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Abstract

We show that, for 0 < a < 1, the capacity associated to the signed vector

valued Riesz kernel Mﬁ in R™ is comparable to the Riesz capacity C 2(n-a),3

of non-linear potential theory.

1 Introduction.

In this paper we study the capacity 7, associated to the signed vector valued Riesz
kernels k,(x) = mﬁm, 0<a<n,inR" If K CR"”is compact one sets

VoK) =sup| < T,1> |,

where the supremum is taken over all distributions 7' supported on K such that
T * lewm is a function in L*°(R™) and ||T" * Ixmeoo <l1,for 1<i<n. Forn=2
and « = 1 this is basically analytic capacity (see [T1]), and for & = n — 1 and any
n > 2, v,—1 is Lipschitz harmonic capacity (see [Par], [MP] and [V1]).

In [P] one discovered the fact that if 0 < a < 1, then a compact set of finite
a-dimensional Hausdorff measure has zero v, capacity. This is in strong contrast
with the situation for integer v, in which a-dimensional smooth hypersurfaces have
positive v, capacity. The case of non-integer o > 1 is not completely understood,
although it was shown in [P] that for Ahlfors-David regular sets the result mentioned
above for 0 < a < 1 still holds.

In this paper we establish the equivalence between 7,, 0 < a < 1, and one of the
well-known Riesz capacities of non-linear potential theory (see [AH], Chapter 1, p.
38). The Riesz capacity Cs, of a compact set K C R, 1 < p < 00,0 < sp <n, is
defined by

Cop(K) = inf{[o]l]: @ > 1 on K},

|x‘n—s
where the infimum is taken over all compactly supported infinitely differentiable

functions on R™. The capacity C;, plays a central role in understanding the nature
of Sobolev spaces (see [AH]).



Our main result is the following surprising inequality.
Theorem. For each compact set K C R™ and for 0 < a < 1 we have

C710% a2 (K) £ 7a(K) < C C2y g 2 (K),

n—o« )

where C' is a positive constant depending only on o and n.

Since it is well-known that C’g (n—a),3 vanishes on sets of finite a-dimensional
Hausdorff measure (see [AH], Theorem 5.1.9, p.134), the same applies to 7,. Thus
we recover one of the main results of [P]. On the other hand, Cj, is a subadditive set
function (almost by definition, see [AH], p.26), and consequently, 7, is semiadditive
for 0 < oo < 1, that is, given compact sets K; and Ko,

VoK1 U K3) < C{7a(K1) +7a(K2)}, (1)

for some constant C' depending only on a and n. In fact 7, is countably semiad-
ditive. For a = 1 and n = 2 inequality (1) is still true and is a remarkable result
obtained in [T1]. For « = n—1 and any n (1) has been shown very recently in [Vo].

Another interesting consequence of the Theorem is that ~, is a bilipschitz in-
variant. This means that if ¢ : R — R"™ is a bilipschitz homeomorphism of R",
namely,

L7z —y| < |o(x) — ¢(y)| < Llz —yl,

for z, y € R™ and for some constant L > 0, then for compact sets K one has

C'_I%(K) < Yald(K)) < Cra(K),

where C' depends only on L, o and n.

The bilipschitz invariance of the analytic capacity + has been recently proved by
X. Tolsa (see [T3]). The result for a big class of Cantor sets was proved before by
Garnett and Verdera (see [GV]).

Volberg has pointed out to the authors that a particular instance of the Theorem
gives the following curious result about Cauchy integrals. Take n = 2 and a = %
Then, given a compact set K C C, there exists a distribution 7" # 0 supported on
K such that T x M%/Q € L*>(C) if and only if there exists a probability measure y
supported on K such that p * % € L*(C). This follows from the dual definition of
Chs (see [AH], Theorem 2.2.7.).

Our proof of the Theorem rests on two steps. The first one is the analogue for
0 < a < 1 of the main result in [T1], namely, the equivalence between 7, and 7, 4.

For a compact set K C R", the positive 7, capacity is defined by

Yo+ (K) = sup pu(K),



where the supremum is taken over those positive Radon measures p supported on
K such that mxm * p is in L°(R™) and mem *,uHoo <1, for 1 <i < n. Clearly
Yo+ (K) < 7a(K) for any K.

Theorem 1.1. For each compact set K C R" and 0 < o < 1, we have

'7a,+(K> < 'Va(K) < C’Ya,—i-(K)a

where C' 1s some positive constant depending only on o and n.

