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Abstract
In this paper we characterise the minimisers of a one-parameter family of nonlocal and
anisotropic energies Iα defined on probability measures in R

n , with n ≥ 3. The energy Iα
consists of a purely nonlocal term of convolution type, whose interaction kernel reduces to
the Coulomb potential for α = 0 and is anisotropic otherwise, and a quadratic confinement.
The two-dimensional case arises in the study of defects in metals and has been solved by the
authors by means of complex-analysis techniques. We prove that for α ∈ (−1, n − 2], the
minimiser of Iα is unique and is the (normalised) characteristic function of a spheroid. This
result is a paradigmatic example of the role of the anisotropy of the kernel on the shape of
minimisers. In particular, the phenomenon of loss of dimensionality, observed in dimension
n = 2, does not occur in higher dimension at the value α = n − 2 corresponding to the sign
change of the Fourier transform of the interaction potential.
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1 Introduction

There is a vast and multi-disciplinary literature on nonlocal energies, as they are at the
crossover of different mathematical fields, and of different applications. Nonlocal energies
arise as the macroscopic limit of long-range discrete interactions in the many-particle limit.
The expression of the interaction kernel and its properties depend on the particle system of
interest: it can model attraction, repulsion or a combination of both; it can be bounded or
singular; it can be radial or anisotropic.

The mathematical literature on nonlocal energies has been mainly focused on the case of
radial potentials, which model interactions depending on the mutual distance between the
particles only (see, e.g., [1,3,4,6–9,14,29]). In many applications, however, radial potentials
are not realistic, and interactions may depend not only on the inter-particle distance, but
also on the angle between their position vector and a given, preferred direction (see, e.g.,
[2,5,21,28]). This is for instance the case for many biological systems, e.g., crowds, flocks
of birds, schools of fish.

In materials science, some defects in metals, like dislocations of edge type, interact via an
anisotropic potential, and this is the particle system that motivates our work. The anisotropy
of the interactions is due to themotion of each dislocation being restricted to a given direction
(the Burgers’ vector, b, of the dislocation), which is reminiscent of the metal’s microscopic
lattice structure. Under the simplifying assumption that dislocations are all parallel to each
other, and have b = e1, they can be modelled as point defects in two dimensions, and their
interaction potential is

Wedge(x) = − log |x | + x21
|x |2 , x �= 0, x = (x1, x2) ∈ R

2,

see, e.g., [18]. The anisotropy of the interactions results into anisotropic low-energy dis-
location structures (LEDS), dislocation walls in particular. The minimality of vertical
one-dimensional structures (walls) was a long-standing conjecture in the engineering lit-
erature, and was recently proved in [25] for the nonlocal dislocation energy

Iedge(μ) =
∫∫

R2×R2
Wedge(x − y) dμ(x) dμ(y) +

∫
R2

|x |2 dμ(x) (1.1)

defined on probability measures μ ∈ P(R2) representing the density of defects. For the
derivation of an interaction energy related to (1.1) (but in a bounded domain) from a semi-
discrete strain energy we refer to [24]. We also mention the recent work [22] where, starting
from the nonlinear version of the strain-energy model considered in [24], ‘low-angle grain
boundaries’ (like vertical walls) are shown to have the optimal energy scaling in accordance
with the celebrated Read-Shockley formula.

In this paper we study an n-dimensional generalisation of (1.1). More precisely, we con-
sider the family of nonlocal energies

Iα(μ) =
∫∫

Rn×Rn
Wα(x − y) dμ(x) dμ(y) +

∫
Rn

|x |2 dμ(x) (1.2)

defined on μ ∈ P(Rn), where the interaction potential Wα is given by

Wα(x) = W0(x) + α
x21
|x |n , W0(x) =

⎧⎨
⎩

− log |x | if n = 2,
1

|x |n−2 if n ≥ 3,
(1.3)
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for x �= 0, Wα(0) = +∞, with x = (x1, . . . , xn) ∈ R
n , and α > −1. Note that W1 = Wedge

for n = 2. The two-dimensional case was considered in [10,25] for every α ∈ R.
The main result of this paper is Theorem 3.1, where we show that, if n ≥ 3 and α ∈

(−1, n − 2], then the functional Iα has a unique minimiser μα in P(Rn) and μα is of the
form

μα := 1

|�α| χ�α , �α =
{
x = (x1, . . . , xn) ∈ R

n : x21
a(α)2

+ 1

b(α)2

n∑
i=2

x2i < 1

}
,

for somea(α), b(α) > 0. In otherwords, theminimiser of Iα is the (normalised) characteristic
function of a n-dimensional spheroid. Moreover, the spheroid is prolate for α ∈ (−1, 0) (that
is, a(α) > b(α)) and oblate for α ∈ (0, n − 2] (that is, a(α) < b(α)).

Note that unlike in the case α = 0, where the radial symmetry of the kernel and of the
confinement strongly suggests that the ball is the natural candidate for the minimisation (see
[11,16,26]), the situation for α �= 0 is less clear. Indeed, while heuristically one can expect
the anisotropy to cause an elongation (for α < 0) or a contraction (for α > 0) of the ball in
the x1-direction, it is surprising that the minimiser is still a characteristic function, and that
its support is a spheroid.

1.1 Our approach and discussion

In most of the cases treated in themathematical literature on nonlocal systems, the interaction
kernel is assumed to be radial, and one of the goals is to show that the correspondingminimiser
is radially symmetric (or to show that theminimiser is unique,which trivially implies its radial
symmetry), see e.g. [1,4,6–9,14,29]. Radial symmetry is paramount in the identification of
the minimiser in the classical case of purely Coulomb interactions, corresponding in our
setting to α = 0 (see [16,26] for n = 2, and [11] for n ≥ 3). Explicitly characterising the
minimiser, or even understanding its shape and general properties, is therefore much more
challenging in the case of anisotropic interactions. To the best of our knowledge, this has
been previously done only in [10,25], in dimension n = 2.

Our result generalises to any dimension n ≥ 3 the work [10] and is another paradigmatic
example of the role of the anisotropy of the kernel on the shape of minimisers. Our approach
here is however completely different from the approach in [10], whichwas based on complex-
analysis techniques, clearly no longer available in higher dimensions.

A key step in [10] was to compute exactly the (gradient of the) potential Wα ∗ μa,b, with
μa,b being the (normalised) characteristic function of an ellipse of semi-axes a and b, and
to impose the Euler–Lagrange conditions associated to Iα . Also for n ≥ 3 we prove the
minimality of spheroids via the Euler–Lagrange conditions [see (3.1), (3.2)], in the range
α ∈ (−1, n − 2] for which Iα is both well-defined and strictly convex (hence, the Euler–
Lagrange conditions are necessary and sufficient for minimality). To do so, we need to
compute the potentialWα ∗ μa,b, with μa,b being the (normalised) characteristic function of
a spheroid �(a, b) of semi-axis a in the x1-direction and b in all the other directions. The
computation ofWα ∗μa,b for n ≥ 3 is substantially different from the two-dimensional case
in [10]. For n = 2 it was crucial to rewrite the potential in complex variables and recognise
that∇W0∗μa,b is the Cauchy transform of the ellipse, which had been computed for instance
in [19] for rotating vortex patches in fluid dynamics. Then the gradient of the anisotropic part
of the potential in complex coordinates was computed by noting that it could be written as a
suitable complex derivative of the fundamental solution of the operator ∂2, where ∂ = ∂/∂z.

123



109 Page 4 of 28 J. A. Carrillo et al.

Such complex-analysis techniques are clearly not available in the higher-dimensional case,
which we tackle here by means of the following strategy. We write �α := Wα ∗ μa,b, and
α� := �α − �0. First of all, the expression of the Coulomb potential �0 of a spheroid in
R
n is well-known (see, e.g., [13,20]). The challenge is to express the anisotropic potential

� in terms of the known potential �0. We do it differently in �(a, b) and outside �(a, b).
In �(a, b) we show that � can be obtained by differentiating �0 with respect to the aspect
ratio a2/b2 of the spheroid. In R

n\�(a, b), instead,� is obtained by differentiating �0 with
respect to a parameter spanning a family of spheroids confocal with �(a, b), using the fact
that the expression of �0 is invariant on confocal spheroids (see (3.33)).

With the expression of �α at hand, we then impose the Euler–Lagrange conditions (3.1)–
(3.2). We find that the first condition is satisfied, for α ∈ (−1, n − 2], by at least a pair
(a(α), b(α)) of semi-axes, with a(α) > b(α) > 0 for α ∈ (−1, 0) and 0 < a(α) <

b(α) for α ∈ (0, n − 2]. Hence there is at least one stationary, non-degenerate spheroid
�(a(α), b(α)) for the energy Iα . We then show that, for any spheroid �(a(α), b(α)) for
which the stationarity condition (3.1) is satisfied, also the unilateral condition (3.2) is satisfied.
Since (3.1)–(3.2) are necessary and sufficient conditions for minimality, this implies that any
spheroid �(a(α), b(α)) satisfying (3.1) is in fact a minimiser for Iα . The strict convexity of
the energy then gives uniqueness of the minimiser, and in particular implies that there is only
one spheroid satisfying (3.1). This approach can be carried out also in the two-dimensional
case (see [27]). We note that in two dimensions there are several methods that work, see for
instance [23] where a maximum-principle argument is used.

