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Abstract

In this note we describe the dual and the completion of the space of finite
linear combinations of (p,∞)-atoms, 0 < p ≤ 1. As an application, we show an
extension result for operators uniformly bounded on (p,∞)-atoms, 0 < p < 1,
whose analogue for p = 1 is known to be false. Let 0 < p < 1 and let
T be a linear operator defined on the space of finite linear combinations of
(p,∞)-atoms, 0 < p < 1, which takes values in a Banach space B. If T is
uniformly bounded on (p,∞)-atoms, then T extends to a bounded operator
from Hp(Rn) into B.

1 Introduction

For each 0 < p ≤ 1 consider the space F p of finite linear combinations of (p,∞)-
atoms, endowed with its natural norm (or quasi-norm for p < 1)

‖f‖F p = inf
{(∑

j

′

|λj|p
) 1

p
: f =

∑
j

′
λjaj , aj a (p,∞)-atom , λj ∈ C

}
, (1)

where
∑′ denotes a finite sum. Recall that a is a (p,∞)-atom if a is a measurable

function supported on a ball B, satisfying the cancellation condition

∫
a(x)xα dx = 0, |α| ≤ n(

1

p
− 1),

and the size condition

|a| ≤ 1

|B| 1p
.

The space F p is clearly contained in Hp = Hp(Rn), the standard real Hardy space
on Rn. The elements of Hp are the distributions that admit an atomic decomposi-
tion, f =

∑∞
j=1 λjaj, converging in the sense of distributions, for some (p,∞)-atoms

aj and scalars λj with
∑∞

j=1 |λj|p < ∞ (for p = 1, H1 ⊂ L1 and atomic sums

converge in the L1-norm). In [MTW] Meyer,Taibleson and Weiss observed that the
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F p-norm is not comparable to the Hp-norm on F p . Recently, it was shown in [B]
that the Meyer-Taibleson-Weiss result leads to the following conclusion in the case
p = 1: there exists a bounded linear functional on F 1 which does not extend to a
bounded linear functional on H1. In other words, there is a linear operator which
is uniformly bounded on (1,∞)-atoms but does not extend to a bounded linear
operator on H1.

In this paper we describe the structure of the completion F̃ p of F p, 0 < p ≤ 1,
and of its dual space. We show in particular that, when p < 1, F p and Hp have the
same dual, and therefore no example like the one in [B] can be exhibited for p < 1.
An immediate consequence of this is that if 0 < p < 1 and the linear operator

T : F p → B, (2)

maps F p into a Banach space B satisfying the inequality

‖T (a)‖B ≤ C ,

for some positive constant C and all (p,∞)-atoms, then T extends to a bounded
linear operator from Hp into B. The argument proceeds by duality as follows. Take
any u in the dual B∗ of B. Since u ◦ T ∈ (F p)∗ = (Hp)∗ ,

|u(T (f))| ≤ C ‖u‖ ‖f‖Hp ,

and so, by the dual expression of the norm in a Banach space,

‖T (f)‖B ≤ C ‖f‖Hp .

We prove the following facts about F̃ p, 0 < p ≤ 1.

(i) The closed subspace F̃ p,c of F̃ p spanned by the continuous (p,∞)-atoms is

isomorphic to Hp as a Banach space, and F̃ p splits as the direct sum of F̃ p,c

and a non-trivial complementary closed subspace Np.

(ii) Every element ξ of F̃ p admits an atomic decomposition

ξ =
∞∑

j=1

λjaj ,

for (p,∞)-atoms aj and scalars λj with
∑∞

j=1 |λj|p < ∞. Moreover, the F̃ p-
norm of ξ is equivalent to its atomic norm

inf
{( ∞∑

j=1

|λj|p
) 1

p
:
∞∑

j=1

λjaj = ξ in F̃ p
}

.