We claim that Theorem 1.1 can be proved by adapting the scheme of the proof
of Theorem 1.1 in [T1] and the adjustments introduced in [T2] to prove Theorem 7.1
there. This is explained in some detail in section 2.2. When analyzing the argument
used in [T'1] one realizes that it is based on two main technical ingredients. The first
is the non-negativity of the quantity obtained when symmetrizing the kernel, which
was proved in [P] for the Riesz kernel k, with 0 < o < 1. The second is the fact that
the Cauchy kernel ( that is, k; in dimension n = 2) localizes in the uniform norm.
By this we mean that if T is a compactly supported distribution such that 7" % is
a bounded function then (¢T") % é is also bounded for each compactly supported C*
function ¢ and we have the corresponding estimate. This is an old result, which is

simple to prove because % is related to the differential operator 0 (|G|, Chapter V).
The same localization result can be proved easily for any n and a = n — 1, because
kn—1 is related to the Laplacian ([Par] and [V1]). For other parameters a between 0
and n is not clear at all that there is a differential operator in the background and
consequently the corresponding localization result becomes far from being obvious.
In fact, the proof of the localization Theorem for £, for any «, 0 < o < n, is the
main technical obstacle we have to surmount in this paper. When localization is
available there is no obstruction in adapting Lemma 7.2 (part (h)) in [T2]. Once
Theorem 1.1 is at our disposal we need to relate 7, 4+ to Cg (n—a),3 and this is the
second step in the proof of the Theorem.

The plan of the paper is the following. Section 2 contains some preliminary def-
initions and results that will be used throughout the article. In section 3 we prove
the localization theorem for the signed Riesz potentials. In section 4 we complete
the proof of the main Theorem showing that ~, 4+ is comparable to C%(nfa), 3.

Constants independent of the relevant parameters are denoted by C' and may be
different at each occurrence. The notation A ~ B means, as it is usual, that for
some constant C one has C~'B < A < CB.



2 Preliminaries.

2.1 Simmetrization of Riesz kernels.

The symmetrization process for the Cauchy kernel introduced in [Me] has been suc-
cessfully applied in these last years to many problems of analytic capacity and L?
boundedness of the Cauchy integral operator (see [MV], [MMV] for example; the
survey [D] and the book [Pa] contain many other interesting references). Given 3 dis-
tinct points in the plane, z1, 29 and 23, one finds out, by an elementary computation
that

1
(21,22, 23)% = —_—— (2)
za: (201) = 20(3))(20(2) = %0(3))

where the sum is taken over the six permutations of the set {1,2,3} and ¢(z1, 22, 23)
is Menger curvature, that is, the inverse of the radius of the circle through 21, 2z and
z3. In particular (2) shows that the sum on the right hand side is a non-negative
quantity.

It can be shown that for 0 < a < 1 the symmetrization of the Riesz kernel
ko(x) = x/]2|'T, gives also a positive quantity. On the other hand, for 1 < o < n,
the phenomenon of change of signs appears when symmetrizing the kernel k,, as
one can easily check.

For 0 < a < n the quantity

Z Lo(2) — To(1) Lo(3) — To(1) (3)
~ |T5(2) — To() [T |ZTo(3) — To(y|' T

where the sum is taken over the six permutations of the set {1, 2,3}, is the obvious
analogue of the right hand side of (2) for the Riesz kernel k,. Notice that (3) is
exactly

2 poc(xly Ta, x3)a

where po (21, T2, r3) is defined as the sum in (3) taken only on the three permutations
(1,2,3), (2,3,1), (3,1,2).

In the following lemma we state the explicit description that was found in [P]

for the symmetrization of the Riesz kernel k,, for 0 < a < 1.

Lemma 2.1. Let 0 < a < 1, and xy, xo, x3 three distinct points in R™. Then we
have

2 _ 9« 21+a
5o < Pal®1, 22, 73) <

L(xq, xq, x3) L(xy, g, x3)%’

where L(x1,xo,x3) is the largest side of the triangle determined by x1, To and z3.
In particular po(x1, T2, x3) i a positive quantity.
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The relationship between the quantity p,(z,,2) and the L? estimates of the
operator with kernel k, is as follows. Take a positive finite Radon measure p in R”
which satisfies the growth condition u(B(z,7)) < r* z € R", r > 0. Given € > 0,
set

Rea()() = /| ol = ()

Then (see in [MV] or [Pa] the argument for a = 1)

/’Rae ‘ d/vb( )_%pa,zs(:u)

where C' is a constant depending only on o and n, and

Pas(1t) = / / / Pal@,y, 2)dp(z)du(y)du(z),
Se

< Cllpell;

with
Se ={(z,y,2): |[r—y|>¢e, |z —2]>cand |y — 2] > e}
Thus
) <350 [ |ecli)0) P daa) + g
where

:/n / /npa(%y,Z)du(fv)du(y)dﬂ(Z)-

2.2 The scheme of the proof of Theorem 1.1.

In this section we give an outline of the arguments involved in the proof of Theorem
1.1. The proof uses an induction argument on scales, analogous to the one in [MTV]
and [T1]. The main idea is to show, by induction, that

Yot (KN Q) =7 (KNQ)

for squares () of any size.