1.1.1 Dimensionality of minimisers for n = 2 and n ≥ 3

For the energy (1.1), it was shown in [25] that the unique minimiser is one dimensional, and
is given by the semi-circle law on the vertical axis,

μedge = 1

π
δ0 ⊗

√
2 − x22 H1 (−√

2,
√
2),

where H1 (−√
2,

√
2) denotes the restriction of the one-dimensional Hausdorff measure

to the interval (−√
2,

√
2). The semi-circle law also arises as the unique minimiser of the

one-dimensional logarithmic energy with quadratic confinement (see [31]), and represents
in that case the optimal positions of the eigenvalues of a Hermitian random matrix with
Gaussian entries.

We recall that the minimiser of the Coulomb-gas energy I0 for n = 2 is the two-
dimensional measure μ0 = 1

π
χB1(0), the so-called circle-law, also well-known in the context

of random matrices. In fact, the minimiser of I0 is the normalised characteristic function of a
ball in any dimension. The change of dimension of the minimiser of the energy Iα , for n = 2,
between α = 0 and α = 1 was investigated by the authors in [10]. In [10] it was shown
in particular that the minimiser of Iα , for n = 2 and α ∈ (−1, 1), is the two-dimensional
measure

μα = 1

π

1√
1 − α2

χ�(
√
1−α,

√
1+α),

with

�(
√
1 − α,

√
1 + α) =

{
x = (x1, x2) ∈ R

2 : x21
1 − α

+ x22
1 + α

< 1

}
.

123



The equilibrium measure for an anisotropic nonlocal energy Page 5 of 28 109

Hence the minimiser of Iα has full dimension for α ∈ (−1, 1), and is one-dimensional for
both α ≤ −1 and α ≥ 1, being respectively the semi-circle law on the horizontal or the
vertical axis.

A question left open in [10] was to understand why there is a change of dimension of
the minimiser μα at α = ±1, for n = 2. The relation between the dimensionality of the
minimiser of a nonlocal energy and the singularity of the interaction kernel is a fascinating
and subtle problem. The available results in the literature are usually of the form of a lower
bound for the dimension of the measure (see, e.g., [1]), which is helpful if the goal is to prove
that the dimension is full, but less so to prove that there is a loss of dimension.

For the energy Iα in dimension n = 2, since the Fourier transform of Wα changes sign
exactly at the values α = ±1, it was natural to conjecture that the change of dimension could
be due to the change of sign of Ŵα . Similarly, since the Laplacian of Wα is


Wα(x) = −(1 − α)∂2x1 log |x | − (1 + α)∂2x2 log |x |,
it was reasonable to expect that the singular behaviour exhibited by μα at α = ±1 was a
consequence of the ‘degeneracy’ of 
Wα at those values.

The analysis done in this paper demonstrates that the situation is more delicate. While it
is still plausible to expect that a positive Fourier transform (or a non-degenerate Laplacian)
results into a fully-dimensional minimiser, the contrary is not true, at least for n ≥ 3. Indeed
while for n ≥ 3 the Fourier transform Ŵα of the interaction kernel changes sign at α = n−2
(see (2.5)), and similarly


Wα(x) =
(
1 − α

n − 2

)
∂2x1

(
1

|x |n−2

)
+

(
1 + α

n − 2

) n∑
i=2

∂2xi

(
1

|x |n−2

)
,

we prove that the minimiser of Iα is the characteristic function of a non-degenerate spheroid
also for the limit value α = n − 2.

1.1.2 The shape of minimisers for˛ > 0 and˛ < 0

In the two-dimensional case n = 2, changing sign to α corresponds to swapping x1 and
x2 (up to a constant in the energy), due to the zero-homogeneity of the energy. Hence it is
sufficient to characterise the minimisers of Iα for α > 0, which is what we did in [10].

This is no longer true for n ≥ 3, since in this case there is only one privileged coordinate.
Intuitively, configurations elongated on x1 are penalised for α > 0, and preferred for α < 0
(see, e.g., (2.1)), hence the minimisers for α > 0 and α < 0 cannot be congruent up to a
rotation, which is the case in dimension two. More precisely, for n ≥ 3 we may write

Wα(x) = (1 + α)W0(x) − α
1

|x |n
n∑

i=2

x2i .

Thus, changing sign to α corresponds not only to a change in the anisotropy, but also to a
rescaling of the Coulomb kernel. This also suggests that a different behaviour of the energy
should be expected at α = −1 in dimension n = 2 and n ≥ 3, as discussed next.

1.1.3 The limit case˛ = −1

In dimension n ≥ 3, for α = −1 the anisotropy cancels completely the x1-component of the
Coulomb potential, since from (1.3)

123



109 Page 6 of 28 J. A. Carrillo et al.

W−1(x) = 1

|x |n−2 − x21
|x |n = x22 + . . . + x2n

|x |n , x �= 0.

As a consequence, there is a discrepancy with the situation for α ∈ (−1, n − 2]: While Iα is
lower semicontinuous for any α ∈ (−1, n−2], the functional I−1 with the kernelW−1 above
(and W−1(0) = +∞) is not lower semicontinuous (see Remark 2.2). In particular, I−1 does
not describe the asymptotic behaviour of the functionals Iα , as α → −1+ (see Remark 4.2).
We resolve this issue in Sect. 4, where we characterise the �-limit J∗ of Iα , as α → −1+,
in Fourier space, on probability measures with compact support. This partial representation
allows us to show strict convexity of J∗ on a class of measures that is the relevant one for
minimisation, and hence to deduce uniqueness of the minimiser for J∗. Moreover, we show
that the minimiser is, also in this limit case, the (normalised) characteristic function of an
n-dimensional (prolate) spheroid.

1.2 Open questions and future work

There are several questions that we will address in future work. We believe that ellipses, or
spheroids, arise as minimisers of more general anisotropic energies. A first step would be to
consider interaction kernels of the form W0 + αWaniso, with

Waniso(x) = x2κ1
|x |n−2+2κ , κ ∈ N.

It is plausible to expect that in the two-dimensional case n = 2 and in a suitable range of
α the minimisers are ellipses. It would be interesting to understand whether, as for κ = 1,
they shrink to a segment for some special value α∗ within, or at the boundary of, the interval
of strict convexity of the corresponding energy (or of positivity of the Fourier transform
of W0 + αWaniso). This analysis would help to shed more light on what causes the loss of
dimension of the minimising measure.

1.3 Outline

The plan of the paper is as follows. In Sect. 2 we show that the energy Iα admits a unique
global minimiser μα , for α ∈ (−1, n − 2]. Section 3 is devoted to the main result of the
paper, Theorem 3.1, in which μα is identified as the (normalised) characteristic function of
a spheroid, for α ∈ (−1, n − 2]. Finally, in Sect. 4, we discuss the limit case α → −1+.

2 Existence and uniqueness of theminimiser of I˛ for˛ ∈ (−1,n − 2],
n ≥ 3

In this section we prove that for every α ∈ (−1, n − 2] the nonlocal energy Iα defined in
(1.2), for n ≥ 3, has a unique minimiser μα ∈ P(Rn), and that the minimiser has a compact
support.

Proposition 2.1 Let n ≥ 3, and let α ∈ (−1, n − 2]. Then the energy Iα is well defined on
P(Rn), is strictly convex on the class of measures with compact support and finite interaction
energy, and has a unique minimiser in P(Rn). Moreover, the minimiser has compact support
and finite energy.
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Proof The case n = 2 has been proved in [25, Section 2] and [10, Proposition 2.1]. For n ≥ 3
the proof follows by a similar argument. The main novelty is Step 3.2, where we present a
new, more transparent way of proving condition (2.3) below.
Step 1: Well definiteness of Iα . Since α > −1, if we write Wα , for x �= 0, as

Wα(x) = 1

|x |n
(

(1 + α)x21 +
n∑

i=2

x2i

)
, (2.1)

we can immediately see that the energy is well-defined and non-negative on P(Rn).

Step 2: Existence of a compactly supported minimiser. First of all, it is easy to see that
Iα(μB) < +∞, where μB = 1

|B1(0)|χB1(0). This implies that infP(Rn) Iα < +∞. Moreover,
we have that

Wα(x − y) + 1

2
(|x |2 + |y|2) ≥ 1

2
(|x |2 + |y|2). (2.2)

This lower bound provides tightness and hence compactness with respect to narrow con-
vergence for minimising sequences, that, together with the lower semicontinuity of Iα ,
guarantees the existence of a minimiser. As in [25, Section 2.2] (see also [3]), one can
show that any minimiser of Iα has compact support, again by (2.2).

Step 3: Strict convexity of Iα and uniqueness of the minimiser. We prove that∫
Rn

Wα ∗ (ν1 − ν2) d(ν1 − ν2) > 0 (2.3)

for everyν1, ν2 ∈ P(Rn),ν1 �= ν2,with compact support andfinite interaction energy, namely
such that

∫
Rn (Wα ∗ νi ) dνi < +∞ for i = 1, 2. Condition (2.3) implies strict convexity of

Iα on the set of probability measures with compact support and finite interaction energy and,
consequently, uniqueness of the minimiser.

