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The Beurling transform.

The Beurling transform of a function f ∈ Lp(C) is:

Bf (z) = c0 lim
ε→0

ˆ
|w−z|>ε

f (w)

(z − w)2
dm(w).

It is essential to quasiconformal mappings because

B(∂̄f ) = ∂f ∀f ∈W 1,p.

Recall that B : Lp(C)→ Lp(C) is bounded for 1 < p <∞.
Also B : W n,p(C)→W n,p(C) is bounded for 1 < p <∞ and n > 0.

In general, if x /∈ supp(f ) ⊂ Rd then a convolution CZO of order n is

Tf (x) =

ˆ
K (x − y)f (y)

with

|∇jK (x)| ≤ 1

|x |d+j
for j ≤ n.
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The problem we face.

−→T

If T : Lp(Rd)→ Lp(Rd),

T : Lp(Ω)→ Lp(Ω).
But for g ∈W 1,p(Ω) maybe not ∇T (g) ∈ Lp(Ω).
For Ω a rectangle, B χΩ is in every Lp(Ω) but not in W 1,p(Ω) for p ≥ 2.

We seek for answers in terms of test functions and in terms
of the geometry of the boundary.
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Results.

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a C 1+ε domain Ω ⊂ Rd , T even and p > d.
If T (χΩ) ∈W 1,p(Ω), then T is bounded in W 1,p(Ω).

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain Ω ⊂ Rd and p > d. If T (P) ∈W n,p(Ω)
for polynomials P ∈ Pn−1(Ω), then T is bounded in W n,p(Ω).

Theorem (P., Tolsa, 2014)

For any 1 < p ≤ d, if |∇nT (P)(x)|pdx is a p-Carleson measure in Ω
for every P ∈ Pn−1(Ω), then T is bounded in W n,p(Ω).
If n = 1, the converse is true.
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Results.

Theorem (P., Tolsa 2013)

For Ω ⊂ C smooth enough, if the vector normal to the boundary of Ω is

in the Besov space B
n− 1

p
p,p (∂Ω) then B(χΩ) ∈W n,p(Ω), with

‖∇nB(χΩ)‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+ Clength(∂Ω).
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Sufficient conditions on test functions.
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The Whitney covering.

Consider a Lipschitz domain Ω.
We perform a Whitney covering W
such that

dist(Q, ∂Ω) ≈ `(Q).

{5Q}Q∈W has finite superposition.

We can think on Harnack chains.
We can think on Carleson boxes
(or shadows).
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The key point: approximating by polynomials.

A new approach for the case n = 1:

Key Lemma

The following are equivalent:

‖∇Tf ‖Lp(Ω) ≤ C‖f ‖W 1,p(Ω).∑
Q∈W ‖∇T (f3Q χΩ)‖pLp(Q) ≤ C‖f ‖pW 1,p(Ω).
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Proof of the T(P) theorem (p > d).

We want to see that T (χΩ) ∈W 1,p(Ω)
implies T bounded in W 1,p(Ω).

∑
Q∈W

‖∇T (f3Q χΩ)‖pLp(Q)

=
∑
Q∈W

|f3Q |p‖∇TχΩ‖pLp(Q)

≤ ‖f ‖pL∞‖∇T (χΩ)‖pLp(Ω)

≤ C‖f ‖pL∞ .

Since p > d , by the Sobolev Embedding
Theorem

‖f ‖L∞ ≤ C‖f ‖W 1,p(Ω).
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Carleson measures in the Besov space of analytic functions.

Consider ρ(z) = dist(z , ∂D)2−p. For analytic functions in D,

‖f ‖pBp(ρ) = |f (0)|p +

ˆ
D
|f ′(z)|p(1− |z |2)pρ(z)

dm(z)

(1− |z |2)2
≈ ‖f ‖pW 1,p(D).

We say µ is Carleson for Bp(ρ) if ‖f ‖Lp(µ) ≤ C‖f ‖Bp(ρ).

Theorem (Arcozzi, Rochberg and Sawyer, 2002)

The following are equivalent:

µ is Carleson for Bp(ρ).

For every Whitney cube P,∑
Q⊂Sh(P) µ(Sh(Q))p

′
ρ(Q)1−p′ ≤ Cµ(Sh(P)).

For every h ∈ lp(W),∑
Q∈W

(∑
P: Q⊂Sh(P) h(P)

)p
µ(Q) ≤ C

∑
Q h(Q)pρ(Q).
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The Carleson measures.

Definition

We say that µ is p-Carleson for Ω ⊂ Rd iff
for every Whitney cube P,∑
Q⊂Sh(P)

µ(Sh(Q))p
′
`(Q)

p−d
p−1 ≤ Cµ(Sh(P)).

For every h ∈ lp(W),∑
Q∈W

(∑
P: Q⊂Sh(P) h(P)

)p
µ(Q) ≤ C

∑
Q h(Q)p`(Q)d−p.
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Proof of Carleson ⇒ boundedness (p ≤ d).

Assume that n = 1 and

µ(x) = |∇TχΩ(x)|pdx

is p-Carleson for Ω. We want∑
Q∈W

|f3Q |p‖∇T (χΩ)‖pLp(Q) ≤ C‖f ‖pW 1,p(Ω).