2



(iii) If an atomic sum
∑∞

j=1 λjaj, with λj and aj as above, converges to 0 in F̃ p,
it also converges to 0 in Hp, but not viceversa. In fact, Np consists of those
elements of F̃ p that are represented by atomic sums converging to 0 in Hp.

In other words, Hp and F̃ p are both quotients of the space of “formal series” of
(p,∞)-atoms with `p coefficients, but the equivalence relation defining F̃ p is finer
than that defining Hp.

So, the reason why (F 1)∗ is strictly larger than (H1)∗ is that it is the direct sum

of (F̃ 1,c)∗ = (H1)∗ and (N1)∗. Notice that (N1)∗ is non-trivial, as the dual of the
non-trivial Banach space N1. On the other hand, it turns out that (Np)∗ is trivial
for p < 1.

To describe our results we need to introduce some notation and recall some basic
classical facts in the theory of Banach algebras (see Section 3 for details).

Denote by L∞0 (Rn) the space of bounded measurable functions on Rn vanishing
at infinity. Then L∞0 (Rn) is a commutative C∗-algebra without unit, and its maximal

ideal space is a locally compact, non-compact space, which we call R̂n (cf. [F]).
By the Gelfand-Naimark theorem, the Gelfand transform f → f̂ establishes an

isometric isomorphism between L∞0 (Rn) and the algebra C0(R̂n) of all continuous

functions on R̂n vanishing at ∞. On the other hand, C0(Rn) is a closed subalgebra
of L∞0 (Rn), and its maximal ideal space is Rn. This embedding induces a continuous

projection π from R̂n onto Rn. Clearly, if f ∈ C0(Rn), then f̂ = f ◦ π.
In a similar way, given any ball B in Rn, the maximal ideal space of L∞(B) is

a compact space B̂, endowed with a projection πB onto B̄ induced by the inclusion
of C(B̄) in L∞(B). Moreover, L∞(B) ∼= C(B̂), again by the Gelfand-Naimark
theorem.

The restriction map f 7→ f|B from L∞0 (Rn) to L∞(B) induces a natural embed-

ding ιB : B̂ → R̂n, which is compatible with the projections π and πB, in the sense
that

πB = π ◦ ιB .

Similar embeddings ιB,B′ : B̂′ → B̂ exist for pairs of balls B, B′ with B′ ⊂ B,
with the same compatibility with respect to the corresponding projections.

Denote by m the Lebesgue measure on Rn. The continuous linear functional
f 7→ ∫

f dm on L∞(B) is represented by a positive Borel measure m̂B on B̂, that is,

∫
f dm =

∫
f̂ dm̂B, f ∈ L∞(B) . (3)

If B is contained in a second ball B′, then the restriction of m̂B′ to B̂ is precisely
m̂B and thus we can define a positive Borel measure m̂ globally on R̂n by requiring
that its restriction to B̂ be m̂B for each ball B.

We can now state our main result.
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Theorem.

(A) Let ` be a bounded linear functional on F 1. Then there exist a function

b ∈ BMO(Rn) and a Radon measure µ on R̂n, singular with respect to m̂,
satisfying

|µ|(B̂) ≤ C m(B), for each ball B, (4)

such that

`(f) =

∫
f b dm +

∫
f̂ dµ, f ∈ F 1. (5)

Conversely, if b and µ are as above, then the identity (5) defines a bounded
linear functional on F 1 and

‖`‖(F 1)∗
∼= ‖b‖BMO + sup

B

|µ|(B̂)

m(B)
.

(B) Each bounded linear functional on F p , 0 < p < 1 , extends uniquely to a
bounded linear functional on Hp(Rn). Thus (F p)∗ = Hp(Rn)∗, 0 < p < 1.