The starting point in the proof of Theorem 1.1 in [T1] is the construction of a
special family of cubes {Q]}évzl that cover K and satisfy

Yot (Uj21Q;) < Ca i (K)



and

N
Z 7&,+(3Qj n K) < Of}/a,-‘r(K)'
j=1

The construction of these cubes works without difficulty in the same way as in

[T1] for 0 < o < 1, because we have non-negativity of the quantity obtained when
symmetrizing the Riesz kernel (see Lemma 2.1 above).

From the definition of the capacity 7,, it follows that there exists a distribution
Ty supported on K such that

|<T0a 1>|

[\Dlr—t

1. Yo(K) >

2. [Tox —— |l <1, 1<i<n.

prall <

Consider now a family of infinitely differentiable functions {goj} ", such that each
C
% ,0< s <n
and Zjvzl p; =1 on UN *,@;. At this point we need an mequahty of the type

p; is compactly supported on 2Q;, 0 < ¢; < 1, ||0°p;

x.
o To * WHW <C

for 1<i<n,1<j<Nand0<a<n,with C' = C(«a,n). This will be proved in
section 3. Then, by definition of v, , we will obtain that

{2 To, 1] < Ca(2Q; N ). (5)

for1 <j < N.

Inequality (5) is used later on in the proof in order to construct a bounded
function b to which a suitable variant of the T'(b) theorem will be applied. There
is still one more difficulty in applying the Nazarov, Treil and Volberg T'(b)-type
theorem one needs, namely, finding a substitute for what they call the suppressed
operators. It was already explained in [P] that there are at least two versions of
such operators for the Riesz kernels that work appropriately.

3 Localization of Riesz potentials.

One of the ingredients of the proof of Theorem 1.1 in [T1] is the localization of the
Cauchy potential. The localization method for the Cauchy potential, T'x1/z, devel-
oped by A.G. Vitushkin for rational approximation was adapted in [Par] to localize
the potential T * x/|x|" and used in problems of C!-harmonic approximation.



In this section we will be concerned with the localization of the vector valued
a—Riesz potentials T * z/]z|'T®, 0 < a < n.

Let © = (21,...,2,) € R" and |z| = (3, m?)l/Q. For s = (s1,...,8,), 0 <
s; € Z , we set ° = xit--- xiro sl = sl s, S| = sy 4+ se 4 o0+ sy,
0% = 9 )0z -+ O )Oxsr, A = " 0%/02? and 9; = 9/0x;, 1 < j < n. In
what follows, given a cube @) C R", g will denote an infinitely differentiable func-
tion supported on 2Q) and such that [|0*pglle < C(Q)71, 0 < |s| < n.

We prove now the following general localization lemma.

Lemma 3.1. Let 0 < a < n and let T be a compactly supported distribution such
that T * \afm 1s a bounded measurable function for 1 < i < n. Then there exists

some constant C' = C(n,«) > 0 such that

Sup lleoT * g |1+aHoo < sup |7+ g |1+a|!
<i<n

Proof. Our argument uses a reproduction formula for test functions involving

the kernel k'(y) = which was first introduced in [P] (see Lemma 11). There

1+ ’
are many variants Ofy this formula depending, for instance, on whether the dimension
n and the integer part of o are even or odd. We will consider in full detail only
the case of odd dimension of the form n = 2k + 1. We will also assume that « is
non-integer and that its integer part is even, of the form [a] = 2d. At the end of the
proof we shall briefly indicate how to treat the remaining cases, including the case
of integer a.

