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The Beurling transform of a function € LP(C) is:

Bf(z) = ¢o lim / Mdm(w).

e=0 Jiw_z|>e (z —w)?
It is essential to quasiconformal mappings because
B(df) = of Vf e Whe.

Recall that B : LP(C) — LP(C) is bounded for 1 < p < cc.
Also B : W™P(C) — W™P(C) is bounded for 1 < p < oo and n > 0.

In general, if x ¢ supp(f) C RY then a convolution CZO of order n is
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The problem we face.

If T:LP(RY) — LP(RY), T : LP(Q) — LP(Q).

But for g € W1P(Q) maybe not VT(g) € LP(R).

When is T : W™P(Q) — W"™P(Q2) bounded?

We seek for answers in terms of test functions and in terms
of the geometry of the boundary.
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Given a Lipschitz domain Q C R? and p > d. If T(P) € W™P(Q)
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Theorem (Cruz, Mateu, Orobitg, 2013)

Given a C1*¢ domain Q c RY, T even and p > d.
If T(xa) € WHP(Q), then T is bounded in WP(Q).

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain Q C R? and p > d. If T(P) € W™P(Q)
for polynomials P € P"~1(Q), then T is bounded in W™P(Q).

\

Theorem (P., Tolsa, 2014)

Forany 1 < p <d, if [V"T(P)(x)|Pdx is a p-Carleson measure in Q
for every P € P"~1(Q), then T is bounded in W™P(Q).
If n =1, the converse is true.
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Results.

Theorem (P., Tolsa 2013)

For Q € C smooth enough, if the vector normal to the boundary of Q0 is
1
in the Besov space Bp.,” (02) then B(xq) € W™P(Q), with

19"BO@) Ea@) S IN12y 110, + Ciengincon)
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The Whitney covering.

e,

Consider a Lipschitz domain Q.
We perform a Whitney covering W
such that

e dist(Q,00Q) =~ ¢(Q).

o {5Q}ew has finite superposition.
We can think on Harnack chains.
We can think on Carleson boxes
(or shadows).
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The key point: approximating by polynomials.

A new approach for the case n = 1:

The following are equivalent:
° [VTHe) < Clifllwie(y

> gew IIVT(fso xa)lZoq) < Clfllwieg)
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Proof of the T(P) theorem (p > d).

We want to see that T(xq) € W1P(Q)
implies T bounded in W'P(Q).

Z IVT(fe XQ)HZJ(Q)
Qew

Z |f3Q|p||VTXQHZ:(Q)
QeEwW

1117 IV T (x) IZ» (g
< ClIf|I7=-

IN

Since p > d, by the Sobolev Embedding
Theorem

1l < ClFlwroay-




Sufficient conditions on test functions.
[e]e]e] lelelele]

Carleson measures in the Besov space of analytic functions.

Consider p(z) = dist(z, dD)?>~P. For analytic functions in D,

171 = 1FOP + [ 1F@1P = |22 e) s ~ oy




Sufficient conditions on test functions.
[e]e]e] lelelele]

Carleson measures in the Besov space of analytic functions.

Consider p(z) = dist(z, dD)?>~P. For analytic functions in D,

171 = 1FOP + [ 1F@1P = |22 e) s ~ oy

We say 1 is Carleson for By(p) if || f]] s,y < CH’C”B,,(,))




Sufficient conditions on test functions.
[e]e]e] lelelele]

Carleson measures in the Besov space of analytic functions.

Consider p(z) = dist(z, dD)?>~P. For analytic functions in D,

171 = 1FOP + [ 1F@1P = |22 e) s ~ oy

We say p is Carleson for B,(p) if ||fHLp(M) < CHf”BP(p)

Theorem (Arcozzi, Rochberg and Sawyer, 2002)

The following are equivalent:

@ (4 is Carleson for By(p).

@ For every Whitney cube P,
2 acsn(p) H(Sh(Q))P p(Q) =P < Cpu(Sh(P)).

urne




Sufficient conditions on test functions.
[e]e]e] lelelele]

Carleson measures in the Besov space of analytic functions.

Consider p(z) = dist(z, dD)?>~P. For analytic functions in D,

171 = 1FOP + [ 1F@1P = |22 e) s ~ oy

We say p is Carleson for B,(p) if ||fHLp(M) < CHf”BP(p)

Theorem (Arcozzi, Rochberg and Sawyer, 2002)

The following are equivalent:

@ (4 is Carleson for By(p).
@ For every Whitney cube P,

3 acsn(p) 1(SH(Q))” p(Q)' 7" < Cu(Sh(P)).
e For every h € IP(W),

aew (Sr.acsniry 1(P))” #(Q) < € g h(Q)A(Q).

urne
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The Carleson measures.

Definition

We say that 1 is p-Carleson for Q C R? iff
for every Whitney cube P,

> (Sh(Q)7 Q)5 < Cp(Sh(P)).

QCSh(P)

-
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The Carleson measures.

Definition

We say that 1 is p-Carleson for Q C R? iff
for every Whitney cube P,

3 u(Sh(Q))P' Q)T < Cpu(Sh(P)).

