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Introduction

Using the BMO-H1 duality (among other things), D. R. Adams proved in [1]
the strong type inequality∫

Mf(x) dHα(x) ≤ C

∫
|f(x)| dHα(x), 0 < α < n,(1)

where C is some positive constant independent of f . Here M is the Hardy-
Littlewood maximal operator in R

n, Hα is α-dimensional Hausdorff content
and the integrals are taken in the Choquet sense. The Choquet integral of
ϕ ≥ 0 with respect to a set function C is defined by∫

ϕ dC =

∫ ∞

0

C{x ∈ R
n : ϕ(x) > t} dt.

Precise definitions of M and Hα will be given below. For an application of
(1) to the Sobolev space W 1,1(Rn) see [1, p. 1]

The purpose of this note is to provide a selfcontained, direct proof of a
result more general than (1).

Theorem. Let 0 < α < n. Then, for some constant C depending only on α
and n, the following inequalities hold.

(i)

∫
(Mf)p dHα ≤ C

∫
|f |p dHα, α/n < p.

(ii) Hα{x : Mf(x) > t} ≤ Ct−α/n
∫
|f |α/n dHα.

The proof of the Theorem is described in the next section. An elementary
argument gives (i) readily. For (ii), besides the classical line of reasoning to
treat weak type inequalities, we need a covering lemma concerning Hausdorff
content.
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It is worthwhile mentioning that (i) follows also from (ii) and the standard
argument to derive Lp inequalities, 1 < p < ∞, for M from the weak L1

inequality (see [2, 2.5, p. 145]). We believe, however, that the independent
simple proof of (i) we present is of some interest.

We proceed now to establish some notation and terminology and to recall
some background facts.

Let f be a locally integrable function on R
n. The Hardy-Littlewood

maximal function of f is

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f |,(2)

where the supremum is taken over all cubes Q containing x, with sides parallel
to the coordinate axes. We have denoted by |Q| the n-dimensional volume
of Q. Very often it is much more convenient to work with the essentially
equivalent dyadic maximal function Mdf(x), which is defined by the right
hand side of (2), but where now the supremum is taken only on the family of
dyadic cubes containing x. Clearly Mdf ≤ Mf . The reverse inequality fails,
but some useful substitutes are available, as we will see below.

If E ⊂ R
n and 0 < α ≤ n, the α-dimensional Hausdorff content of E is

defined by

Hα(E) = inf
∞∑

j=1

l(Qj)
α,(3)

where the infimum is taken over all coverings of E by countable families of
cubes Qj with sides parallel to the coordinate axes. Here l(Q) denotes the
side length of the cube Q. If we take the infimum in (3) only on coverings of
E by dyadic squares, we get an equivalent quantity Hα

d (E) called the dyadic
α-dimensional Hausdorff content.

A well-known argument [2, p. 136] gives

Hα{x : Mf(x) > t} ≤ 3αHα{x : Mdf(x) > 4−nt},

which implies ∫
Mf(x) dHα(x) ≤ 3α4n

∫
Mdf(x) dHα(x).(4)

Therefore, at least in the integral sense expressed by (4), Mf is dominated
by Mdf .
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A fundamental point in dealing with Choquet integrals with respect to
Hausdorff content is that for non-negative functions fj one has

∫ ∞∑
j=1

fj dHα ≤ C

∞∑
j=1

∫
fj dHα(5)

for some constant C depending only on α and n. This follows from the
nontrival fact that the Choquet integral with respect to dyadic Hausdorff
content is sublinear [1].

1 Proof of the Theorem

We need a Lemma.

Lemma 1. Let χQ be the characteristic function of the cube Q. Then∫
M(χQ)p dHα ≤ Cl(Q)α,

α

n
< p.

Proof of Lemma 1. Let xQ be the center of Q. Then

M(χQ)(x) ≤ C inf

(
1,

(
l(Q)

|x − xQ|

)n)
, x ∈ R

n.

Thus, since α/np < 1,∫
M(χQ)p dHα ≤ Cl(Q)α + C

∫ 1

0

l(Q)αt−(α/np) dt = Cl(Q)α.

Proof of (i). In proving (i) we can assume that f ≥ 0.

For each integer k let {Q(k)
j }j be a family of non-overlapping dyadic cubes

Q
(k)
j such that

{x : 2k < f(x) ≤ 2k+1} ⊂
⋃
j

Q
(k)
j

and ∑
j

l(Q
(k)
j )α ≤ 2Hα

d {x : 2k < f ≤ 2k+1}.

Set g =
∑

k

2(k+1)pχAk
, where Ak =

⋃
j

Q
(k)
j . Thus fp ≤ g.
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Assume first that 1 ≤ p. Then

(Mf)p ≤ M(fp) ≤ M(g) ≤
∑

k

2(k+1)p
∑

j

M(χ
Q

(k)
j

).

By (5) and Lemma 1 we get∫
(Mf)p dHα ≤ C

∑
k

2(k+1)p
∑

j

∫
M(χ

Q
(k)
j

) dHα

≤ C
∑

k

2(k+1)p
∑

j

l(Q
(k)
j )α

≤ C
∑

k

2(k+1)pHα{x : 2k < f(x) ≤ 2k+1}

≤ C
∑

k

22p

2p − 1

∫ 2kp

2(k−1)p

Hα{x : f(x)p > t} dt

≤ C

∫
fp dHα,

which concludes the proof in the case at hand.