Fix z € R" and set

i LY
koy) = z — g

We distinguish two cases:

Case 1: z € (3Q)°. Set g(y) = pg(y)k.(y). Lemma 11 in [P] tells us that

n

1
9(z) = cha Z <Ak8jg *
j=1

|ly|™

k) @) (6)

for some constant ¢, , depending only on n and o. We emphasize that (6)
works because n is odd. Thus

(poT * k') (z) =< T,g9 >= cnaZ<T*k] AFQg % ——— >,

o "na

and so



(poT * k') (z) = ch,a /(3Q)c(T * k) (z2) <Ak83g * " |711 a) (2)dz
(7)

+Zcm/ (T % k7) (2 )<Akajg* |y|1 a) (2)dz = A+ B.

j=1 3Q

To deal with A we use that T % k7 is a bounded function. Notice that for
x € (3Q)° and y € 2Q) we have

o) < s

Let Qo stand for the unit cube centered at 0. Moving A*9; from g to Iy\%
and making the obvious change of variables one gets

|A| < C sup ||T*k;z”ooHSOQHoo/ / _dydz
(3Q)e J2Q

1<i<n |2 —y|2n—e

<Cowp [Tkl [ [ W< Cosup Tk
(3Qo)°

1<i<n 0 |2 o i 1<i<n

Let’s now turn our attention to B. Recall that we have

n 2
o= 33 (1)-(5 )ttt o

where o'k = (ah)ll...(aik)lk.

11...0)

Since
AM0;9) = A (K, 950q) + A" (pq O5k;)
we have
B<C sup ||T*k;i||oo/ ’(A'f (K 9,00) * )( )| dz
1<i<n ly[*=
. , 1
+C sup ||T * /{;ZHOO/ '<Ak (g 0jkL) % —— ) (2)|dz (9)
1<i<n 3Q |y

=C sup ||T % ——

1<i<n

‘ |1+ HOO (Bl + BZ)



Using (8), support pg C 2Q, [|0°¢gllee < Cl(Q)7, |s| > 0, 2 ¢ 3Q and
changing variables, we get

dzdy
R0 Sl DN / / e [ =1

l ..... Zk 1[1 ..... lk 0

< C / / dzdy / / dzdy
>~ K(Q)nJra 30 J20 ‘Z_y’nfa n+a+n o . . |Z— |n a

<C.

Arguing similarly we obtain By < C' and therefore we conclude that

A+ B < C sup ||T * k|| o
1<i<n
Case 2: x € 3Q). Without loss of generality assume x = 0. Now the function g(y) =
—po(y)k'(y) may not be smooth, but (6) still holds in the distributions sense.
In fact, a different version of (6) will be used for this case. Since a is non-
integer and [a] = 2d we readily get
1 X

k—d
f= CZA 0;f * [z|p—a+2d * |z [1Fo” (10)
j=1

where C' = C(n, a) and the above identity holds in the distributions sense.

Define f =T ‘a —==. Since 9;f = C(T = k7) and the T * k7 are bounded, the
function f satisties a Llpschltz condition of order 1. We get

. - o 1
(90QT * kz) (0) =< Tvg >= Cpa Z <Tx k]a Ak dajg * |y|nfa+2d >
j=1
i B 1
:(JZ<6j(f—f(O)),A’“ dajg*w—am >

J=1

We claim now that integrating by parts gives

= 1
Z < 9; (f — f(0)), A 90,9 « TTagad O
= [yl

(11)
_ 1 i
=< [ — f(0),AF dﬂg*w—am > +O<SUP 1T+ k Hoo) -

1<i<n

9



We postpone the proof of (11) and we continue with the argument. If (11)
holds, then we can write

(eaT =)@ < €| [ ()= o) (84 » g ) (o

+C sup ||T * k|| so.

1<i<n

+C

() — FO) (A1 — L) (2)a-
/SQ ( Y|

Set

A= [0 - 1) (8t ) e

and

5= [ =g (a0 i) (Gl

Using the boundedness of the function 7' * k/ = 9;f, Fubini and changing
variables we obtain

9(y)|
Al < C sup ||T * k| / z dydz
|Al I I E 3Q)C\ | o J7 =yl

1<i<n

1<i<n

i [z —yl + 1yl
<C swp HT*knoonnooZ o L e o

<C sup ||T*kl||002/ ’y|a/ |z—y|2" ady
3Q

1<i<n

; 1 dz
+C sup ||T*k ”OOZZ )/2Q e /(3Q)c |Z_y|2n+l_ady

1<i<n

<O sup ||T *k'|oo-

1<i<n

For the term B, write

10



|B| =

[ (1) - 1) (217w L) (2)d
/3@ ( Y )

<C/
3Q

where the last sum is over those multi-indexes r and s that appear in dis-
tributing between g and k' the n + 1 — 2d derivatives coming from AF+1=4,
We will now divide the above sum in two parts, the first one containing the
indexes |r| > 2 and the second one the remaining indexes. In order to be able
to estimate the integral of this second part, which is the worse, we will have
to subtract a Taylor polynomial of ¢ of order one. Let

(F(2) - F(0)) ((Masw ' ﬁ) (2)d|.