It is clear that relation (5) determines the function b and the measure µ uniquely.
Therefore (F 1)∗ differs from (H1)∗ = BMO by the presence of the complementary
subspace S of singular measures satisfying (4). We will show that S is non-trivial; in
fact, the Meyer, Taibleson and Weiss argument may be interpreted as the construc-
tion of a non-zero measure in S. The decomposition of (F 1)∗ as BMO ⊕ S is the

dual counterpart of the decomposition of F̃ 1 as F̃ 1,c ⊕ N1 , although S and BMO

do not coincide with the annihilators of F̃ 1,c and N1 respectively.
The nature of the elements of Np, including p = 1, is somehow mysterious. It is

not clear at all to us if they can be represented by concrete analytic objects.
Section 2 contains the discussion of the completion of F p and a constructive

argument which proves the non-triviality of Np. In Section 3 we prove the Theorem.
We also give an example of a non-zero singular measure satisfying (4).

We remark here that a variation of the main argument in the proof of the Theo-
rem provides an alternative proof of some results in [MSV] and [YZ]) on the equiv-
alence of the finite and infinite atomic norms of (1, q)-atoms, q < ∞, and on exten-
sion of bounded operators defined on finite linear combinations of (p, q)-atoms with
1 < q < ∞.

2 The completion of F p

Let F p, c stand for the subspace of Hp consisting of finite linear combinations of
continuous (p,∞) atoms. A surprising recent result in [MSV] states that the Hp

and the F p norms are equivalent on F p,c , 0 < p ≤ 1. Indeed, the result is proved
in [MSV] only for p = 1, but, as suggested in Remark 3.2 there, the same argument
extends to the case 0 < p < 1.

More precisely, we can quote Lemma 3.1 and Remark 3.2 in [MSV] as follows.
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Lemma 1. The following norms are equivalent on F p,c:

(a) the Hp-norm;

(b) the F p-norm (1);

(c) the F p,c-norm

‖f‖F p,c = inf{
∑

j

′
|λj| : f =

∑
j

′
λjaj , aj a continuous (p,∞)-atom , λj ∈ C} .

Since F p,c is dense in Hp, the natural inclusion of F p,c in F p extends uniquely to
a continuous linear operator T from Hp to F̃ p. By Lemma 1, T maps Hp isomor-
phically onto the closure F̃ p,c of F p,c in F̃ p. Notice that, again by Lemma 1, F̃ p,c

is the completion of F p,c endowed either with the norm ‖ · ‖F p,c or with the norm
inherited from F p.

On the other hand, the inclusion of F p (endowed with its natural norm) into Hp

is continuous, and it extends to a continuous linear operator U from F̃ p to Hp. We
then have the diagram

Hp T−→ F̃ p U−→ Hp ,

with U ◦ T being the identity map. In particular U is surjective. Set P = T ◦ U, so
that P is a projection, that is, P 2 = P. The kernel of P is the kernel of U , which we
denote by Np, and the kernel of I−P is T (Hp) = F̃ p,c. Hence we get the topological
direct sum decomposition

F̃ p = F̃ p,c ⊕Np .

Notice that Np is non-trivial, since otherwise the Hp and the F p norms would be
comparable on F p.

To better understand the space F̃ p we prove now the following.

Proposition. Given any sequence of (p,∞) atoms aj and any `p-sequence of scalars

λj, the series
∑∞

j=1 λj aj converges in F̃ p to an element ξ such that ‖ξ‖pfF p
≤ ∑∞

j=1 |λj|p.
Conversely, each ξ ∈ F̃ p can be written as

ξ =
∞∑

j=1

λj aj , (6)

where each aj is a (p,∞) atom and the sum is convergent in F̃ p. Moreover,

‖ξ‖pfF p
= inf

{ ∞∑
j=1

|λj|p
}

, (7)

where the infimum is taken over all decompositions (6) of ξ.
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Proof. Let ξ be an element of F̃ p. To prove (6), express ξ as the limit in F̃ p of
a sequence Sk of elements of F p. Given ε > 0, we may assume that ‖S1‖p

F p <
(1 + ε)‖ξ‖pfF p

and that ‖Sk − Sk+1‖p
F p < εk ‖ξ‖pfF p

. Thus

ξ = lim
k→∞

S1 + (S2 − S1) + · · ·+ (Sk − Sk−1) .