To prove (2.3), we follow again the same strategy as in [25, Section 2.3]. The idea consists
in rewriting the interaction energy of ν := ν1 − ν2 in Fourier space, as∫

Rn
Wα ∗ ν dν =

∫
Rn

Ŵα(ξ)|̂ν(ξ)|2 dξ, (2.4)

and proving that Ŵα is a positive distribution.
Step 3.1: Computation of Ŵα . Note that Wα is a tempered distribution, namely Wα ∈ S ′,
where S denotes the Schwartz space; hence also Ŵα ∈ S ′. We recall that Ŵα is defined by
the formula

〈Ŵα, ϕ〉 := 〈Wα, ϕ̂ 〉 for every ϕ ∈ S
where, for ξ ∈ R

n ,

ϕ̂(ξ) :=
∫
Rn

ϕ(x)e−2π iξ ·x dx .

To compute Ŵα it is convenient to rewrite Wα as

Wα(x) =
(
1 + α

n

) 1

|x |n−2 + α

n

1

|x |n
(

(n − 1)x21 −
n∑

i=2

x2i

)
,

namely as the sum of the n-dimensional Coulomb potential (up to a multiplicative constant)
and the ratio between a homogeneous harmonic polynomial of degree two and a power of
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|x |. By [30, eq. (32), p. 73] and by [15, Exercise 1, p. 154] we have that the Fourier transform
Ŵα of Wα is given by

〈Ŵα, ϕ〉 =
(
1 + α

n

) (n − 2)π
n
2 −2

2�( n2 )

∫
Rn

1

|ξ |2 ϕ(ξ)dξ − α

n

π
n
2 −2

�( n2 )

∫
Rn

(n − 1)ξ21 − ∑n
i=2 ξ2i

|ξ |4 ϕ(ξ)dξ

= π
n
2 −2

2�( n2 )

∫
Rn

(n − 2 − α)ξ21 + (n − 2 + α)
∑n

i=2 ξ2i

|ξ |4 ϕ(ξ)dξ (2.5)

for every ϕ ∈ S. Thus, (2.5) implies that Ŵα is a positive function in L1
loc(R

n) for every
α ∈ (−1, n − 2], hence in particular a positive tempered distribution.

Step 3.2: Proof of (2.4). We start by proving that (2.4) holds when ν is a non-negative finite
Borel measure with compact support, where we understand that the two sides of the formula
are either both finite and coincide, or both equal to +∞.

We proceed by regularisation. Let ϕ ∈ C∞
c (B1(0)) be non-negative, radial, and with∫

Rn ϕ(x) dx = 1. For ε > 0 we define

ϕε(x) := 1

εn
ϕ

( x
ε

)
and νε := ν ∗ ϕε. (2.6)

We claim that ∫
Rn

(Wα ∗ νε)(x)νε(x) dx =
∫
Rn

Ŵα(ξ)|ν̂ε(ξ)|2 dξ. (2.7)

To show this, let us set f := Wα ∗ νε and g := νε , and note that g ∈ C∞
c (Rn) and

f ∈ C∞(Rn). Moreover, since ν̂ε ∈ S and Ŵα ∈ L1
loc(R

n) behaves as 1/|ξ |2 at infinity by
(2.5), we have that f̂ = Ŵα ν̂ε ∈ L1(Rn). Let ψ ∈ C∞

c (Rn) be such that ψ = 1 on B1(0)
and let R > 0 be such that the support of g is contained in BR(0). If τ > 0 is such that
τ R < 1, then, by Parseval formula,∫

Rn
f (x)g(x) dx =

∫
Rn

ψ(τ x) f (x)g(x) dx

=
∫
Rn

(ψ̂(τ ·) ∗ f̂ )(ξ) ĝ(ξ) dξ =
∫
Rn

(ψ̂τ ∗ f̂ )(ξ) ĝ(ξ) dξ, (2.8)

where ψ̂τ (x) := τ−nψ̂(x/τ). Using that ψ̂ ∈ S ⊂ L1(Rn),
∫
Rn ψ̂(ξ) dξ = ψ(0) = 1, and

that f̂ ∈ L1(Rn), it is easy to see that ψ̂τ ∗ f̂ converges to f̂ in L1(Rn), as τ → 0. In fact,

‖ψ̂τ ∗ f̂ − f̂ ‖L1 ≤
∫
Rn

|ψ̂(η)|
∫
Rn

| f̂ (ξ − τη) − f̂ (ξ)| dξdη

and one can conclude by the continuity of translations in the L1-norm and by the Dominated
Convergence Theorem. Since ĝ ∈ L∞(Rn), we deduce that

lim
τ→0

∫
Rn

(ψ̂τ ∗ f̂ )(ξ) ĝ(ξ) dξ =
∫
Rn

f̂ (ξ) ĝ(ξ) dξ,

which, together with (2.8), proves (2.7).
We now let ε → 0 in (2.7). For the right-hand side we observe that for every ξ ∈ R

n

ϕ̂ε(ξ) = ϕ̂(εξ) → ϕ̂(0) = 1,

as ε → 0, and that ‖ϕ̂ε‖L∞ ≤ ‖ϕ‖L1 = 1 for every ε > 0. Therefore, either by theDominated
Convergence Theorem or the Fatou Lemma, we have∫

Rn
Ŵα(ξ)|ν̂ε(ξ)|2 dξ =

∫
Rn

Ŵα(ξ)|̂ν(ξ)|2|ϕ̂ε(ξ)|2 dξ →
∫
Rn

Ŵα(ξ)|̂ν(ξ)|2 dξ, (2.9)
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as ε → 0, even if the right-hand side is infinite.
To deal with the left-hand side of (2.7) we note that, since α > −1, there exists a positive

constant C = C(α) such that

1

C
W0(x) ≤ Wα(x) ≤ C W0(x) for every x ∈ R

n . (2.10)

Hence,

(Wα ∗ ϕε)(z) ≤ C(W0 ∗ ϕε)(z) for every z ∈ R
n .

SinceW0 is superharmonic and ϕ is radial with integral 1, the mean value property on spheres
yields

(W0 ∗ ϕε)(z) ≤ W0(z) for every z ∈ R
n .

Thus, combining the three previous inequalities,

(Wα ∗ ϕε)(z) ≤ C W0(z) ≤ C2 Wα(z) for every z ∈ R
n . (2.11)

Note that for every z ∈ R
n

(Wα ∗ ϕε)(z) → Wα(z), (2.12)

as ε → 0, since Wα is continuous as a function with values into [0,+∞]. Owing to the con-
vergence (2.12) and the domination (2.11), we can either apply the Dominated Convergence
Theorem or the Fatou Lemma to deduce that∫∫

Rn×Rn
(Wα ∗ ϕε)(x − y) dν(x) dν(y) →

∫∫
Rn×Rn

Wα(x − y) dν(x) dν(y), (2.13)

as ε → 0, even if the right-hand side is infinite.
We now go back to the left-hand side of (2.7) and observe that∫

Rn
(Wα ∗ νε)(x)νε(x) dx =

∫∫
Rn×Rn

(Wα ∗ ϕε ∗ ϕε)(x − y) dν(x) dν(y).

Note that (ϕε ∗ ϕε)(x) = ε−n(ϕ ∗ ϕ)(x/ε) and that ϕ ∗ ϕ inherits the properties of ϕ: it
is radial, belongs to C∞

c (Rn), and
∫
Rn (ϕ ∗ ϕ)(x) dx = 1. Therefore, (2.13) holds with ϕε

replaced by ϕε ∗ ϕε . This concludes the proof of (2.4) for a non-negative measure ν.
We now prove (2.4) for a signed and neutral measure ν := ν1 −ν2, where ν1, ν2 ∈ P(Rn)

have compact support and finite interaction energy. First of all, by using (2.4) for ν1 + ν2 we
have that∫

Rn
(Wα ∗ (ν1 + ν2))(x) d(ν1 + ν2)(x) =

∫
Rn

Ŵα(ξ)|̂ν1(ξ) + ν̂2(ξ)|2 dξ

≤ 2
∫
Rn

Ŵα(ξ)(|̂ν1(ξ)|2 + |̂ν2(ξ)|2) dξ < +∞.

By expanding both sides of the identity above and using (2.4) for ν1 and ν2 we get∫
Rn

(Wα ∗ ν1)(x) dν2(x) =
∫
Rn

Ŵα(ξ)Re
(̂
ν1(ξ )̂ν2(ξ)

)
dξ,

which, by using again (2.4) for ν1 and ν2, gives∫
Rn

(Wα ∗ (ν1 − ν2))(x) d(ν1 − ν2)(x) =
∫
Rn

Ŵα(ξ)|̂ν1(ξ) − ν̂2(ξ)|2 dξ.

Since the right-hand side is strictly positive for ν1 �= ν2, Eq. (2.3) is proved. ��
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Remark 2.2 In the case n ≥ 3, unlike in the two-dimensional case, the energy is not well-
defined for α < −1. Indeed, writing Wα as in (2.1), we can see that the two terms in the
right-hand side of (2.1) are both unbounded for |x | close to zero, and have opposite sign.