[r|+|s | n+1—2d

Then

dydz
|B| < CZ/ | f(2) / Q)Irl|y[etnii=2dIr]|; — y[n—at2d

r|>2

y)O°k (y
S ICET O D DR =

|=n+1-2d

o) RUCENCID IR (ymA’f“dki . w;) (2)dz

O sup |90 0) /3Q(f(Z)—f(0)) 3 (M‘y,;) (2)dz

m|=1 |s|=n—2d

EBl+BQ+B3+B4.
(12)

Notice that if |r| > 2, then we have a +n+1—-2d —|r| < a+n—1—-2d < n.
Hence using the boundedness of the functions T * k%, 1 < i < n, we conclude

11



that Bj is finite and, by homogeneity, independent of ¢(Q). Thus,

By <C sup [T k|-
1<i<n
We deal now with By. Write

- )k (1)
=c [ 156)- 10) [ T | o

|T|+\\_"+1 2d
Irl <1

(y)O°k'(y)
‘|‘C /3Q ’f(Z) - f(O)‘ /4Q y‘" or2d dy dz = Bgl + BQQ.

\r\+\\—n+l 2d
Irf <1

For the integral over 4(), we have to use the Taylor expansion to get integra-
bility. For the terms with |r| = 1 we use that

" R(y)| = 10" poly) — T g(0)] < Y

(Q)?
and for the term with |r| =0
ly|?
R(y)| < C-——.
R < 030
Therefore
' Yl
By < C sup ||T * k'||oot( duds
21 > lgign” H / / |y‘a+n 2d|Z— ‘n a+2d Yy
£ sup T 5 Kt vl dyd
lsgljgn o0 |y|a+n 2d— 1|Z ‘n,a+2d yaz.

. dydz
< C sup ||T*kz||oo€(Q)_1/ / .
IZitn 50 Jao lylern—2d-1]z — y[n—a+2d

Then by homogeneity and local integrability,

Boy < C sup ||T * k|| se-

1<i<n

For the integral over (4Q)¢, we do not apply Taylor’s formula; we just estimate
term by term. For |r| =0 (and then |s| = n + 1 — 2d) we have that

12



Cly| _ ¢
(Q)|y|a+n+1—2d g(Q)|y|n+a—2d

For |r| = 1 the term |0" R(y)9°k'(y)| can be estimated by C4(Q)~!|y|~* "+,
because now |s| = n — 2d. Therefore

[R»)d" K (y)] < 5

By < C sup ||T * k' OOEQ/ / dz
. 1<i<n | l4@Q) 30 J gy U(Q)|yloTr—2d|z — y|n—at2d

<O sup ||T % K.

1<i<n

For Bs, separate the terms according to whether |m| = 0 or |m| = 1 as follows:

Bs =

k+1—d7.1 ]‘
/ ()= F0) 2 00) (A g m—) (2)dz

m m A k+1—-dp.i 1 2Vdz
+ /3@ (f(z) = £(0)) Z 9™ pq(0) (3/ A K ‘y|n—a+2d> (2)d

|m|=1
= B3y + Bss.

Now we treat the term Bs;. Taking Fourier transforms on the convolution
ARFI=dEi \yln—% we obtain for an appropriate constant C'

T
(Ak+1_de * |y|na+2d) (g) = sz
Thus
AL o
* |y|n—a+2d o 19

Hence, by a standard regularization process that we omit,

By = Clpq(0) < 0:9, f(2) = £(0) > | = Clpq(0) < 6,0:f > | = Clpqg(0)0:f(0)]
< Clleglls sup [T # k| oo
1<i<n

13



To estimate Bsa, we take the Fourier transform of y™ AF1=dki W, |m| =
1. We get

- 2k+2—2d ¢ me.

|y|n—a+2d |f|1+n—a |€|a—2d o |§|2 ’

where m; is the multi-index with all entries equal to 0 except the i—th entry
which is 1; 0, ,, equals one when m = m,; and zero otherwise. Hence

, 1 2"z
m A k+1—d.i o 7
where P.V. stands for principal value. Since |m| =1,
2™z C , dz
B:Eam O/ z)— f(0 < su T*k”oo/—
32 SOQ( ) 3Q(f( ) f( )) |Z|n+2 = E(Q) lgign || || 50 |Z|n_1

Im|=1

< C sup ||T # k| o-

1<i<n

Now we are left with term B,. Taking Fourier transforms on the convolution
Ok W, we obtain