Set

S1 =

N1∑
j=1

λj aj ,

where the above expression of has been chosen so that

N1∑
j=1

|λj|p < (1 + ε)‖ξ‖pfF p
.

Similarly, set

S` − S`−1 =

N∑̀
j=N`−1+1

λj aj , ` ≥ 2 ,

with
N∑̀

j=N`−1+1

|λj|p < ε`‖ξ‖pfF p
.

Then
∑∞

j=1 |λj|p < (1− ε)−1‖ξ‖pfF p
and the partial sums ξm =

∑m
j=1 λjaj form a

Cauchy sequence in F p. This shows that (6) holds.

Notice also that, for each ξ ∈ F̃ p , the inequality ‖ξ‖pfF p
≤ inf{∑∞

j=1 |λj|p}, where

the infimum is taken over all possible expressions (6), is due to the fact that ‖ · ‖pfF p

satisfies the triangle inequality.

The atomic decomposition of elements of F̃ p given above provides an explicit
description of the operator U .

Corollary. Let ξ ∈ F̃ p be represented by the sum (6). Then U(ξ) is the sum of the
same series in Hp.

We end this section by providing a constructive proof of the non triviality of
Np. Let us first describe the Meyer, Taibleson and Weiss construction as presented
in [B]. Let B denote the open ball centered at the origin with radius 1. Take a
sequence of open disjoint balls Bj , j ≥ 1 , such that ∪jBj is dense in B . Notice that
we may also choose the Bj so that the Lebesgue measure of their union

∑
j≥1 |Bj|

is as small as we wish. As shown in [B] , for each j there exists a (non-continuous)

(p,∞) atom aj supported on Bj with the property that |aj| ≥ c |Bj|−
1
p , where c is

a small positive constant depending only on n. Thus, setting

f =
∑
j≥1

|Bj|
1
p aj , (8)
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we get |f | ≥ c on ∪Bj . From that is not difficult to conclude (see [B]) that

‖f‖F p ≥ c |B| 1p .

On the other hand, we clearly have ‖f‖p
Hp ≤ ∑

j≥1 |Bj|, so that the ratio between
Hp-norm and F p-norm can be made as small as we wish.

We can now construct a sequence {fm} in F p satisfying

‖fm‖p
F p ≥ cp |B| ,

‖fm − fm+1‖p
F p ≤ 2p |B|

2m
,

‖fm‖p
Hp ≤ |B|

2m
.

The first two conditions imply that {fm} has a non-zero limit ξ ∈ F̃ p, whereas the
third implies that Ufm = fm tends to 0 in Hp. Hence ξ ∈ Np.

The functions fm have the form (8), precisely

fm =
∑
j≥1

|Bm
j |

1
p am

j , (9)

where, for each m, {Bm
j }j is a disjoint family of balls contained in B with dense

union and small total measure, and each am
j is a (p,∞)-atom with |am

j | ≥ c |Bm
j |−

1
p .

The first function f1 can be any function as in (8) with, say,
∑

j≥1 |B1
j | < |B|/2.

We then construct inductively fm+1 from fm as follows.
Take N so large that

∑
j>N |Bm

j | < (1/4)
∑

j≥1 |Bm
j |. Inside each Bm

j , 1 ≤ j ≤
N , we take open disjoint balls B′

j l , l ≥ 1 , such that ∪l≥1B
′
j l is dense in Bm

j and∑
l≥1 |B′

j l| < |Bm
j |/4 .

Then
N∑

j=1

∑

l≥1

|B′
j l|+

∑
j>N

|Bm
j | ≤

1

2

∑
j≥1

|Bm
j | . (10)

Let a′j l be a (p,∞) atom supported on B′
j l with |a′j l| ≥ c |B′

j l|−
1
p . Set

fm+1 =
N∑

j=1

∑

l≥1

|B′
j l|

1
p a′j l +

∑
j>N

|Bm
j |

1
p am

j .