Even for α = −1 the situation is subtle. The functional I−1 with kernelW−1 defined as in
(1.3) is not lower semicontinuous with respect to narrow convergence: Indeed, the probability
measures μk := kH1

(
(0, 1

k ) × {0}n−1
)
converge narrowly to the Dirac delta at 0, but

0 = lim
k→+∞ I−1(μk) < I−1(δ0) = +∞. (2.14)

So, in particular, I−1 is not the �-limit of Iα for α → −1+. Moreover, (2.14) implies that
the relaxed functional I−1 of I−1 is equal to 0 at δ0, which is therefore a minimiser of I−1.
Note that the kernel W−1 is also not lower semicontinuous, since W−1(0) = +∞ and

lim inf
x→0

W−1(x) = 0.

If we define a new kernel W̃−1 to be as W−1 for x �= 0, and W̃−1(0) := 0, then W̃−1 is
lower semicontinuous, and the corresponding functional Ĩ−1 has a unique minimiser, which
is simply the Dirac delta at 0.

The case α = −1 will be discussed in detail in Sect. 4.

3 Minimality of spheroids

It is a standard computation in potential theory to show that any minimiser μ of Iα must
satisfy the following Euler–Lagrange conditions: There exists C ∈ R such that

(Wα ∗ μ)(x) + |x |2
2

= C forμ-a.e. x ∈ suppμ, (3.1)

(Wα ∗ μ)(x) + |x |2
2

≥ C for q.e. x ∈ R
n, (3.2)

where quasi everywhere (q.e.) means up to sets of zero capacity (see [26, Chapter I, The-
orem 1.3] or [25, Section 3.1]). The Euler–Lagrange conditions (3.1) and (3.2) are in fact
equivalent to minimality for α ∈ (−1, n−2] due to Proposition 2.1. We refer to [25, Section
3.1] for details.

Let a, b > 0, and let �(a, b) ⊂ R
n denote the ellipsoid with semi-axis a in the x1

direction and the other semi-axes of the same length b, namely

�(a, b) :=
{
x = (x1, . . . , xn) ∈ R

n : x21
a2

+ 1

b2

n∑
i=2

x2i < 1

}
.

This special ellipsoid is called oblate spheroid if a < b and prolate spheroid if a > b.
The main result is the following.

Theorem 3.1 Let n ≥ 3 and α ∈ (−1, n − 2]. There exist a(α), b(α) > 0 such that the
measure

μα := 1

|�α| χ�α , �α := �(a(α), b(α)),
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is the unique minimiser of the functional Iα in P(Rn) and satisfies the Euler–Lagrange
conditions

(Wα ∗ μα)(x) + |x |2
2

= Cα for every x ∈ �α, (3.3)

(Wα ∗ μα)(x) + |x |2
2

≥ Cα for every x ∈ R
n, (3.4)

withCα = Iα(μα)− 1
2

∫
Rn |x |2 dμα(x). Moreover, the spheroid�α is prolate forα ∈ (−1, 0)

and oblate for α ∈ (0, n − 2].

Remark 3.2 For α = 0, n ≥ 3, it is well-known that the unique minimiser of the Coulomb
energy I0 is the normalised characteristic function of the ball centred at 0with radius (n−2)1/n

(see, e.g., [11, Corollary 1.3]). In other words, a(0) = b(0) = (n− 2)1/n . In the proof below
we will focus only on the case α �= 0.

We split the proof of Theorem 3.1 into Sect. 3.1, where we prove the stationarity condition
(3.3), and Sect. 3.2, where we prove (3.4). The heart of the proof consists in the exact
evaluation of the convolution

�α := Wα ∗ 1

|�(a, b)|χ�(a,b)

both in �(a, b) (in Sect. 3.1) and in R
n\�(a, b) (in Sect. 3.2), for a, b > 0. Note that

�α ∈ C1(Rn), as can be seen by e.g. adapting the proof of [17, Lemma 4.1]).
We write

�α(x) = �0(x) + α�(x), with �(x) := 1

|�(a, b)|
∫

�(a,b)

(x1 − y1)2

|x − y|n dy. (3.5)

3.1 The condition (3.3) on spheroids

Let α ∈ (−1, n − 2]. We claim that there exist a(α), b(α) > 0 (with a(α) < b(α) for
α ∈ (0, n − 2] and a(α) > b(α) for α ∈ (−1, 0)) such that

(Wα ∗ μα)(x) + |x |2
2

= Cα for every x ∈ �α, μα := 1

|�α| χ�α , (3.6)

where we recall that �α = �(a(α), b(α)).
In the two-dimensional case studied in [10], we computed the semi-axes of �α in terms

of α, and deduced the explicit values a = √
1 − α and b = √

1 + α. For n ≥ 3 we do not
have explicit expressions for the semi-axes in terms of α.

3.1.1 The potential inside a spheroid

In this section, for α ∈ (−1, n − 2] and a, b > 0, we evaluate �α(x) with x ∈ �(a, b). We
start by recalling the case α = 0 of the Coulomb potential, namely

�0(x) = 1

|�(a, b)|
∫

�(a,b)

1

|x − y|n−2 dy =: –
∫

�(a,b)

1

|x − y|n−2 dy.

123



109 Page 12 of 28 J. A. Carrillo et al.

Fromhere onwardswe use a barred integral to denote themean over the domain of integration.
For x ∈ �(a, b) we have that

�0(x) = n(n − 2)

4

∫ ∞

0

(
1 − x21

a2 + s
− r2

b2 + s

)
ds√

a2 + s(b2 + s)
n−1
2

= −n(n − 2)

4bn

(
x21

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

+ r2
∫ ∞

0

dσ
√
t + σ(1 + σ)

n+1
2

)

+ C(a2, b2), (3.7)

where r2 = ∑n
i=2 x

2
i , C(a2, b2) is a constant that depends smoothly on a2 and b2, and in

the last step we set σ := s/b2 and denoted with t the aspect ratio t := a2/b2, t > 0 (see,
e.g., [13]). In particular, �0 in �(a, b) is a second-degree polynomial with no linear terms.

We now obtain the anisotropic term � of �α on �(a, b) [see (3.5)] by differentiating �0

with respect to the aspect ratio t , in the spirit of [10, Section 4]. First of all note that, by the
definition of �0 and by a change of variables,

�0(b
√
tu1, bu

′) = 1

bn−2 –
∫

B1(0)

dv(
t(u1 − v1)2 + |u′ − v′|2) n−2

2

, (3.8)

where u′ := (u2, . . . , un), and u = (u1, u′) ∈ B1(0). By differentiating (3.8) with respect to
the aspect ratio t we obtain

∂

∂t

(
�0(b

√
tu1, bu

′)
)

= − 1

bn−2

n − 2

2
–
∫

B1(0)

(u1 − v1)
2

(
t(u1 − v1)2 + |u′ − v′|2)n/2 dv, (3.9)

and since

�(b
√
tu1, bu

′) = 1

bn−2 –
∫

B1(0)

t(u1 − v1)
2

(
t(u1 − v1)2 + |u′ − v′|2)n/2 dv,

it follows by (3.9) that

�(b
√
tu1, bu

′) = − 2t

n − 2

∂

∂t

(
�0(b

√
tu1, bu

′)
)
. (3.10)

On the other hand, by the explicit expression (3.7)we have that for every u = (u1, u′) ∈ B1(0)

�0(b
√
tu1, bu

′) = −u21
n(n − 2)t

4bn−2

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

− |u′|2 n(n − 2)

4bn−2

∫ ∞

0

dσ
√
t + σ(1 + σ)

n+1
2

+ C(tb2, b2),

and hence

∂

∂t

(
�0(b

√
tu1, bu

′)
)

= −u21
n(n − 2)

4bn−2

(∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

− 3t

2

∫ ∞

0

dσ

(t + σ)5/2(1 + σ)
n−1
2

)

+ |u′|2 n(n − 2)

8bn−2

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n+1
2

+ C̃(tb2, b2), (3.11)
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where C̃(tb2, b2) is another constant. So, by (3.10) and (3.11) we obtain the expression of
� for x ∈ �(a, b), namely

�(x) = x21
n

2bn

(∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

− 3t

2

∫ ∞

0

dσ

(t + σ)5/2(1 + σ)
n−1
2

)

− r2
nt

4bn

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n+1
2

− 2t

n − 2
C̃(tb2, b2).

In conclusion, for x ∈ �(a, b),

�α(x)

= x21
n

4bn

(
(2α − (n − 2))

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

− 3αt
∫ ∞

0

dσ

(t + σ)5/2(1 + σ)
n−1
2

)

+ r2
n

4bn

(
− (n − 2)

∫ ∞

0

dσ
√
t + σ(1 + σ)

n+1
2

− αt
∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n+1
2

)
+ C,

(3.12)

where C denotes a constant and t > 0.

3.1.2 The condition (3.3) on spheroids

Wenowuse the expression (3.12) of the potential on spheroids to verify that there is a spheroid
for which the first Euler–Lagrange condition (3.3) is satisfied.

