Regularity of planar quasiconformal mappings

Marti Prats

e ICMAT
UNIVERSIDAD AUTONOMA

DEMADRID NSTITUTO DE CIENCIAS MATEMATICAS

September 8th, 2016



Introduction

Introduction



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.

1/
o |fl, = (SIfIP)"",
[f], = esssup|f]



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.

S
4 1/
o [fl, = ([IfP)"",
s |l = esssuplf]
) o [fllce =IFllw + -+ [VF) e
O >3
L4 1



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
s Sobolev spaces — both together.

1/
e o fl, = (f1F17)",
[f], = esssup|f]

° [flles = Ifllee + -+ [V¥F] 10
O [Fllysr = [Fllp + - + V£l



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.

1/
o [fl = ([IFIP) ",
[f], = esssup|f]

o |flles = Il + -+ IV*Fl 0
O [Fllysr = [Fllp + - + V£l
° |fle =

1]l + - - + sup TE=V )]

[x—yl[{s}



Introduction
@00

Measuring smoothness and integrability in R?

W/3/2:8/5
y W1,4/3

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.
Interpolation to generalize.

o Il = (J1F1P)",

[f], = esssup|f]
o [fllcs = flpe + -+ [Vl
o [fllwse =l + -+ V£
° |ffc =

1]l + - - + sup TE=V )]

[x—yl[{s}

o [Flwss: Fly - IFr



Introduction
@00

Measuring smoothness and integrability in R?

s A
d=3
4 sp =
Supercritical
3
WW/5t,PL s
2 ;
S1— 5 .
O WP
v Subcrifal
0 |

LP L p¥ P 1
p

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.
Interpolation to generalize.
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By means of Sobolev embeddings, we have
either continuity or extra integrability.
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Conformal mappings
Preserves angles
“Circles to circles”
Cauchy-Riemann:

S (O«f +i0,f) =0
of =0

Quasiconformal
mappings

Angle distortion
bounded.

“Circles to ellipses”.
|0f| < k|of]
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The Beurling transform

The Beurling transform of a function f € LP(C) is:
1 f
Bf(z) = — Iim/ ) ().
| _

It is essential to quasiconformal mappings because

B(3f) =of  Vfe W

Recall that B : LP(C) — LP(C) is bounded for 1 < p < o0.
Also B : W*P(C) — W*P(C) is bounded for 1 < p < o0 and s > 0.



QC mappings of the whole plane

QC mappings of the whole plane



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.

o=



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.

s The Beltrami equation
) 0f(z) = u(z)of (2)
has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .
f
0

o=



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

o=

Let e LZ(C) with k := ||, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider
hi= p+ pB(p) + pB(uB(p) + - -



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

o=

Let e LZ(C) with k := ||, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider
hi= p+ pB(p) + pB(pB(p)) + -+
=(I — uB)~* (),



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider

hi=p+ pB(p) + pB(pB(u)) + - -
=(I — uB)~*(p),

since [[p - Bl 0 < K[[B o) =r <1

o=



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.
s The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider
hi=p+ pB(p) + pB(pB(u)) + - -
0 =(/ = pB)~H(p),
since [[p - Bl 0 < K[[B o) =r <1

o=

Then, he L2



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.
s The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W~ such

that f(z) =z+ O(1/z) as z — .

Consider
hi=p+ pB(p) + pB(pB(u)) + - -
0 =( — pB) Y (u),
S : since [[p - Bl 0 < K[[B o) =r <1

o=

Then, he L? and f:i*h—l—z.



QC mappings of the whole plane
[ leJele]e]

The Beltrami equation

Let e LZ(C) with k := ||, < 1.
s The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W~ such

that f(z) =z+ O(1/z) as z — .

Consider
hi=p+ pB(p) + pB(pB(u)) + - -
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Then, he L2 and f = i*h—i—z.
This remains true if | B, ,) < 1/k.
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Recent progress

Theorem (P.)

Let0<s<2, 1<p<ow,let ue WP L%, wit_hugmxlg) and let f
be the principal solution to the Beltrami equation 0f = udf.
Ifs = %, then

- 1 1
of € W19 for every — > —.
q

R

/fs<fand <1 1 _ 1=K thep
P P pe T 1k

- 1 1 1
of e W19 for every — > — + —.
9 P P

See [Clop, Faraco, Ruiz] for previous weaker results and Baisén's thesis

for a stronger result in the critical setting with s > 1/2.
It remains unclear if the condition & 5 < ,T — i can be replaced

by 5 < ?’ which is more natural and is achleved for s = 1.
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Spare room

In [CFMOZ], the subcritical case and critical cases are improved using

log(0f) to avoid the restriction % <Ll % when s = 1.
This technique cannot be used for fractional derivatives. Can we bypass
it?