Since |fm+1| ≥ c on an open dense subset of B, ‖fm+1‖p
F p ≥ cp |B|. Moreover,

fm − fm+1 =
N∑

j=1

(
|Bm

j |
1
p am

j −
∑

l≥1

|B′
j l|

1
p a′j l

)
.
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For each j, the function

|Bm
j |

1
p am

j −
∑

l≥1

|B′
j l|

1
p a′j l

is supported on Bm
j and its absolute value is not greater than 2 . Hence

‖fm − fm+1‖p
F p ≤

N∑
j=1

2p |Bm
j | .

We relabel now the balls in such a way that {Bm+1
j }j≥1 = {Bm

j }j>N∪{B′
j l}j≤N , l≥1,

and rename the atoms in fm+1 as am+1
j accordingly. Then, inductively from (10),

∑
j≥1

|Bm
j | ≤ 2−m|B|

for every m, and the required estimates can be easily verified.

3 Proof of the Theorem

We start by proving, for the reader’s sake, a few statements made (explicitly or not)

in the last part of the introduction concerning the Gelfand spectrum R̂n and its
projection π on Rn.

The first statement we want to prove is that π is in fact well defined. Given
φ in R̂n, i.e., a nontrivial multiplicative functional on L∞0 (Rn), it is clear that its
restriction to C0(Rn) is also multiplicative. We must show that this restriction is
evaluation at some point x = π(φ) of Rn, or, equivalently, that it is not identically
zero.

Since L∞0 (Rn) is a C∗-algebra, it is symmetric, so that φ(f̄) = φ(f) for every
f . Therefore, f ≥ 0 implies that φ(f) ≥ 0, so that φ is monotonic on real-valued
functions. If φ vanishes identically on C0(Rn), it also vanishes on characteristic
functions of compact sets. By linearity and continuity, this would be a contradiction.

The second statement is that the mapping π is surjective. We know that to each
φ ∈ R̂n we can associate a point π(φ) in Rn. Given y ∈ Rn, we can define a translate

τyφ ∈ R̂n by
τyφ(f) = φ

(
f(·+ y)

)
. (11)

It is quite clear that π(τyφ) = π(φ) + y. Since R̂n is nonempty, π is surjective.

The last statement which remained unproved in the introduction is that R̂n is the
union of the B̂ over all balls B. This is a direct consequence of (ii) in the following
lemma.
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Lemma 2. Let B be an open ball in Rn. Then

(i)

B̂ = {φ ∈ R̂n : φ(χB) = 1} = supp χ̂B , (12)

where f̂ stands for the Gelfand transform of f ∈ L∞0 (Rn).

(ii)

π−1(B) ⊂ B̂ ⊂ π−1(B) .

Proof. To prove (12) notice that φ(χB) is either 0 or 1 by the multiplicative property.
If φ(χB) = 1, then φ(f) = φ(fχB), f ∈ L∞0 (Rn), which means that φ factors

through a character of L∞(B). Thus φ ∈ B̂. The argument can be reversed, so (12)
is proved.

Assume now that for some φ ∈ R̂n we have π(φ) ∈ B. Let f be a continuous
function on Rn, with f(π(φ)) = 1 and compact support contained in B. Then
fχB = f and so

1 = φ(f) = φ(f)φ(χB) = φ(χB).

Then φ ∈ B̂ because of (12).
If π(φ) is not in B, then there is a continuous function f on Rn, with f(π(φ)) = 1

and compact support in Rn \ B. Thus fχB = 0 and so φ(χB) = 0, that is, φ is not

in B̂.

We turn now to the proof of the Theorem. We begin by discussing the converse
statement in part (A) of the Theorem. Obviously, given b ∈ BMO, the linear

functional f 7→ ∫
fb dm is bounded on F̃ 1 with a norm controlled from above by

the BMO-norm of b. On the other hand, restriction of the functional to F̃ 1,c gives
a control from below by the same BMO-norm.

