time is performed on the relative martingale associated with Q and its
condition is

(3-6) |SQ,R| > M bM .

A stopping time square R of second generation satisfies |SQ,R| > M bM and

|SQ,R′ | ≤ M bM , R′
∈ D, R ⊊ R′

⊂ Q.

By (2-3) and (3-3) the stopping time squares of second generation cover almost
all Q. Again, by (3-4) and the fact that SQ,Q = 0 one has to descend through at
least M +1 generations to find a stopping time square of second generation. Hence
if R is a stopping time square of second generation and R ∈ Dn then n ≥ 2(M + 1).
We do not put all stopping time squares of second generation in F2(Q). We put a
stopping time square of second generation R in F2(Q) provided SR ∈ σ(SQ, 120◦).
That there are many such stopping time squares can be shown as follows.

Let R be a stopping time square of second generation. Let α denote the angle
between the vectors SR − SQ and SQ,R . Then by (3-3),

|SR − SQ | ≥ |SQ,R| − bM ≥ (M − 1)bM

and

0 ≤ | sin α| ≤
|SR − SQ − SQ,R|

|SR − SQ |
≤

bM

(M − 1)bM
=

1
M − 1

< sin 15◦,

provided M −1 > 1/ sin 15◦, which we assume. Since |SR −SQ −SQ,R|< |SR −SQ |

and SR,Q = SR − SQ + (SQ,R − SR − SQ), we see that cos α > 0. Thus |α| < 15◦.
By Lemma 3.1 there is j with 1 ≤ j ≤ 8 such that σ̃ j (SQ) ⊂ σ(SQ, 120◦). If

we are lucky enough that we have SQ,R ∈ σ j and so SR − SQ ∈ σ̃ j , which yields
SR ∈ σ̃ j (SQ) ⊂ σ(SQ, 120◦).

But it may occur that SQ,R ∈σk , k ̸= j . Applying two symmetries fQ, j,k of Q, or a
symmetry of the form γ ◦ fQ, j,k in the worst case, as we discussed before Lemma 3.2,
we obtain a stopping time square R′ of second generation and of the same size as R
such that SQ,R′ ∈ σ j and so SR′ ∈ σ̃ j (S(Q)) ⊂ σ(SQ, 120◦), as desired.
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Therefore, subdividing the stopping time squares of second generation in eight
classes, according to the octant to which SQ,R belongs, we get

(3-7)
∑

R∈F2(Q)

µ(R) ≥
1
8 µ(Q).

Define F2 =
⋃

Q∈F1
F2(Q).

Let us obtain some properties of stopping time squares R in F2(Q). Let R̃ be
the father of R. Then |SQ,R̃| ≤ M bM and so

|SR̃ − SQ| ≤ |SQ,R̃| + |SR̃ − SQ − SQ,R̃| ≤ (M + 1)bM

and

|SR − SQ | ≤ |SR − SR̃| + |SR̃ − SQ | ≤ bM + (M + 1)bM = (M + 2)bM .

Now two possibilities appear.
If |SQ | ≤ 2|SR − SQ | ≤ 2(M + 2)bM , then

|SR| ≤ |SR − SQ | + |SQ | ≤ 3(M + 2)bM .

If |SQ | > 2|SR − SQ |, since SR ∈ σ(SQ, 120◦) we can apply Lemma 3.2 to get

|SR| ≤ |SQ | − |SR − SQ |/4 ≤ |SQ| − (M − 1)bM/4 ≤ |SQ | − bM

provided M ≥ 5.
Therefore at least one of the following two inequalities holds: either

(3-8) |SR| ≤ 3(M + 2)bM ,

or

(3-9) |SR| ≤ |SQ | − bM .

We can proceed to define inductively Fn for n ≥ 3, in a way analogous to what we
did to define F2 from F1. Assume that we have defined Fn−1 =

⋃
Q∈Fn−2

Fn−1(Q).
Given Q ∈ Fn−1 we set the n generation stopping time in the relative martingale
associated with Q as

|SQ,R| > Mb(n−1)M

If R is a stopping time square of n-th generation then besides the previous inequality
one has

|SQ,R′ | ≤ Mb(n−1)M , R′
∈ D, R ⊊ R′

⊂ Q,

whence

(3-10) |SR′ − SQ | ≤ |SQ,R′ | + b(n−1)M ≤ (M + 1)b(n−1)M .
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Note that if R is a stopping time square of generation n, we can take advantage of
the symmetries of Q, as before, to find another one, say R′, of the same size with
the additional property that SR′ ∈ σ(SQ, 120◦). Define Fn(Q) as the stopping time
squares R of generation n such that SR ∈ σ(SQ, 120◦) and Fn =

⋃
Q∈Fn−1

Fn(Q).
We then have

(3-11)
∑

R∈Fn(Q)

µ(R) ≥
1
8 µ(Q).

Given R ∈ Fn(Q), we have as before that at least one of the following two inequal-
ities holds: either

(3-12) |SR| ≤ 3(M + 2)b(n−1)M

or

(3-13) |SR| ≤ |SQ | − b(n−1)M .