A & 1 &
O3kt % - = (&8 =C .
< |y|n—a+2d) (5) 5 |§|1+n—o¢ |£|o¢—2d |£|n+1—2d

Hence, since |s| =n — 2d,

.y 1 B 252
O°k" * e CPV. o

Arguing as before

~ 1 dz A
B, < C sup ||T * k|| / < C sup ||T * k|-
te 1§z’£n” | UQ) Jsg |z 1§z’£n” |

We still have to show claim (11). Let 1 < j < n and set

wjz(—l)J_ldyl/\/\ciy\J/\/\dyn

14



Then, the Green-Stokes Theorem gives

a 1
Z < 8 (f = f(0)), AF 99,9 * Ty >
j=1

1

=- <f—f(0>’Ak_d+lg*|y|n_—a+2d >

7j=1 &0 |y|:571

+Y lim (f(y) = f(0)) (g . Ak“”@W) (W) wj

— im — k—dg. *; Wi
Z_:l (f(y) — f(0)) (A 959 ‘y’noﬂer) (y) w;

The integral over the sphere of radius e~ can be easily estimated by a constant
times €"~*. Thus we are only left with the integral over the sphere of radius
e. For 1 < j < n and for a suitable constant C' we can write (recall that for

some constant C' depending on n and «;, Iy\"*% =A (W))

[ ——"

n

=Cy /|y _ =10 (A“aj@zg * M%ﬁ) (v) wj-

=0

Notice that when looking at the above integral, the worst case arises when all
the derivatives A¥=99;0; of the product g = —pgk' are taken on the factor k.
We will only be concerned with this case. For the other cases argue like in
(12). Recall that R(y) = po(y) — E|1m|=(] 0™po(0)y™. To get integrability we
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use the Taylor expansion of ¢ up to order 1. Then for 1 < 57 <n we have

/||= (f(y) = f(0)) (Z po A 10;0k" Mﬁ) (y) w;
= / () = £0) (Z R AM90,0,1" ﬁ) () wj

‘HPQ(O)/': (f(y) — f(0)) (Z AF19,0,k" Wfﬁ) (y) wj

l

=30 o) [ () - FO)Y (ym’f-dajalki . ﬁ) () w;

|m|=1 lyl=¢ 1
= A, + Ay + As.

We will now show that A; and A3 converge to zero when ¢ — 0 and that A,
is bounded above by C'sup,<;c,, | T * k'[| -

For A; we break the convolution integral into two terms corresponding to 3Q)
and (3Q)° :

= - z k=dg. 1 i z M > W
Al a /|y=5<f(y) f(O)) /SQ R( );A 8jak ( )|y — Z’n—a—I—Qdd J
- z k—dg. ) i z & 2 W
i / () -5 /( RS Ak o

= Apn + Ap.

We deal first with Aj;. Since |R(z)| < C|z[*0(Q)72, the product R A*~99;0,k'
is a locally integrable function. Thus, using the boundedness of T x k7, we get

dz
Ayl < Ce wi| < Ceglta2d,
| An| < /y|:E /3@ 2| 1to—2d|, — y|n—a+2d—1| il <

Since we also have |R(z)| < ¢|z]¢(Q)™!, we obtain

dz
| Arp| < Ce A;—e /(3@)6 |z|nta—2d|; — y|n—at2d-1 jwj| < Ce™,
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Thus A; tends to zero with e.

To estimate Aj, take the Fourier transforms of ),

Ak_d(?j(?lki W Then
for an appropriate constant C' one has
~ ; i B 2%k—2d & & L&
ZAk 10,01k ||n——a+2d (&)= CZ €] &€ |¢[1+n—o|¢[2ra—2d — C|§|2'
1 y !
Thus
Aok« — L — ¢ py. L
2 AT ¢ gl
Hence

= |Calt) | (10 - 5O B

‘y’n+2wj

1<i<n

< C sup HT*kiHo&ln/ll w;| = C sup ||T % k'|| -
Yy

1<i<n

For the last term Ajs, taking the Fourier transform of >, y™AF49,0,k'
W’m, we get for a suitable constants C; and Cy

. Y
(Z Yy AFTI0; 0kt W) (6)
l

(1€, 13 m (&S 13
=120 ( e )|€|2+;_2d:clza (|§ l ) l
l l

2+2d-a ) [e[2ra—2d
§i&l §& &i&j §;&&E™ &
oy <5m7mj—a - Gy oo - Gy ot - Cy a) S
: €22 €2+2d €22 € [A+2d E[o+2—2d

f éj éjgl gifjgl
:C 5mm 5mm C 5mm .
( e * g g 2 1\514)

Hence
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m — 7 Y
(Zy AF0;01k *|y|n_—a+zd> (y)
l

B Yi y Y;Yi YiYiyi
= (5 (&n,mW + 5m,m2| |n + 02 MEE + Z mm T |n+2)

and since |m| =1,

e [ VIO <can [ u)=ce

|y’n ! ly|=¢e

which completes the proof of claim (11).