We first remark that (12) clearly implies that, given f ∈ L∞0 (Rn), the support

of f is contained in B if and only if the support of f̂ is contained in B̂.
Let µ be a Radon measure on R̂n satisfying (4). For each (1,∞)-atom a sup-

ported on a ball B one has

∣∣∣
∫

â dµ
∣∣∣ ≤ ‖a‖∞ |µ|(B̂) ≤ |µ|(B̂)

m(B)
< C .

Hence µ determines a bounded linear functional on F̃ 1.
Assume now that ` is a bounded linear functional on F 1. Fix a ball B and let

L∞0 (B) stand for the set of functions in L∞(B) with zero integral. Given f ∈ L∞0 (B),

1

m(B)

f

‖f‖∞
is a (1,∞)-atom. Thus

|`(f)| ≤ ‖`‖ ‖f‖∞ m(B), f ∈ L∞0 (B). (13)
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The restriction of ` to L∞0 (B) extends to a bounded linear functional on L∞(B) =

C(B̂). Thus there exists a measure νB on B̂ such that

`(f) =

∫
f̂ dνB, f ∈ L∞0 (B). (14)

If f ∈ L∞(B), then clearly f̂ bB = fB, where gE stands for the mean of the function g
on the set E with respect to the underlying measure (m̂ or m in the case at hand).
Then

`(f − fB) =

∫
bB(f̂ − f̂ bB) dνB

=

∫
bB(f̂ − f̂ bB)

(
dνB − νB(B̂)

dm̂

m̂(B̂)

)

=

∫
bB f̂

(
dνB − νB(B̂)

m̂(B̂)
dm̂

)
,

(15)

for each f ∈ L∞(B). Therefore, if νB represents ` on L∞0 (B), that is, if (14) holds,

then dνB − νB(B̂) bmbm( bB)
is uniquely determined.

Let BN stand for the open ball with center at the origin and radius N , N = 1, 2, ...
Take any measure ν1 on B̂1 that represents ` on L∞0 (B1). Each other such measure
differs from ν1 by a constant multiple of χcB1

m̂. By the preceding remark applied

to BN there exists a unique measure νN on B̂N which represents ` on L∞0 (BN) and

νN(B1) = ν1(B1). Clearly νN restricted to B̂N−1 is precisely νN−1. Therefore we can

define a measure ν on R̂n by requiring that ν restricted to B̂N be νN .
Given any ball B take N such that B ⊂ BN . Since the restriction of ν to B̂N

represents ` on L∞0 (BN), which contains L∞0 (B), the restriction of ν to B̂ represents
` on L∞0 (B) as well. By (15)

∣∣∣
∫
bB f̂

(
dν − ν(B̂)

dm̂

m̂(B̂)

)∣∣∣ ≤ 2 ‖`‖ ‖f‖∞ m(B), f ∈ L∞(B),

or ∥∥∥ν − ν(B̂)
m̂

m̂(B̂)

∥∥∥ bB ≤ 2 ‖`‖m(B). (16)

Let us now consider the Radon-Nikodym decomposition of ν

ν = g m̂ + µ,

where g ∈ L1
loc(m̂) and µ is singular with respect to m̂. By (16)

|µ|(B̂) ≤ 2 ‖`‖m(B). (17)
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and ∫
bB
∣∣∣g − g bB − µ(B̂)

m̂(B̂)

∣∣∣ dm̂ ≤ 2 ‖`‖m(B). (18)

We are left with the task of finding the BMO-function b.
Combining (17) and (18) we readily get

∫
bB |g − g bB| dm̂ ≤ 4 ‖`‖m(B). (19)

We need a Lemma.