Set F =
⋂

∞

n=1
⋃

Q∈Fn
Q. To complete the proof we shall show that the hypo-

theses of Hungerford’s Lemma A.1 are fulfilled and that

(3-14) lim
m→∞

Sm(x) = 0, x ∈ F.

For (b) in Hungerford’s Lemma A.1 recall that each stopping time square has
descended at least M + 1 generations from the generating square in the previous
family. Then one has (b) with ε replaced by 1/4M and taking M big enough one
has 1/4M < ε. Condition (c) with c = 1/8 is (3-11).

To prove (3-14), take x ∈ F . For every n = 1, 2, . . . , there is a unique Qn ∈ Fn

such that x ∈ Qn . Let mn be the unique positive integer satisfying Qn ∈ Dmn .
Clearly the sequence mn is increasing and mn > M n. Since SQn = Smn (x) we have
by (3-12) and (3-13) that either

(3-15) |Smn (x)| ≤ 3(M + 2)b(n−1)M

or

(3-16) |Smn (x)| ≤ |Smn−1(x)| − b(n−1)M , n = 1, 2, . . .

For mn−1 < m < mn we have by (3-10)

(3-17) |Sm(x) − Smn−1(x)| ≤ (M + 1)b(n−1)M .

To conclude that limm→∞ Sm(x) = 0 it is enough to show that limn→∞ Smn (x) = 0.
We say that n ∈ N1, if (3-16) holds and n ∈ N2, if (3-15) holds and (3-16) fails.

Because
∑

n bn diverges and (bn)
∞

n=1 is nonincreasing,
∑

n b(n−1)M also diverges.
It follows that (3-16) cannot hold for infinitely many consecutive n, whence N2

is infinite.
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Let n ∈ N2 and let N > n be such that k ∈ N1 for all n < k < N . Then by (3-16)
and (3-15) for n < k < N ,

|Smk (x)| ≤ |Smn (x)| ≤ 3(M + 2)b(n−1)M .

It follows that limm→∞ Sm(x) = 0. □

Appendix A. A lemma on Hausdorff dimension

Let µ be the canonical measure associated with a Cantor set in Rd , as defined in
the Introduction before the statement of Theorem 1.2. Denote by Dn the set of all
cubes Qn

j , 1 ≤ j ≤ 2dn , appearing at the n-th generation of the construction and
D =

⋃
n Dn .

The following lemma is due to Hungerford [1988], who worked in a one-
dimensional context.

Lemma A.1. Let 0 < ε < c < 1 and let Fn be a disjoint family of cubes in D, for
n = 0, 1, 2, . . . , satisfying the following.

(a) F0 = {Q0}.

(b) If Q ∈ Fn+1, then there exists Q̃ ∈ Fn with Q ⊂ Q̃ and µ(Q) ≤ εµ(Q̃).

(c) If Q ∈ Fn , then ∑
R⊂Q, R∈Fn+1

µ(R) ≥ cµ(Q).

Let E =
⋂

n
⋃

Q∈Fn
. Then

dim E ≥ α(1 − log c/ log ε).

Proof. Set β = α(1− log c/ log ε). We will construct a Borel probability measure ν

with ν(E) = 1 such that for some constant C and for all balls B(x, r) centred at x
of radius r one has

(A-1) ν(B(x, r)) ≤ Crβ for x ∈ E, 0 < r ≤ 1.

Then Frostman’s lemma will give the result.
Let us define the functions νn : Fn → R, n = 0, 1, 2 . . . , setting first ν0(Q0) = 1.

Suppose that ν1, . . . , νn−1 are defined and let for Q ∈ Fn , with Q̃ as in (b),

νn(Q) =
νn−1(Q̃)∑

R∈Fn,R⊂Q̃ µ(R)
µ(Q).

Then we define the Borel measures νn setting

νn(A) =

∑
Q∈Fn

νn(Q)

µ(Q)
µ(A ∩ Q) for A ⊂ Rd .
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Then for Q ∈ Fn ,

νn+1(Q) =

∑
R∈Fn+1,R⊂Q

νn+1(R)

=

∑
R∈Fn+1,R⊂Q

νn(Q)∑
P∈Fn+1,P⊂Q µ(P)

µ(R)

= νn(Q).

Iterating this we have

(A-2) νm(Q) = νn(Q) for Q ∈ Fn, m > n.

In particular, each νn is a probability measure and some subsequence of (νn)

converges weakly to a probability measure ν such that ν(Q) = νn(Q) for Q ∈ Dn .
Since

ν

( ⋃
Q∈Fn

Q
)

=

∑
Q∈Fn

ν(Q) =

∑
Q∈Fn

νn(Q) = 1,

we have ν(E) = 1. Therefore ν(E \
⋃

Q∈Fn
Q) = 0 for every n, so

(A-3) ν(Q) =

∑
R⊂Q,R∈Fn+1

ν(R), Q ∈ Fn.