We start by establishing some relations among the integrals appearing in the expressions
of the coefficients of x21 and r2. Note that, by defining

H(t) :=
∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n−1
2

(3.13)

for t > 0, we have that

∫ ∞

0

dσ

(t + σ)5/2(1 + σ)
n−1
2

= −2

3
H ′(t), (3.14)

∫ ∞

0

dσ
√
t + σ(1 + σ)

n+1
2

= 2

n − 1

1√
t

− 1

n − 1
H(t), (3.15)

∫ ∞

0

dσ

(t + σ)3/2(1 + σ)
n+1
2

= 2

n − 1

1

t3/2
+ 2

n − 1
H ′(t). (3.16)

Note also that

− nH(t) + 2(1 − t)H ′(t) + 2

t3/2
= 0. (3.17)
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To prove it, we rewrite (3.16) as

2

n − 1
H ′(t) = 1

t

∫ ∞

0

t + σ − σ

(t + σ)3/2(1 + σ)
n+1
2

dσ − 2

n − 1

1

t3/2

= 1

t

(
2

n − 1

1√
t

− 1

n − 1
H(t)

)
− 1

t

∫ ∞

0

1 + σ − 1

(t + σ)3/2(1 + σ)
n+1
2

dσ − 2

n − 1

1

t3/2

= − 1

n − 1

1

t
H(t) − 1

t
H(t) + 1

t

(
2

n − 1

1

t3/2
+ 2

n − 1
H ′(t)

)
,

hence obtaining the relation (3.17).
Integrating (3.17) we deduce that

H(t) = 1

|1 − t | n2
∫ 1

t

|1 − s| n2
s3/2(1 − s)

ds for t �= 1.

By integration by parts we obtain

H(t) = 2√
t(1 − t)

− n − 2

|1 − t |n/2

∫ 1

t

|1 − s| n2 −2

√
s

ds for t �= 1, (3.18)

and by differentiation

H ′(t) = (n + 1)t − 1

t3/2(1 − t)2
− n(n − 2)

2

1 − t

|1 − t | n2 +2

∫ 1

t

|1 − s| n2 −2

√
s

ds for t �= 1. (3.19)

Condition (3.3) on spheroids is equivalent to the following two equations, obtained by
equating the coefficients of x21 :

− 1

2
= n

4bn
(
(2α − (n − 2))H(t) + 2αt H ′(t)

)
, (3.20)

and of r2:

− 1

2
= n

4(n − 1)bn

(
−2(n − 2 + α)

1√
t

+ (n − 2)H(t) − 2αt H ′(t)
)

. (3.21)

For what follows it is more convenient to reduce to two alternative equivalent conditions:
the first one is obtained by adding (3.20) to (n − 1)-times (3.21):

bn = n − 2 + α√
t

− αH(t), (3.22)

and the second condition is obtained by subtracting (3.20) from (3.21):

α

(
(n − 1)H(t) + ntH ′(t) + 1√

t

)
+ (n − 2)

(
−n

2
H(t) + 1√

t

)
= 0. (3.23)

We claim that, for every α ∈ (−1, n − 2] there exists a spheroid satisfying (3.22) and (3.23),
and hence satisfying the stationarity condition (3.3). More precisely, we will show that there
exists a pair (a(α), b(α)) (or equivalently (t(α), b(α))) satisfying (3.22) and (3.23).
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3.1.3 The equation (3.23)

We denote with F(t, α), for α ∈ R and t > 0 (we recall that t = a2/b2), the left-hand side
of (3.23). Then (3.23) is of the form F(t, α) = 0. We write

F(t, α) = 1√
t

(
A(t)α + B(t)

)
, (t, α) ∈ (0,+∞) × R,

where

A(t) := (n − 1)
√
t H(t) + nt3/2H ′(t) + 1, B(t) := −n(n − 2)

2

√
t H(t) + (n − 2).

(3.24)

Weclaim that for everyα ∈ (−1, n−2] there exists t = t(α) > 0 such that F(t(α), α) = 0.
We start by analysing the behaviour of A and B for t close to zero. By (3.18) we have that

√
t H(t) = 2

1 − t
− (n − 2)

√
t

(1 − t)n/2

∫ 1

t

(1 − s)
n
2 −2

√
s

ds for 0 < t < 1, (3.25)

and since
∫ 1

0

(1 − s)
n
2 −2

√
s

ds < +∞, (3.26)

we immediately deduce that limt→0+
√
t H(t) = 2. Moreover, by (3.19),

t3/2H ′(t) = (n + 1)t − 1

(1 − t)2
− n(n − 2)t3/2

2(1 − t)
n
2 +1

∫ 1

t

(1 − s)
n
2 −2

√
s

ds for 0 < t < 1, (3.27)

thus, by (3.26) we deduce that limt→0+ t3/2H ′(t) = −1. This implies that

lim
t→0+ A(t) = lim

t→0+

(
(n − 1)

√
t H(t) + nt3/2H ′(t) + 1

)
= 2(n − 1) − n + 1 = n − 1,

and

lim
t→0+ B(t) = (n − 2) lim

t→0+

(
−n

2

√
t H(t) + 1

)
= −(n − 1)(n − 2).

Hence, if α �= n − 2, limt→0+ F(t, α) = −∞. If α = n − 2, by (3.24) we have

√
t F(t, n − 2) = (n − 2)2

2
(
√
t H(t) − 2) + n(n − 2)(t3/2H ′(t) + 1).

Using (3.25) and (3.27), we obtain

F(t, n − 2) = (n − 2)
√
t

(1 − t)2
(2t + n2 − 2)

− (n − 2)2

2(1 − t)
n
2 +1

(
(n − 2)(1 − t) + n2t

) ∫ 1

t

(1 − s)
n
2 −2

√
s

ds

for 0 < t < 1. By (3.26) we deduce that

lim
t→0+ F(t, n − 2) = − (n − 2)3

2

∫ 1

0

(1 − s)
n
2 −2

√
s

ds < 0.
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By a direct computation from (3.13) and (3.14) we have that H(1) = 2
n and H ′(1) =

− 3
(n+2) , therefore F(1, α) = 4(n−1)

n(n+2)α. Finally, one can check directly that

lim
t→+∞ A(t) = 1 and lim

t→+∞ B(t) = n − 2. (3.28)

Now fix ᾱ ∈ (0, n − 2]: then, since limt→0+ F(t, ᾱ) < 0 and F(1, ᾱ) > 0, and F(·, ᾱ)

is continuous on (0,∞), it follows that there exists at least one t(ᾱ) ∈ (0, 1) such that
F(t(ᾱ), ᾱ) = 0. Similarly, fixing ᾱ ∈ (−1, 0), since F(1, ᾱ) < 0 and limt→+∞ F(t, ᾱ) =
0+, it follows that there exists at least one t(ᾱ) > 1 such that F(t(ᾱ), ᾱ) = 0.

In conclusion, for every α ∈ (−1, n − 2] there exists at least one t(α) > 0 such that
F(t(α), α) = 0; in other words, for every α ∈ (−1, n − 2] there exists a solution t(α) > 0
of (3.23).

3.1.4 The equation (3.22)

Nowwe solve (3.22) for the t(α) found above by solving (3.23) for spheroids andwe compute
the corresponding b. Then the spheroid will be the one with semi-axes b(α) and a(α), with
t(α) = a(α)2/b(α)2. From (3.22) and by (3.15)

0 <
√
t H(t) = 2 − (n − 1)

√
t
∫ ∞

0

dσ
√
t + σ(1 + σ)

n+1
2

< 2 for t > 0,

we have that, for α ∈ (0, n − 2]
bn = 1√

t

(
n − 2 + α − α

√
t H(t)

)
>

1√
t

(
n − 2 − α

) ≥ 0, (3.29)

and for α ∈ (−1, 0)

bn = 1√
t

(
n − 2 + α − α

√
t H(t)

)
>

1√
t

(
n − 2 + α) > 0. (3.30)

3.2 The condition (3.4) outside spheroids

In this sectionwe show that forα ∈ (−1, n−2] and for any spheroid�(a(α), b(α)) for which
the stationarity condition (3.3) is satisfied, also the unilateral condition (3.4) is satisfied. This
implies that any spheroid�(a(α), b(α)) for which the stationarity condition (3.3) is satisfied
is in fact a minimiser for the functional Iα , and by Proposition 2.1 it is the unique minimiser
(which in particular implies that there is only one spheroid satisfying (3.3)).

We do it in several steps.We start by evaluating the Coulomb potential, which corresponds
to α = 0, namely

�0(x) = –
∫

�(a,b)

1

|x − y|n−2 dy,

for x ∈ R
n\�(a, b) and a, b > 0. For x ∈ R

n\�(a, b) and a, b > 0,

�0(x) = n(n − 2)

4

∫ ∞

λ(x)

(
1 − x21

a2 + s
− r2

b2 + s

)
ds√

a2 + s(b2 + s)
n−1
2

, (3.31)

where r2 = ∑n
i=2 x

2
i and λ(x) is the largest root of the equation

x21
a2 + λ

+ r2

b2 + λ
= 1,
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(see, e.g., [13]). By straightforward computations one can see that

λ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

4

(√
x21 + (r + c)2 +

√
x21 + (r − c)2

)2

− b2 if a < b,

1

4

(√
(x1 + c)2 + r2 +

√
(x1 − c)2 + r2

)2 − a2 if a > b,

where

c2 :=
{
b2 − a2 if a < b,

a2 − b2 if a > b.

3.2.1 The anisotropic potential outside a spheroid

In this section we prove that the anisotropic term � of �α , both for oblate and prolate
spheroids, is related to the Coulomb potential �0 by the relation

�(x) = a2

a2 − b2
�0(x) + 1

(n − 2)(a2 − b2)
∇�0(x) · (

b2x1, a
2x ′) , (3.32)

for x = (x1, x ′) ∈ R
n\�(a, b).We obtain (3.32) by an ingenious differentiation of �0.