Lemma 3. For each function g ∈ L1
loc(m̂) there exists a unique function f ∈ L1

loc(m)
with the property that for each ball B,

∫
g ϕ̂ dm̂ =

∫
f ϕ dm, ϕ ∈ L∞(B).

Such f satisfies ∫
bB |g − g bB| dm̂ =

∫

B

|f − fB| dm,

for each ball B.

Once the lemma is proved we complete the proof of part (A) of the Theorem by
just calling b the function f associated with g in Lemma 2. Inequality (19) tells us
that b ∈ BMO(Rn) and that its BMO(Rn) norm is not greater than 4 ‖`‖.
Proof of Lemma 3. We will show that for each ball B the Gelfand transform, which
is an isometry between L∞(B) and C(B̂), extends to an isometry between L1(B, m)

and L1(B̂, m̂). This immediately provides a further extension of the Gelfand trans-
form to a topological isomorphism between L1

loc(m) and L1
loc(m̂).

We begin by showing that, for each ball B in Rn and every f ≥ 0 in L∞(B),

∫
bB f̂ dm̂ =

∫

B

f dm, . (20)

This follows from
∫

B

f dm = sup
ϕ

∫

B

f ϕ dm

= sup
ϕ

∫
bB f̂ ϕ̂ dm̂

=

∫
bB f̂ dm̂,

where the supremum is taken on the closed unit ball of L∞(B).
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By linearity, (20) provides an extension of the Gelfand transform to a topological

isomorphisms f → f̂ of L1
loc(m) onto L1

loc(m̂). Given g ∈ L1
loc(m̂) take f ∈ L1

loc(m)

with g = f̂ . The first identity in the statement of Lemma 2 follows by approximating
f ∈ L1(B,m) by functions in L∞(B) and the second follows from (20).

Before proving part (B) of the Theorem we give an explicit example, modeled on
the Meyer-Taibleson-Weiss argument, of a non-zero measure which is singular with
respect to m̂ and satisfies (4).

Take an open set U of Rn, U ⊂ B0 = {x : |x| ≤ 1}, such that U is dense in
B0 and m(U) < m(B0). Then the compact set E = B0 \ U has positive Lebesgue

measure. Set V = π−1(U), so that V ⊂ B̂0 by Lemma 1. Then U ⊂ π(V ) and so
π(V ) = B0, because U is dense in B0. Hence π(∂V ) = E. Now, the boundary of

each open set in B̂0 has zero m̂ measure ([R, p. 286]). Therefore m̂(∂V ) = 0 but
m(π(∂V )) = m(E) > 0. Identify C(E) to the subspace S of continuous functions
on ∂V of the form f ◦ π, f ∈ C(E). The bounded linear functional on S defined
by f → ∫

f dm extends by Hahn-Banach to a bounded linear functional on C(∂V )
with the same norm. Thus there exists a positive measure µ on ∂V such that

∫
(f ◦ π) dµ =

∫
f dm, f ∈ C(E).

If B is an open ball, then by Lemma 2

µ(B̂) ≤ µ(π−1(B)) = m(B ∩ E) ≤ m(B),

and condition (4) is satisfied.

Proof of (B) of the Theorem. The argument is analogous to the proof of part (A),
except for minor technical details. If 0 < p < 1 , then, as we will see, the singular
measure µ vanishes and so we will conclude that (F p)∗ = Hp(Rn)∗.

Let ` be a bounded linear functional on F p , 0 < p < 1. Let d be the integer part
of n(1

p
−1). Given a ball B let L∞d (B) stand for the set of functions f ∈ L∞(B) such

that ∫
f(x) xα dx = 0, |α| ≤ d.

For each f ∈ L∞d (B),
1

m(B)
1
p

f

‖f‖∞
is a (p,∞) atom and so

|`(f)| ≤ ‖`‖ ‖f‖∞ m(B)
1
p , f ∈ L∞d (B). (21)

For each f ∈ L∞(B) let PB(f) be (the restriction to B of) the unique polynomial
of degree not greater than d such that

∫
f(x) xα dx =

∫

B

PB(f)(x) xα dx, |α| ≤ d.