Assume now that α
n

< p < 1.

Since f ≤
∑

k

2k+1χAk
,

Mf ≤
∑

k

2k+1
∑

j

M(χ
Q

(k)
j

).

We have
(Mf)p ≤

∑
k

2(k+1)p
∑

j

M(χ
Q

(k)
j

)p,

because p < 1, and hence∫
(Mf)p dHα ≤ C

∑
k

2(k+1)p
∑

j

l(Q
(k)
j )α ≤ C

∫
fp dHα.

The main difficulty in the proof of part (ii) of the Theorem is that Hα is
not additive if α < n. In particular is not true that there exists a constant
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C > 0 such that if Q1, . . . , Qm are non-overlapping dyadic cubes and f ≥ 0,
then

m∑
j=1

∫
Qj

f dHα ≤ C

∫
∪
j
Qj

f dHα.(6)

This can be shown by subdividing the interval [0, 1] in 2m (m large enough)
equal intervals, and taking f ≡ 1.

Nevertheless, if we assume that for some constant p we have∑
Qj⊂Q

l(Qj)
α ≤ p l(Q)α, for each dyadic cube Q,(7)

then is not difficult to prove that (6) holds with some C = C(p) independent
of f .

The next lemma, first appeared in [3], provides us with families of dyadic
cubes satisfying (7) and thus (6). We include a short proof for the reader’s
convenience.

Lemma 2 (Melnikov). Let {Qj} be a family of non-overlapping dyadic
cubes. Then there exists a subfamily {Qjν} such that

(i)
∑

Qjν⊂Q

l(Qjν )
α ≤ 2l(Q)α, for each dyadic square Q,

and

(ii) Hα (
⋃

Qj) ≤ 2
∑

ν

l(Qjν )
α.

Proof. Let {Qjν} be a maximal subfamily of {Qj} satisfying (i). That is,
we set j1 = 1 and if j1, . . . , jν have been chosen so that (i) holds, then we
define jν+1 as the first index such that the family {Q1, . . . , Qjν+1} satisfies
(i). Therefore property (i) holds and we are left with the task of proving (ii).
Take an index j such that jm < j < jm+1 for some m. Then there exists a
dyadic cube Q∗

j ⊃ Qj such that

∑
Qjν⊂Q∗

j , ν≤m

l(Qjν )
α + l(Qj)

α > 2l(Q∗
j)

α.

Then
l(Q∗

j)
α ≤

∑
Qjν⊂Q∗

j , ν≤m

l(Qjν )
α.
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We can assume that
∑

ν

l(Qjν )
α < ∞, because otherwise (ii) is obviously

satisfied. Then the sequence l(Q∗
j) is bounded, and thus we can consider the

family (Q̃k) of maximal cubes of the family {Q∗
j}j. Hence

⋃
Qj ⊂

(⋃
ν

Qjν

)⋃ (⋃
k

Q̃k

)

and, consequently,

Hα
(⋃

Qj

)
≤ 2

∑
ν

l(Qjν )
α,

as desired.

We still need an auxiliary inequality.

Lemma 3. For f ≥ 0 we have∫
f(x) dx ≤ n

α

(∫
f(x)α/n dHα(x)

)n/α

.

Proof. Since for lj ≥ 0 (∑
j

lnj

)1/n

≤
(∑

j

lαj

)1/α

,

we get
Hn(E)1/n ≤ Hα(E)1/α, for E ⊂ R

n.

Set
λβ(t) = Hβ{x : f(x) > t}.

Then
λ1/n

n (t) ≤ λ1/α
α (t), t > 0,

and so ∫ ∞

0

f(x) dx =

∫ ∞

0

λn(t) dt =
n

α

∫ ∞

0

λn(rn/α)r(n/α)−1 dr

≤ n

α

∫ ∞

0

λα(rn/α)n/αr(n/α)−1 dr

≤ n

α

(∫ ∞

0

fα/n dHα

)(n/α)−1 ∫ ∞

0

λα(rn/α) dr

≤ n

α

(∫ ∞

0

fα/n dHα

)n/α

,
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where in the second inequality we used the fact that

λα(rn/α)r ≤
∫
{x:fα/n(x)>r}

fα/n dHα, r > 0.

Proof of (ii). Given t > 0 let {Qj} be the family of maximal dyadic cubes
Qj such that 1

|Qj |
∫

Qj
f > t (we assume again, without loss of generality, that

f ≥ 0). Then

{x : Mdf(x) > t} =
⋃
j

Qj.

By Lemma 3

l(Qj)
α ≤

(
1

t

∫
Qj

f

)α/n

≤ Ct−α/n

∫
Qj

fα/n dHα.

Applying Lemma 2 to the {Qj} we get some subfamily {Qjν} for which one
can write

Hα{x : Mdf(x) > t} ≤ 2
∑

ν

l(Qjν )
α

≤ Ct−α/n
∑

ν

∫
Qjν

fα/n dHα

≤ Ct−α/n

∫
fα/n dHα,

where the last inequality is due to the packing condition (i) of Lemma 2.
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