While in Sect. 3.1� on�(a, b)was obtained by differentiating�0 with respect to the aspect
ratio a2/b2 of the spheroid, the geometric quantity that is relevant in this case is the parameter
spanning a family of spheroids confocal with �(a, b), and surrounding it from the outside.

We prove (3.32) in the case of oblate spheroids, but the case of prolate spheroids is
completely analogous. For oblate spheroids we set a2 = t and b2 = t + c2, where c is fixed,
and set

�t
0(x) := –

∫
�t

1

|x − y|n−2 dy, � t (x) := –
∫

�t

(x1 − y1)2

|x − y|n dy, �t := �(
√
t,

√
t + c2).

From (3.31) one can easily rewrite the Coulomb potential on a spheroid as

�0(x) = n(n − 2)

4

∫ ∞

�(x)

(
1 − x21

σ − c2
− r2

σ

) dσ√
σ − c2σ

n−1
2

,

where �(x) = λ(x) + b2 and σ := s + b2, and �(x) depends only on c2. Hence �t
0 depends

on its semi-axes a and b only via c, and not on a and b separately, namely

0 = ∂

∂t
�t

0(x) = ∂

∂t
–
∫

B1(0)

(
t

(
x1√
t

− v1

)2

+ (t + c2)
∑
i �=1

(
xi√
t + c2

− vi

)2)− n−2
2

dv.

By expanding the derivative above and rewriting
(
x1√
t

− v1

)2

+
∑
i �=1

(
xi√
t + c2

− vi

)2

= 1

t + c2

(
t

(
x1√
t

− v1

)2

+ (t + c2)
∑
i �=1

(
xi√
t + c2

− vi

)2)
+ c2

t(t + c2)
t

(
x1√
t

− v1

)2

,

we obtain

0 = 1

t + c2
�t

0(x) + c2

t(t + c2)
� t (x) + 1

n − 2
∇x�

t
0(x) ·

(
x1
t

,
x ′

t + c2

)
. (3.33)
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The expression (3.33) gives the (unknown) expression of the anisotropic term � t in terms of
the (known) Coulomb potential �t

0 and its spatial gradient. Substituting t and c in terms of
a and b in (3.33) and rearranging the terms we then have (3.32).

With the expression of the Coulomb potential �0 [see (3.31)] and a closed formula for
the anisotropic potential � [in (3.32)] in the outer region R

n\�(a, b) at hand, we now prove
(3.4). More precisely, we prove that for every α ∈ (−1, n − 2],

�α(x) + |x |2
2

≥ Cα for every x ∈ R
n\�(a(α), b(α)), (3.34)

where �(a(α), b(α)) is a stationary point, satisfying (3.3). To prove (3.34) we first rewrite
the potentials�0 and� (and hence�α) outside a spheroid in amore convenient way, in terms
of a set of coordinates—oblate or prolate spheroidal—alternative to the Euclidean ones, and
more suitable for the geometry of the problem.

We deal with the oblate and prolate case separately.

3.2.2 The condition (3.34) outside an oblate spheroid

To prove (3.34) for an oblate spheroid, we rewrite the potentials �0 in (3.31) and � in (3.32)
outside a spheroid in terms of the oblate spheroidal coordinates. By the symmetry of�α and
of the confinement, it is sufficient to reduce to computations in the x1x2-plane. In terms of
oblate spheroidal coordinates we have

{
x1 = czρ

x2 = c
√

(1 + z2)(1 − ρ2)
z ≥ 0, ρ ∈ [−1, 1],

where we recall that c2 = b2 − a2. Note that the outer region R
n\�(a, b) corresponds to

z ≥ a
c .

For z ≥ a
c and ρ ∈ [−1, 1], the expression of the Coulomb potential (3.31) in oblate

spheroidal coordinates reads as

�0(z, ρ) = n(n − 2)

4
ρ2

∫ ∞

c2z2

c2(σ − c2z2)

σ 3/2(σ + c2)
n+1
2

dσ + n(n − 2)

4

∫ ∞

c2z2

σ − c2z2
√

σ(σ + c2)
n+1
2

dσ,

where we used that r2 = x22 , λ(x) = c2z2 − a2 and the change of variables σ = a2 + s.
We recall that the gradient of the oblate spheroidal coordinates with respect to Cartesian
coordinates is given by the following formulas:

∇ρ(x) = 1

c(z2 + ρ2)

(
z(1 − ρ2),−ρ

√
(1 + z2)(1 − ρ2)

)
,

∇z(x) = 1

c(z2 + ρ2)

(
ρ(1 + z2), z

√
(1 + z2)(1 − ρ2)

)
.

Since

∂z�0(z, ρ) = −n(n − 2)

2
c2z

∫ ∞

c2z2

c2ρ2 + σ

σ 3/2(σ + c2)
n+1
2

dσ,

∂ρ�0(z, ρ) = −n(n − 2)

2
c2ρ

∫ ∞

c2z2

c2z2 − σ

σ 3/2(σ + c2)
n+1
2

dσ,
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we deduce that

∇�0(x) = −c n(n − 2)

2

(∫ ∞

c2z2

zρ dσ

σ 3/2(σ + c2)
n−1
2

,

∫ ∞

c2z2

√
(1 + z2)(1 − ρ2) dσ
√

σ(σ + c2)
n+1
2

)
,

and

− 1

c2
∇�0(x) · (b2x1, a

2x2)

= n(n − 2)

4

(∫ ∞

c2z2

2b2z2ρ2

σ 3/2(σ + c2)
n−1
2

dσ +
∫ ∞

c2z2

2a2(1 + z2)(1 − ρ2)
√

σ(σ + c2)
n+1
2

dσ

)
.

Hence the anisotropic potential is

�(x) = n

4
ρ2

∫ ∞

c2z2

−na2(σ − c2z2) + 2c2z2(σ + c2)

σ 3/2(σ + c2)
n+1
2

dσ

+ n

4

∫ ∞

c2z2

−na2(σ − c2z2) + 2a2(σ + c2)

c2
√

σ(σ + c2)
n+1
2

dσ.

Finally, the confinement term |x |2/2, in terms of the spheroidal coordinates, is

|x |2
2

= c2

2
(1 − ρ2 + z2).

Note that �0, � and the confinement are all quadratic functions in the variable ρ. More
precisely, for z ≥ a

c and ρ ∈ [−1, 1],

�α(x) + |x |2
2

= Aα(z) + Bα(z)ρ2, (3.35)

where

Aα(z) := n

4

∫ ∞

c2z2

(
(n − 2)c2 − nαa2

)
(σ − c2z2) + 2αa2(σ + c2)

c2
√

σ(σ + c2)
n+1
2

dσ + c2

2
(1 + z2),

Bα(z) := n

4

∫ ∞

c2z2

(
(n − 2)c2 − nαa2

)
(σ − c2z2) + 2αc2z2(σ + c2)

σ 3/2(σ + c2)
n+1
2

dσ − c2

2
.

We now prove (3.34) for any oblate spheroid �(a(α), b(α)) for which the stationarity con-
dition (3.3) is satisfied. To avoid burdening the reader with heavy notation, we will write a
and b instead of a(α) and b(α).

By (3.35), proving (3.34) is now equivalent to show that

Aα(z) + Bα(z) ≥ Cα and Aα(z) ≥ Cα for z ≥ a

c
, (3.36)

namely to check the inequality for ρ = 0 and ρ = 1. Moreover, note that the functions Aα

and Bα are well-defined and smooth at every z > 0. Since, as observed before, the potential
�α + | · |2/2 belongs to C1(R2) and satisfies (3.3), Eq. (3.35) implies that
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Aα

(a
c

)
= Aα

(a
c

)
+ Bα

(a
c

)
= Cα and A′

α

(a
c

)
= A′

α

(a
c

)
+ B ′

α

(a
c

)
= 0.

(3.37)

We show that (3.36) is satisfied by proving that
(1
z

(
A′

α(z) + B ′
α(z)

))′ ≥ 0 and
(1
z
A′

α(z)
)′ ≥ 0 for z ≥ a

c
. (3.38)

Clearly (3.38), together with the second condition in (3.37), implies

A′
α(z) + B ′

α(z) ≥ 0 and A′
α(z) ≥ 0 for z ≥ a

c
,

which, in turn, gives (3.36) owing to the first condition in (3.37). While (3.38) may look more
complicated, it actually gives rise to simpler computations. Indeed we have

(1
z
A′

α(z)
)′ = n

cn−2z2(1 + z2)
n+1
2

(
(n − 2)z2 + α

a2

c2

)
≥ 0 for every z ≥ a

c
,

since n ≥ 3 and α ≥ 0. Moreover,
(1
z

(
A′

α(z) + B ′
α(z)

))′ = n

cn−2z2(z2 + 1)
n+1
2

(
(n − 2)(1 + α)z2 + n − 2 − α − α

a2

c2
(n − 1)

)
.

Hence to prove the claim (3.38) it is sufficient to show that

(n − 2)(1 + α)z2 + n − 2 − α − α
a2

c2
(n − 1) ≥ 0 for z ≥ a

c
.