It remains to verify (A-1). First of all we have by condition (c) for Q ∈Fn, n ≥ 2,

ν(Q)

µ(Q)
=

νn(Q)

µ(Q)
=

νn−1(Q̃)∑
R⊂Q̃,R∈Fn

µ(R)
≤

ν(Q̃)

cµ(Q̃)
,

and by induction,

(A-4)
ν(Q)

µ(Q)
≤ c−n for Q ∈ Fn, n = 1, 2 . . . .

Now let us prove that

(A-5) ν(Q) ≤ Cd(Q)β for Q ∈ D.

Take n such that εn+1
≤ µ(Q) < εn . We may assume that ν(Q) > 0. Then Q

intersects a square R in the family Fn+1. Since by (b) µ(R) ≤ εn+1
≤ µ(Q), one

has R ⊂ Q. We have, by (A-3) and (A-4),

ν(Q) =

∑
R⊂Q,R∈Fn+1

ν(R) ≤ c−n−1
∑

R⊂Q,R∈Fn+1

µ(R) ≤ c−n−1µ(Q).
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Since µ(Q) ≤ d(Q)α it is enough to show that c−nµ(Q) ≤ µ(Q)β/α which is

c−n
≤ µ(Q)− log c/ log ε,

that is,
−n log c ≤ −(log c/ log ε) log µ(Q),

or n ≤ log µ(Q)/ log ε, which is a consequence of µ(Q) < εn .
To finish, let x ∈ E and 0 < r ≤ 1. For some n, x belongs to a square Q ∈ Dn

with d(Q)/4 ≤ r ≤ d(Q). Then B(x, r) can meet at most 4d squares of Dn , and so
by (A-5), ν(B(x, r)) ≤ 4d ν(Q) ≤ 4d C d(Q)β ≤ 4β+d C rβ and (A-1) follows. □

Appendix B. The Riesz transforms in Rd

We first slightly modify the argument in [Cufí et al. 2022] to show that
∑

∞

n=1 a2
n =∞

yields divergence a.e. of the martingale. If the martingale converges in a set of
positive measure, then also the principal values of the Riesz transform exist in a
set E of positive measure, by the analog of Lemma 2.4. By a result of Tolsa [2014,
Theorem 8.13] we find a set F ⊂ E of positive measure on which the singular Riesz
transform operator is bounded on L2(µ|F ). In particular, the capacity of F associated
with the Riesz kernel is positive and so also that of the Cantor set. The main result
of [Mateu and Tolsa 2004] (see Theorem 1.2, p. 678 and its extension in the last
formula in p. 696) states that the α-Riesz capacity of the Cantor set is comparable to(∑

∞

n=1 a2
n
)−1/2, so that positive capacity yields a convergent series. We remark that

the previous argument uses very strong results, in particular the nonhomogeneous
T (1)-Theorem of Nazarov, Treil and Volberg, to extract the subset F on which
the singular Riesz transform is L2(µ|F ) bounded. In [Cufí et al. 2022] one resorts
to Menger curvature, which is not available for kernels of homogeneity −α with
1 < α < d , and the proof is slightly simpler. It would be desirable to have a direct
argument relating the series to the convergence of the martingale.

The part of the stopping time argument of Section 3 that does not obviously
extend to higher dimensions is related to the sector σ(z, 120◦). In particular, one
should replace the 45◦ degrees sectors centred at the origin with one edge on a
coordinate axis with other regions. We proceed as follows. Divide Rd into 2d

regions (which in R3 are the usual octants) by requiring that each coordinate has a
definite sign. For example,

O = {x ∈ Rd
: x1 ≥ 0, x2 ≥ 0, . . . xd ≥ 0}

or
O ′

= {x ∈ Rd
: x1 ≤ 0, x2 ≥ 0, . . . xd ≥ 0}

are such regions. Let us concentrate in the region O . Divide O in the d! subregions
determined by a permutation σ of the d variables

Oσ = {x ∈ Rd
: 0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(d)}.
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Note that the maximal angle between two vectors lying in a subregion Oσ is
precisely arccos(d−1/2), which approaches 90◦ as d → ∞. Given a cone 0 with
vertex at the origin and aperture θ , we would like to find a region Oσ contained in
the cone 0. This can be done as follows. The axis of the cone is a ray emanating
from the origin contained in Oσ for some σ . Taking θ = θ(d) < π close enough
to π one can achieve Oσ ⊂ 0. Indeed, something stronger can be obtained: there
exists a sufficiently small angle γ = γ (d) such that expanding Oσ in all directions
by at most γ degrees one still remains in the cone 0.

The planar argument now works with θ in place of 120◦.
One also needs to have enough linear isometries to transport one region Oσ into

another Oσ ′ . Consider the following kinds of linear isometries. Fix a variable xi

and take the mapping that leaves the other variables invariant and changes the sign
to the xi variable. Given two variables xi and x j with i ̸= j consider the mapping
that leaves the other variables invariant and interchanges xi and x j . Finally take the
mapping x → −x . Let S be the set of such linear isometries. One can easily check
that given two regions Oσ and Oσ ′ one can map one into the other by composing
finitely many isometries in S.

All these elements lead to a stopping time argument that proves Theorem 1.2.
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