If n is odd, o non-integer, but [o] = 2d + 1 is also odd, then we replace the
reproducing formula (10) by

Lj

k—d
f= CZA f |x|n e |z (13)

If n is odd and « is an odd integer of the form a = 2d + 1, then we use the
reproducing formula (10). Instead of applying Taylor’s expansion up to order 1, we
need in this case to apply Taylor’s expansion up to order 2.

If n is odd and « is an even integer of the form a = 2d + 2 we use again formula
(13) and Taylor’s expansion up to order 2.

If n is even we use suitable reproducing formulas (see Lemma 11 in [P]) and
Taylor’s expansions up to order 1 if « is non-integer and up to order 2 if « is integer.

O

4 Proof of the Theorem.

Let p be a positive Radon measure and 0 < o < 1. For z € R", set

/n /npawy, Jdp(y)du(z),

Mop(z) = Supw

r>0 re

and
Ul(z) = Map(x) + pa(p) ().
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Recall that in section 2 we defined po (1) = [gn Jan Jan Pa(@, v, 2)dp(x)dp(y)du(z).
Observe that po (1) = [pn P2 (1) (x)dp(x). U is the analogue of the potential intro-
duced in [V2]. The energy associated to this potential is

Eali) = | U(@)du(o).

Lemma 4.1. For each compact set K C R"™ and 0 < a < 1 we have
() 1
a R SUP >
Y ,+ Vp Ea<V)

where the supremum is taken over the probability measures v supported on K.

Proof . Take a positive Radon measure p supported on K such that ‘ (Islem * u) (1:)‘ <
1 for almost all z € R, 1 <i < n. We claim that

w(B(x,r)) <Cr*, xzeR" r>0.

To prove the claim take an infinitely differentiable function ¢, supported on
B(z,2r) such that ¢ = 1 on B(x,r), and ||0°¢||e < Corl, |s| > 0. Assume first
that n is odd and of the form n = 2k 4+ 1. Then, by Lemma 11 in [P],

n

u(B(z,r)) < /sodu = Cna/ (Z AFQ;p |x|i_a x |x|aii+a) (y)du(y)

=1

Z/ (1 e ) 0 (3000 s ) 1t

1 1
<CZ(/B@3T <Ak‘9“0* |x|n—a) @)’dy*/Rn\B(m (Ma“"* |x|n—a)<y)‘dy> '

Arguing as in Lemma 3.1 we get that the last two integrals can be estimated by
Cre.

If n is even we use the corresponding representation formula in Lemma 11 of [P].

On the other hand, it can be easily shown that

|Roc(p)(x)| <C, z€R" >0,
and so, by (4), we obtain

Pa(p) < Clull
By Schwarz inequality
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Eo (1) < Ol + el 2pa(p)? < C|lpl.

Set v = u/||p||, so that

E,
Bolv) = ) o € |
1l = Tl
and consequently
(K)<C L
IYOZ,-F — Slip Ea(l/)‘

The reverse inequality is proved as in [V2] and involves the T'(1)-Theorem for
non-doubling measures. O

It is a crucial fact that the capacity C,, can be described by means of Wolff
potentials. The Wolff potential of a positive Radon measure p is defined by

Wo(z) = W (x) = /OOO (M)H o ern

rn—sp T

where p’ = p/(p — 1) is the exponent conjugate to p.
The Wolff energy of pu is

E(r) = Buyl) = | W ()du(a)

By Wolft’s inequality ([AH], Theorem 4.5.4, p.110) one has

1 1
Clsup ——— < C,, <Csup ———,
2 Es,p(:uf)p ! ( ) 1% Es,p(:u>p_1

where C' is a positive constant depending only on s, p and n, and the supremum is
taken over the probability measures p supported on K.

Lemma 4.2. For each positive finite Radon measure p on R™ we have

o= [ [ () e
Proof. Suppose that
[ ()

20
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and set G = {(z1, %2, x3) : |11 — 22| < |v1 — 23] < |xo — 23|}, Using Lemma 2.1 and
Riemann-Stieltjes integration, we obtain

) = 3///%(1’17$2»$3)dﬂ($1)du($2)dﬂ(fﬁ3)
G

// / |2 — 3] 7 dpu(1) dpa(ws) dpa(3)

B(zs,|z2—z3]) (14)
1‘37 |902 $3|))
d d
/n/n ’.172 _ $3|2a M(xQ) /.L(l'g)

/n/ x?” “(3(9537 r))du(xs).