This condition is satisfied since

(n − 2)(1 + α)
a2

c2
+ n − 2 − α − α

a2

c2
(n − 1) = (n − 2 − α)

(
1 + a2

c2

)
≥ 0.

3.2.3 The condition (3.34) outside a prolate spheroid

To prove (3.34) for a prolate spheroid, we rewrite the potentials �0 in (3.31) and � in (3.32)
outside a spheroid in terms of the prolate spheroidal coordinates. By the symmetry of �α

and of the confinement, it is sufficient to reduce to computations in the x1x2-plane. In terms
of prolate spheroidal coordinates we have

{
x1 = czρ

x2 = c
√

(z2 − 1)(1 − ρ2)
z ≥ 1, ρ ∈ [−1, 1],

where we recall that now c2 = a2 − b2. The outer region R
n\�(a, b) corresponds also in

this case to z ≥ a
c .

For z ≥ a
c and ρ ∈ [−1, 1], the expression of the Coulomb potential (3.31) in prolate

spheroidal coordinates reads as

�0(z, ρ) = n(n − 2)

4
ρ2

∫ ∞

c2z2

c2(c2z2 − σ)

σ 3/2(σ − c2)
n+1
2

dσ + n(n − 2)

4

∫ ∞

c2z2

σ − c2z2
√

σ(σ − c2)
n+1
2

dσ,

where we used that r2 = x22 , λ(x) = c2z2 − a2 and a change of variables. We recall that the
gradient of the prolate spheroidal coordinates with respect to Cartesian coordinates is given
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by the following formulas:

∇ρ(x) = 1

c(z2 − ρ2)

(
z(1 − ρ2),−ρ

√
(z2 − 1)(1 − ρ2)

)
,

∇z(x) = 1

c(z2 − ρ2)

(
ρ(z2 − 1), z

√
(z2 − 1)(1 − ρ2)

)
.

Since

∂z�0(z, ρ) = n(n − 2)

2
c2z

∫ ∞

c2z2

c2ρ2 − σ

σ 3/2(σ − c2)
n+1
2

dσ,

∂ρ�0(z, ρ) = n(n − 2)

2
c2ρ

∫ ∞

c2z2

c2z2 − σ

σ 3/2(σ − c2)
n+1
2

dσ,

we deduce that

∇�0(x) = −c n(n − 2)

2

(∫ ∞

c2z2

zρ dσ

σ 3/2(σ − c2)
n−1
2

,

∫ ∞

c2z2

√
(z2 − 1)(1 − ρ2) dσ
√

σ(σ − c2)
n+1
2

)
,

and

1

c2
∇�0(x) · (b2x1, a

2x2)

= −n(n − 2)

4

(∫ ∞

c2z2

2b2z2ρ2

σ 3/2(σ − c2)
n−1
2

dσ +
∫ ∞

c2z2

2a2(z2 − 1)(1 − ρ2)
√

σ(σ − c2)
n+1
2

dσ

)
.

Hence the anisotropic potential is

�(x) = n

4
ρ2

∫ ∞

c2z2

−na2(σ − c2z2) + 2c2z2(σ − c2)

σ 3/2(σ − c2)
n+1
2

dσ

+ n

4

∫ ∞

c2z2

na2(σ − c2z2) − 2a2(σ − c2)

c2
√

σ(σ − c2)
n+1
2

dσ.

Finally, the confinement term |x |2/2, in terms of the spheroidal coordinates, is

|x |2
2

= c2

2
(−1 + ρ2 + z2).

Note that, as before, �0, � and the confinement are all quadratic functions in the variable ρ.
More precisely, for z ≥ a

c and ρ ∈ [−1, 1],

�α(x) + |x |2
2

= Aα(z) + Bα(z)ρ2, (3.39)

where

Aα(z) := n

4

∫ ∞

c2z2

(
(n − 2)c2 + nαa2

)
(σ − c2z2) − 2αa2(σ − c2)

c2
√

σ(σ − c2)
n+1
2

dσ + c2

2
(z2 − 1),

Bα(z) := n

4

∫ ∞

c2z2

( − (n − 2)c2 − nαa2
)
(σ − c2z2) + 2αc2z2(σ − c2)

σ 3/2(σ − c2)
n+1
2

dσ + c2

2
.
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We now prove (3.34) for any prolate spheroid �(a(α), b(α)) for which the stationarity
condition (3.3) is satisfied. Again, to avoid burdening the notation, we will write a and b
instead of a(α) and b(α). Note that, by (3.39), proving (3.34) is equivalent to show that

Aα(z) + Bα(z) ≥ Cα and Aα(z) ≥ Cα for z ≥ a

c
,

namely to check the inequality for ρ = 0 and ρ = 1. Arguing as in the case of an oblate
spheroid, it is in fact sufficient to prove that

(1
z

(
A′

α(z) + B ′
α(z)

))′ ≥ 0 and
(1
z
A′

α(z)
)′ ≥ 0 for z ≥ a

c
. (3.40)

We have
(1
z
A′

α(z)
)′ = n

cn−2z2(z2 − 1)
n+1
2

(
(n − 2)z2 + α

a2

c2

)
≥ 0 for every z ≥ a

c
,

since n ≥ 3 and α > −1. Moreover,
(1
z

(
A′

α(z) + B ′
α(z)

))′ = n

cn−2z2(z2 − 1)
n+1
2

(
(n − 2)(1 + α)z2 − (n − 2) + α − α

a2

c2
(n − 1)

)
.

Hence to prove the claim (3.40) it is sufficient to show that

(n − 2)(1 + α)z2 − (n − 2) + α − α
a2

c2
(n − 1) ≥ 0 for z ≥ a

c
.

This condition is satisfied because α > −1 and

(n − 2)(1 + α)
a2

c2
− n + 2 + α − α

a2

c2
(n − 1) = (n − 2 − α)

(
a2

c2
− 1

)
≥ 0.

This concludes the proof of Theorem 3.1.

Remark 3.3 For every α ∈ (−1, n−2], let t(α) > 0 be the solution of the equation F(t, α) =
0 found in Sect. 3.1.3. Note that this solution is unique. Indeed, by (3.29) and (3.30), for a
given α ∈ (−1, n − 2], any solution t(α) > 0 of F(t, α) = 0 identifies a spheroid satisfying
the stationarity condition (3.3). Moreover, in Sect. 3.2 we show that any stationary spheroid
satisfies also condition (3.4), so it is aminimiser of Iα , and hence is unique by strict convexity.
Moreover, the function t : α ∈ (−1, n − 2] �→ t(α) ∈ (0,+∞) is continuous and strictly
decreasing. To prove it, let α0 ∈ (−1, n − 2] and let α → α0. Let (αk) denote a subsequence
converging monotonically to α0, as k → +∞; note that the subsequence (Iαk ) is also
monotone. Since Iαk is lower semicontinuous for every k, we have that Iαk �-converges
to Iα0 , as k → +∞, with respect to narrow convergence (see, e.g., [12, Propositions 5.4
and 5.7]). By the Urysohn property of �-convergence (see for instance [12, Proposition 8.3])
the whole sequence (Iα) �-converges to Iα0 , as α → α0, since the space of probability
measures endowed with the narrow convergence is metrisable. Moreover, the equilibrium
measures μα satisfy∫

Rn
|x |2 dμα(x) ≤ Iα(μα) ≤ Iα(μn−2) ≤ In−2(μn−2) for everyα ∈ (−1, n − 2],

whereweused theminimality ofμα . In otherwords, the equilibriummeasures are tight.By the
Fundamental Theorem of �-convergence (see, e.g., [12, Corollary 7.17]) and the uniqueness
of the minimiser of Iα0 we deduce that μα converges narrowly to μα0 , as α → α0. The
characterisation of μα given in Theorem 3.1 allows us to conclude that t(α) → t(α0), as
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α → α0, that is, the function α �→ t(α) is continuous. It is also injective by the following
argument: If α1, α2 ∈ (−1, n − 2], α1 �= α2, are such that t(α1) = t(α2) = t0 > 0, then
F(t0, α1) = 0 = F(t0, α2), which implies A(t0) = 0, with A defined in (3.24). Since
F(t0, α1) = 0, we deduce that B(t0) = 0, but this would imply that F(t0, α) = 0 for every
α ∈ (−1, n − 2], that is, the function α �→ t(α) is constant. This is not possible, since
t(α) > 1 for α < 0 and t(α) < 1 for α > 0. This last property, together with continuity and
injectivity, implies that α �→ t(α) is strictly decreasing.

4 The limit case, as˛ → −1

In this section we discuss the behaviour of the nonlocal energies Iα , as α → −1.

Theorem 4.1 As α → −1+, the functionals Iα �-converge, with respect to narrow conver-
gence, to a functional J∗ : P(Rn) → [0,+∞], whose unique minimiser is a measureμ∗ that
is the normalised characteristic function of a prolate spheroid �∗. Moreover, the following
representation holds:

J∗(μ) =
∫
Rn

Ŵ∗(ξ)|μ̂(ξ)|2 dξ +
∫
Rn

|x |2 dμ(x) (4.1)

for every μ ∈ P(Rn) with compact support, where Ŵ∗ ∈ L1
loc(R

n) is the function given by

Ŵ∗(ξ) := π
n
2 −2

2�( n2 )

(n − 1)ξ21 + (n − 3)
∑n

i=2 ξ2i

|ξ |4

for a.e. ξ ∈ R
n.