But,

by Poincaré inequalities and the p-Carleson measure properties,

∑
Q∈W

|f3Q |pµ(Q)

≤
∑
Q∈W

 ∑
P: Q⊂Sh(P)

|f3P − f3N (P)|

p

µ(Q)

≤
∑
Q∈W

 ∑
P: Q⊂Sh(P)

‖∇f ‖Lp(5P)`(P)1− d
p

p

µ(Q)

≤ C
∑
Q∈W

‖∇f ‖pLp(5Q) ≤ C‖f ‖pW 1,p(Ω)
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Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

‖∇Tf ‖pLp(Ω) ≤ C‖f ‖pW 1,p(Ω).∑
Q∈W |f3Q |p‖∇T (χΩ)‖pLp(Q) ≤ C‖f ‖pW 1,p(Ω).

Enough to prove ∑
Q

‖∇T (f − f3Q)‖pLp(Q) . ‖∇f ‖
p
Lp(Ω).

Break the local part and non-local part.
Local part is a good function, in W 1,p(Rd).
For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Hölder.
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What about n ≥ 2?

We need to iterate the Poincaré inequality to get derivatives of
higher order. Thus, we approximate f in 3Q by polynomials Pn−1

3Q f
instead of the mean value f3Q . The conditions for those polynomials
are ˆ

3Q

DαPn−1
3Q f =

ˆ
3Q

Dαf for any |α| < n.

When we use the Harnack chain we don’t compare numbers but
functions evaluated at a certain distance. Thus new polynomially
growing terms will appear.
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A duality argument (n = 1).

Hypothesis: T bounded in W 1,p(Ω). Then the averaging function

Af (x) :=
∑
Q∈W

χQ(x) f3Q ,

by the Key Lemma, is also bounded A : W 1,p(Ω)→ Lp(µ) for

µ(x) = |∇TχΩ(x)|pdx .

Key Lemma

(case p=2, d=2): by duality, A∗ : L2(µ)→W 1,2(Ω) is also bounded.
Objective: for any P,∑

Q⊂Sh(P)

µ(Sh(Q))2 ≤ Cµ(Sh(P)).

For g = χSh(P),

‖A∗g‖2
W 1,2(Ω) . ‖g‖

2
L2(µ) = µ(Sh(P))
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The Neuman problem (n = 1).

To get ∑
Q⊂Sh(P)

µ(Sh(Q))2 . ‖A∗g‖2
W 1,2(Ω) + error terms

we need to estimate ‖A∗g‖W 1,2(Ω) from below.

For f ∈W 1,2(Ω)

〈A∗(g), f 〉 =

ˆ
Ω

g A(f ) dµ =

ˆ
Ω

g̃ f dx

But using Hilbert structure of W 1,2(Ω), A∗(g) is represented by a
function h ∈W 1,2(Ω) with

〈A∗(g), f 〉 =

ˆ
Ω

∇h · ∇f = −
ˆ

Ω

∆h f dx +

ˆ
∂Ω

∂νh f dσ.

Thus, h is the solution of the Neuman problem{
−∆h = g̃ in Ω,

∂νh = 0 in ∂Ω.
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Ingredients for the proof.

Theorem (P., Tolsa 2013)

For Ω ⊂ C smooth enough, if the vector normal to ∂Ω is in the Besov

space B
n− 1

p
p,p (∂Ω) then B(χΩ) ∈W n,p(Ω), with

‖∇nBχΩ‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+ Clength(∂Ω).

Ingredients:

Generalized Peter Jones’ betas (using polynomials instead of lines).

Equivalence between Besov Bs
p,p norm and a sum of betas

(Dorronsoro).

Beurling of characteristic functions of circles, half-planes,
polynomials, ...

See details
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Conclusions.

For p > d we have a T (P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

For p ≤ d it is not enough to have the images of polynomials
bounded, but it suffices that they are Carleson measures. When
n = 1, this yields a complete characterization.

In the complex plane, the Besov regularity B
n−1/p
p,p

of the normal vector to the boundary of the domain
gives us a bound of B(P) in W n,p (and 0 < s < 1).

Next steps:

Proving analogous results for any s ∈ R+.
Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
Sharpness of all those results.
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The end.

Moltes gràcies!!



Defining some generalized betas of David-Semmes.

A measure of the flatness of a set Γ:

Definition (P. Jones)

βΓ(Q) = infV
w(V )
`(Q)

If there is no risk of confusion,
we will write just β(n)(I ).

Ending
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Geometric condition in terms of betas: The Besov space.

Definition

For 0 < s <∞, 1 ≤ p <∞, f ∈ Bs
p,p(R) if

‖f ‖Bs
p,p

= ‖f ‖Lp +

(ˆ
R

ˆ
R

∣∣∣∣∣∆[s]+1
h f (x)

hs

∣∣∣∣∣
p
dm(h)

|h|
dm(x)

)1/p

<∞.

Theorem (Dorronsoro)

Let f : R→ R be a function in the Besov space Bs
p,p. Then, for any

n ≥ [s],

‖f ‖pBs
p,p
≈ ‖f ‖Lp +

∑
I∈D

(
β(n)(I )

`(I )s−1

)p

`(I ).

Ending
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Main idea: projecting cubes to the boundary.
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