Notice that

lim (M)Q < lim (“(Hin)y = 0. (15)

r—00 r r—00 r
Moreover
2p 2p 2
p(B(z,r))\" dr 2/ dr w(B(z, p))
— > u(B =C
[ (% B [ =
Thus

r—0 ro

lim (M) 0. (16)

Integration by parts in the last integral of (14), together with (15) and (16),

show that
o= [ () e

Suppose now that p, (1) < co. We claim that we can assume that

lim inf —M(B(x’ r)

1 =0, for p-almost all x € R". (17)
r— ro

If (17) holds, then integrating by parts in the last integral of (14) one can deduce
that
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()

and in this case we are done.

Otherwise there exists a p-measurable set I such that p(F') > 0 and

lim inf —M(B(x’ )

1 = >0, zekF.
r— T

Shrinking F' we can assume that

lim inf —u(B(x, )

>a>0, zekF.
r—0 ro

By Egorov we can find ry > 0 and a p-measurable subset G of F' such that
w(G) > 0 and

w(B(x,r)) > g r* x € G and r <ry. (18)

From (14) we get, applying (18) twice,

0= / B2 D) ()

|.T2 — x3|2a
sz — 4])
dp(zs)d
/ / 553 T‘o |IL’2 — $3‘2a ILL('IQ) ,U(Jf:;)

S @ / / dp(xs)dp(xs)
- B(z3,r0) |I2 - x3|oz

a (o]
_ 5// 1({s € Blws,ro) : |ws — ws| ™ > £))dtdp(s)

GJo
ao " u(B(xs,r
T1+a d dﬂ(l’g)

a’o //TO dr

> — — =4
2 aJo T

which is a contradiction.

| \/

]

Remark. In Theorem 2.2 of [M] it is shown that for any finite Borel measure
in C, one has the following inequality,
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(21, T2, x3)dp(zy )dp(zs)dp(zs) < C 2@du( ). (19)
| L L]

On the other hand, for a = 1, there is no general lower inequality like the one
in Lemma 2.1. Although we have

2
C({Ehxg,fﬁg) S T
|29 — 23]

the reverse inequality may fail very badly. Thus the reverse inequality in (19) does
not hold for general measures . However, see Theorem 2.3 in [M] where a related

result is shown when g is the Hausdorff measure associated to some measure func-
tion h, restricted to some Cantor sets.

We turn now to the proof of the main Theorem.

Proof of the Theorem. We deal first with the inequality

CZ(n ) ( )< C’)/Oé-%( ) (20)

Assume that for a probability measure p supported on K we have

- [ () b=

Then by Chebyshev, for each t > 0,

pfz € K : /OOO<W)ZC§T t}<§

Taking t = 2F, we obtain a compact set ' C K such that

/OOO<M> T op seF,

E

M\W

re T

and
n(F) =
If we set v = pyr/pu(F), then for some positive constant C' depending on o,
B > [*(v(B
C(M) S/ (M)ﬁqw v EF 1)
pe P re T

To see that v satisfies the a-growth condition, notice that if x ¢ F and B(z,r)N
F =), then v(B(x,r)) = 0, and if there is some £ € F N B(z,r), then due to (21)

oo|>—u
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v(B(z,r)) < v(B(E,2r) < CrovVE.

Hence we have

Myv(z) < OVE, z € R™.
Then by Lemma 4.2 and Schwarz inequality we get

Ea(v) = / UL(e)dv(z) < OVE +pa(0)? < CVE,

Thus, by Lemma 4.1, we obtain

B2 < CEL(n) € Oy (K),
which implies (20).

To see the reverse inequality, let © be a probability measure supported on K
such that

Ealp) = / UL (@)du(r) < oo

Since

Ea() 2 [ pali)(@)du(o),
as before, by Chebyshev,

p{r € K 1 po(p)(z) >t} < Eat('u), t > 0.

Taking t = 2F,(u) we find a compact set F' C K such that

Pa(p)(z) < 2E, (), forxz € F,
and

p(F) >

W =

Set v = pyp/p(F). Then

Palv) = / P2(0) () () < 36Ea(11)?,

and so, by Lemma 4.2

Ea(p) ™ < 6pa(v) ™2 = Ea(y_gy 3 (v) 2 < C2
which ends the proof of the Theorem.
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