Remark 4.2 The functional J∗ does not coincide with the functional I−1 defined in
Remark 2.2, since J∗ is lower semicontinuous, whereas I−1 is not. Moreover J∗ does not
coincide with the functionals I−1 or Ĩ−1 either, since the Dirac delta at 0 is a minimiser for
both I−1 and Ĩ−1.

Proof of Theorem 4.1 The proof is subdivided into several steps.

Step 1: Convergence of the equilibrium measures.We prove that, as α → −1+, the equilib-
rium measures μα converge to a measure μ∗, that is the normalised characteristic function
of a prolate spheroid �∗. First of all, we claim that

lim
α→−1+ t(α) = t∗ ∈ R (4.2)

for some t∗ > 1. Since α �→ t(α) is strictly decreasing by Remark 3.3 and t(α) > 1 for
α < 0, the limit as α → −1+ exists and is strictly greater than 1. Assume by contradiction
that t∗ = +∞. By (3.28) we can pass to the limit in the equation

0 = √
t(α)F(t(α), α) = A(t(α))α + B(t(α)) (4.3)

and deduce that n − 3 = 0, which gives a contradiction for n > 3. If n = 3, Eq. (4.3),
together with the assumption that t∗ = +∞, implies that

− A(t(α)) + B(t(α)) < 0 (4.4)
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for α + 1 > 0 small enough (note that A(t(α)) > 0 for α + 1 > 0 small enough by (3.28)).
By (3.18) and (3.19), for t > 1 and n = 3 we obtain

−A(t) + B(t) = − 5t + 4

(t − 1)2
+

√
t

2(t − 1)5/2
(2t + 7)

∫ t

1

1√
s(s − 1)

ds.

Since the right-hand side is positive as t → +∞, this contradicts (4.4). Claim (4.2) is thus
proved for every n ≥ 3. Passing to the limit in (3.30) we also obtain that

lim
α→−1+ b(α) = b∗ := (t∗)−

1
2n

(
n − 3 + √

t∗H(t∗)
) 1
n > 0.

This implies that the equilibrium measures μα converge narrowly, as α → −1+, to the
normalised characteristic function of the prolate spheroid �∗ = �(

√
t∗b∗, b∗).

Step 2: �-convergence. Let (αk) be a sequence such that αk → −1+, as k → +∞. Note
that we can extract a decreasing subsequence (αk j ) ↘ −1+ along which also the sequence
of functionals (Iαk j ) is decreasing, and hence �-convergent as j → +∞ to the functional

J∗(μ) := J (μ), J (μ) := inf
α∈(0,−1)

Iα(μ)

for every μ ∈ P(Rn), where J denotes the lower semicontinuous envelope of J with respect
to narrow convergence. By the Urysohn property of �-convergence (see for instance [12,
Proposition 8.3]) the whole sequence (Iα) �-converges to J∗, as α → −1+. By the Funda-
mental Theorem of �-convergence we deduce that μ∗ is a minimiser of J∗ and

lim
α→−1+ Iα(μα) = J∗(μ∗). (4.5)

Step 3: Representation formula for J∗. Using formula (2.4), which holds for every ν ∈ P(Rn)

with compact support and every α ∈ (−1, n − 2], we can now prove the representation
formula (4.1).

We first observe that by (2.5)

Ŵα(ξ) → Ŵ∗(ξ) for a.e. ξ ∈ R
n, (4.6)

as α → −1+, and there exists a constant C , independent of α, such that

0 ≤ Ŵα ≤ CŴ0 (4.7)

for every α ∈ (−1, n − 2]. Let now ν ∈ P(Rn) be a measure with compact support. Let
(αk) ⊂ (−1, n − 2] be any sequence converging to −1, and let (νk) be a sequence in P(Rn)

converging narrowly to ν and such that

lim inf
k→∞ Iαk (νk) < +∞.

Up to subsequences, we can assume that supk Iαk (νk) < +∞. By (2.2) there exists a compact
set K ⊂ R

n , containing the support of ν, such that νk(K ) > 0 and

Wαk (x − y) + 1

2
(|x |2 + |y|2) ≥ Iαk (νk) + 1 for (x, y) /∈ K × K

for every k. If we define

μk := νk K

νk(K )
(4.8)
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for every k, then μk ∈ P(Rn) has compact support and

Iαk (νk) = (
νk(K )

)2
Iαk (μk) +

∫∫
(K×K )c

(
Wαk (x − y) + 1

2
(|x |2 + |y|2)

)
dνk(x) dνk(y)

≥ (
νk(K )

)2
Iαk (μk) + (

1 − (
νk(K )

)2)
(Iαk (νk) + 1).

This inequality implies that

Iαk (μk) ≤ Iαk (νk) − 1 − (
νk(K )

)2
(
νk(K )

)2 ≤ Iαk (νk) (4.9)

for every k. Since (μk) converges narrowly to ν, as k → ∞, we have that (μ̂k) pointwise
converges to ν̂ and by the Fatou Lemma

lim inf
k→∞

∫
Rn

Ŵαk (ξ)|μ̂k(ξ)|2 dξ ≥
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ.

By (4.9), (2.4), and the continuity of the confinement termwith respect to narrow convergence
(on measures with compact support), we obtain

lim inf
k→∞ Iαk (νk) ≥ lim inf

k→∞ Iαk (μk) ≥
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ +
∫
Rn

|x |2 dν(x).

Since by definition of �-convergence

J∗(ν) = min
{
lim inf
k→∞ Iαk (νk) : (νk)⇀ν narrowly, (αk) → −1+}

, (4.10)

we deduce that

J∗(ν) ≥
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ +
∫
Rn

|x |2 dν(x) (4.11)

for every ν ∈ P(Rn) with compact support.
On the other hand, to prove the opposite inequality in (4.11), let us first consider ν ∈

P(Rn) ∩ C∞
c (Rn). By (4.7) we have that

0 ≤ Ŵαk (ξ)|̂ν(ξ)|2 ≤ CŴ0(ξ)|̂ν(ξ)|2,
which gives a domination in L1(Rn), since ν̂ ∈ S and Ŵ0 ∈ L1

loc(R
n) behaves as 1/|ξ |2 at

infinity. Therefore, by (4.6) and the Dominated Convergence Theorem

lim
k→∞

∫
Rn

Ŵαk (ξ)|̂ν(ξ)|2 dξ =
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ

for every ν ∈ P(Rn) ∩ C∞
c (Rn). By (4.10) and (2.4) this implies that

J∗(ν) ≤
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ +
∫
Rn

|x |2 dν(x)

for every ν ∈ P(Rn) ∩ C∞
c (Rn). Let now ν ∈ P(Rn) be a measure with compact support

and let νε be defined as in (2.6). Using the inequality above and the lower semicontinuity of
J∗ with respect to narrow convergence, we obtain that

J∗(ν) ≤ lim inf
ε→0

J∗(νε) ≤ lim inf
ε→0

∫
Rn

Ŵ∗(ξ)|ν̂ε(ξ)|2 dξ +
∫
Rn

|x |2 dν(x). (4.12)
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Arguing exactly as in (2.9), we have that

lim
ε→0

∫
Rn

Ŵ∗(ξ)|ν̂ε(ξ)|2 dξ =
∫
Rn

Ŵ∗(ξ)|̂ν(ξ)|2 dξ, (4.13)

even if the right-hand side is infinite. Combining (4.11)–(4.13), we finally obtain (4.1).

Step 4: Uniqueness of the minimiser of J∗. We now use the representation (4.1) to show that
the minimiser of J∗ is in fact unique.

First of all, we prove that any minimiser of J∗ must have compact support. Indeed, assume
by contradiction that ν∗ is a minimiser of J∗ not compactly supported. Let (αk) ⊂ (−1, n−2]
be a sequence converging to −1 and let (νk) ⊂ P(Rn) be a recovery sequence for ν∗, that is,
such that (νk) converges to ν∗ narrowly and

lim
k→∞ Iαk (νk) = J∗(ν∗).

In particular, supk Iαk (νk) < +∞. We argue in a similar way as in (4.9). By (2.2) there exists
a compact set K ⊂ R

n such that 0 < ν∗(K ) < 1, νk(K ) > 0 and

Wαk (x − y) + 1

2
(|x |2 + |y|2) ≥ Iαk (νk) + 1 for (x, y) /∈ K × K

for every k. If we define μk as in (4.8), then

Iαk (μk) ≤ Iαk (νk) − 1 − (
νk(K )

)2
(
νk(K )

)2
for every k. Since by narrow convergence νk(K ) → ν∗(K ), as k → ∞, we obtain

lim inf
k→∞ Iαk (μk) ≤ J∗(ν∗) − 1 − (

ν(K )
)2

(
ν(K )

)2 < J∗(ν∗). (4.14)

On the other hand, by the minimality of μαk and by (4.5)

lim inf
k→∞ Iαk (μk) ≥ lim inf

k→∞ Iαk (μαk ) = J∗(μ∗). (4.15)

Since bothμ∗ and ν∗ areminimisers of J∗, (4.14) and (4.15) give a contradiction.Onmeasures
with compact support the representation (4.1) holds and the right-hand side of (4.1) is strictly
convex as a function of μ. We, thus, conclude that μ∗ is the only minimiser of J∗. ��
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