In the critical setting with fractional derivatives, Baisén et al. could do it
combining the use of the logarithm with certain potentials to give some
better results, namely log(df) € W*P, but they were forced to work only
with s > 1/2. Is this restriction natural? Can this procedure be adapted
to the subcritical setting?
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What about quasiconformal mappings on domains?

Consider a Riemann mapping from D to the Koch Snowflake.

Since it is conformal, dp = 0. Thus, = 0 and e W*P for every s, p.
However, ¢’ does not extend to dD. Thus, ¢ ¢ C1(D) and, as a
consequence, dp is not in any supercritical Sobolev space.

The moral is that in order to study the regularity of u-quasiconformal
mappings between domains we must take into account both the
regularity of the boundary and the regularity of p.
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Let g : Q1 — Q3 to be u-QC, with p € W=P(Q;) and 92y, 0Q3 regular
enough. Can we say that dg € W=P(Q;)??
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By Stoilow factorization, g = ho f where f : C — C is the u-principal
mapping and h: Q, — Q3 is conformal.

(o5t Q
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We can find Riemann mappings (conformal) if the domains are simply
connected.

(oA 0y
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We study supercritical case.

Theorem (P)

Let Q < C be a bdd domain, with normal vector N € B;;,l/p(éﬂ), seN
and p > 2.




QC mappings on domains

[e]e] le]ele]

The principal mapping

et
w0

o=
il

We study supercritical case.

Theorem (P)

Let Q < C be a bdd domain, with normal vector N € B;;,l/”(asz), seN
and p> 2. Let pe W9P(Q) n L* with k := ||u|, <1 with suppu < Q.
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The principal mapping
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We study supercritical case.

Theorem (P)

Let Q < C be a bdd domain, with normal vector N € B;;,l/”(asz), seN
and p> 2. Let pe W9P(Q) n L* with k := ||u|, <1 with suppu < Q.
Then lg — puBq is invertible in W*P(Q).
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The principal mapping
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We study supercritical case.

Theorem (P)

Let Q < C be a bdd domain, with normal vector N € B;;,l/p(éﬂ), seN
and p> 2. Let pe W9P(Q) n L* with k := ||u|, < 1 with suppu < Q.
Then the principal solution f € WStYP(Q) and it is bi-Lipschitz.
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General case

Conjecture (Theorem in progress with K. Astala)

1—1
Let se N and p > 2. If Q is a simply connected B;,J; ?-domain, then
any Riemann mapping ¢ : D — Q satisfies that ¢ € Ws+1P(DD) and it is
bi-Lipschitz.
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General case

Conjecture (Theorem in progress with K. Astala)

1—1
Let se N and p > 2. If Q is a simply connected B;,J; ?-domain, then
any Riemann mapping ¢ : D — Q satisfies that ¢ € Ws+1P(DD) and it is
bi-Lipschitz.

Conjectured corollary

Let se N and p > 2, let Q; and €23 be simply connected
1—1
B;J,FJ ?-domains and let g : Q; — €3 be a p-quasiconformal mapping

with € W5P(Q;). Then g € WstLP(Qy).
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|dea of the proof of the corollary

" % fe WsthP(Q) and it is
bi-Lipschitz by the Theorem.
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|dea of the proof of the corollary

fe WsthP(Q) and it is
bi-Lipschitz by the Theorem.
1 € WSHLP(D) and it is
bi-Lipschitz by the conjecture.
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|dea of the proof of the corollary

. % fe WsthP(Q) and it is
bi-Lipschitz by the Theorem.
o 1 € WSHLP(D) and it is
- bi-Lipschitz by the conjecture.

By the trace condition, f o ; is a
1

s+1—1 o
Bpp 7 parameterization of 0€2,.
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|dea of the proof of the corollary

fe WsthP(Q) and it is
bi-Lipschitz by the Theorem.
1 € WSHLP(D) and it is
bi-Lipschitz by the conjecture.

By the trace condition, f o ; is a
1

1—1
B:j,; ? parameterization of 0€2,.
By the conjecture, ho p, and ¢,
are in W*t1P(D).
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|dea of the proof of the corollary

fe WsthP(Q) and it is
bi-Lipschitz by the Theorem.
1 € WSHLP(D) and it is
bi-Lipschitz by the conjecture.

By the trace condition, f o ; is a
1

B:j;l_; parameterization of 0€2,.
By the conjecture, ho p, and ¢,
are in WstLP(D).

Then, g = (hoy)o(py 1) of.
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Conclusions
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@ In the complex plane, if N e B;;,l/p(aﬂ) and p > 2,
then pe WSP(Q) = f,ge WstLP(Q).
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@ In the complex plane, if N € Bf,;,l/p((?ﬂ) and p > 2,
then pe WSP(Q) = f,ge WstLP(Q).
@ Expected further results:

e The results hold apparently for 0 < s < 1, sp > 2 (work in progress
with Eero Saksman) and for Holder spaces.

o Subcritical situation: is there any condition on 0Q which can lead to
analogous results?



The end
The end

Moltes gracies!!
Muchas gracias!!
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