12



Since PB(f) is the orthogonal projection (in L2(B)) of f into the subspace of poly-
nomials of degree not greater than d,

‖PB(f)‖2 ≤ ‖f‖2 ≤ ‖f‖∞,

where the L2 norms are taken with respect to the normalized Lebesgue measure
on B. We want now to compare the norms ‖ · ‖2 and ‖ · ‖∞ on the space Pd(B)
of restrictions to B of polynomials of degree not greater than d. After appropriate
translation and dilation we may assume that B has center 0 and radius 1. Since
Pd(B) is finite dimensional, there is a constant C(d, n), depending only on d and n,
such that

‖P‖∞ ≤ C(d, n) ‖P‖2, P ∈ Pd(B),

and so
‖PB(f)‖∞ ≤ C(d, n) ‖f‖∞, f ∈ L∞(B).

Therefore by (21)

|`(f − PB(f))| ≤ (1 + C(d, n)) ‖`‖ ‖f‖∞ m(B)
1
p , f ∈ L∞(B). (22)

By (21) there is a measure νB on B̂ such that

`(f) =

∫
f̂ dνB, f ∈ L∞d (B). (23)

Given a measure λ on B̂ there is a unique polynomial PB(λ) ∈ Pd(B) such that

∫
bB
(
π(φ)

)α
dλ(φ) =

∫

B

PB(λ)(x) xα dx, |α| ≤ d .

Hence, for every polynomial Q of degree ≤ d,

∫
bB Q̂ dλ =

∫

B

PB(λ) Qdm =

∫
bB P̂B(λ) Q̂ dm̂ .

Therefore, by (23),

`(f − PB(f)) =

∫
bB(f̂ − P̂B(f)) dνB

=

∫
bB(f̂ − P̂B(f))

(
dνB − P̂B(νB) dm̂

)

=

∫
bB f̂

(
dνB − P̂B(νB) dm̂

)
,

(24)

for each f ∈ L∞(B). Hence the measure νB − P̂B(νB) m̂ is determined by `.

13



As before, with BN denoting the ball of radius N centered at the origin, we fix
a measure ν1 on B̂1 that represents ` on L∞d (B1) and then take the unique measure

νN on B̂N which represents ` on L∞d (BN) and such that PB1(νN) = PB1(ν1). Then

νN restricted to BN−1 is νN−1 and so we can define a measure ν on R̂n by requiring
that ν restricted to BN be νN .

Given any ball B, take N such that B ⊂ BN . Then the restriction of ν to L∞d (B)
is ` and so, by (22) and (24),

∣∣∣
∫
bB f̂ (dν − P̂B(ν) dm̂)

∣∣∣ ≤ C ‖f‖∞ m(B)
1
p , f ∈ L∞(B).

Hence ∣∣ν − P̂B(ν)m̂
∣∣(B̂) ≤ C m(B)

1
p . (25)

Consider now the Radon-Nikodym decomposition of ν,

ν = g m̂ + µ,

with µ singular with respect to m̂. We get, by (25) and Lemma 2,

|µ|(π−1(B)) ≤ |µ|(B̂) ≤ C m(B)
1
p ,

for each open ball B. Since 0 < p < 1, we readily conclude that µ = 0. Indeed,
let r be the radius of B. Covering B by Ankn balls of radius r/k, we see that
the constant C in the right-hand side of the above inequality can be replaced by

CAnkn(1− 1
p
). Letting k tend to ∞, we get the conclusion.

Take now f ∈ L1
loc(Rn) with g = f̂ . Then

∫

B

|f − PB(f)| dm ≤ C m(B)
1
p ,

which is precisely the condition that guarantees that f determines a bounded linear
functional on Hp(Rn) ([TW]). Thus ` is a bounded linear functional on Hp(Rn) and
the proof is complete.
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