QCSh(P)

-

For every h € IP(W), ;
aew (Zp acsue) hP)) #(Q) < €30 H(QPUQ)T.
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Assume that n =1 and
p(x) = |V Txa(x)|Pdx
is p-Carleson for Q. We want
D 1BlPIVT(x@)llfe(g) < CllFlfyiny
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But, by Poincaré inequalities
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Proof of Carleson = boundedness (p < d).

Assume that n =1 and
1(x) = |V Txa(x)[Pdx

is p-Carleson for Q. We want

> 1BelPIVT(x)llfe (@) < CllFlin
Qew

But, by Poincaré inequalities and the p-Carleson measure properties,

1%
Yo lhalPu(@< Y [ S 1e - favel | 1(Q)
Qew QEW \ P: QCSh(P)
P
<SS IVFluepP)E | n(Q)

QEW \ P: QCSh(P)
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|dea of the proof of the Key Lemma.

The following are equivalent:
o [VTH|Lnq) < Clifllwieig)

° ZaewlﬁoV’HVT(XQ)HLp(Q < ClIflWree)

Enough to prove

Z ||VT f - fz’:Q)HLP (Q) ~ < ||Vf||!ZP(Q)

Break the local part and non-local part.

Local part is a good function, in W1P(RY).

For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Holder.
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What about n > 27

@ We need to iterate the Poincaré inequality to get derivatives of
higher order. Thus, we approximate f in 3Q by polynomials PgE,lf
instead of the mean value f3¢. The conditions for those polynomials

are
/Dapgglfz/ D*f  forany |a| < n.
3Q 3Q
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What about n > 27

@ We need to iterate the Poincaré inequality to get derivatives of
higher order. Thus, we approximate f in 3Q by polynomials Pg(_;,lf
instead of the mean value f3¢. The conditions for those polynomials

are
/Dapgglfz/ D*f  forany |a| < n.
3Q 3Q

@ When we use the Harnack chain we don’'t compare numbers but
functions evaluated at a certain distance. Thus new polynomially
growing terms will appear.
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A duality argument (n =1).

Hypothesis: T bounded in W'P(Q). Then the averaging function

Af(x) = xo(x) g,

Qew
by the Key Lemma, is also bounded A : WP(Q) — LP(u) for
1(x) = |V Txa(x)|Pdx.

(case p=2, d=2): by duality, A* : L2(u) — W12(Q) is also bounded.
Objective: for any P,

Y u(Sh(Q))* < Cu(Sh(P)).

QCSh(P)
For g = Xsn(p),

||A*g||f/v1:2(§z) S ||g||i2(u) = p(Sh(P))
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To get

Z 1(Sh(Q))* < ||~A*g‘|%/vl,2(g) + error terms
QCSh(P)
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The Neuman problem (n = 1).

To get

Z 1(Sh(Q))* < ||A*g\|le + error terms
QCSh(P)

we need to estimate [|.A"g||,y12(q) from below.
For f € W2(Q)

<A*(g),f>:/ﬂg«4(f)du:/Q§fdx

But using Hilbert structure of W12(Q), A*(g) is represented by a
function h € W2(Q) with

(A*(g) /Vh Vf=-— /Ahfdx+ o, hfdo.
o0
Thus, h is the solution of the Neuman problem

“Ah=F inQ,
d,h=0  indQ.
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Ingredients for the proof.

Theorem (P., Tolsa 2013)

For Q C C smooth enough, if the vector normal to OS2 is in the Besov
1
space By ,” (0R2) then B(xq) € W™P(Q), with

||vnBXQ||IZP(Q) S ||N||I;g;1/p(89) + Clength(89)~

Ingredients:
o Generalized Peter Jones' betas (using polynomials instead of lines).

@ Equivalence between Besov B; , norm and a sum of betas
(Dorronsoro).

@ Beurling of characteristic functions of circles, half-planes,
polynomials, ...
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@ For p > d we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.
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of the normal vector to the boundary of the domain
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Conclusions.

e,

For p > d we have a T(P) theorem

for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

For p < d it is not enough to have the images of polynomials
bounded, but it suffices that they are Carleson measures. When
n =1, this yields a complete characterization.

In the complex plane, the Besov regularity Bp,"/”
of the normal vector to the boundary of the domain
gives us a bound of B(P) in W™P (and 0 < 5 < 1).

Next steps:
o Proving analogous results for any s € R...
o Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
o Sharpness of all those results.
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The end.

Moltes gracies!!




Defining some generalized betas of David-Semmes.

A measure of the flatness of a set I':

NN




Defining some generalized betas of David-Semmes.

A measure of the flatness of a set I':

Definition (P. Jones)
2 w(V)
Br(Q) =

infy 2 Q)

\
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Defining some generalized betas of David-Semmes.

The graph of a function y = A(x):
Consider | C R, and define

Definition

Boo(l, A) = infpepr

QNI




Defining some generalized betas of David-Semmes.

The graph of a function y = A(x):
Consider | C R, and define

Definition

_ 1 |la-r
Bp(l,A) = infpepr WH 0] Hp




Defining some generalized betas of David-Semmes.

The graph of a function y = A(x):
Consider | C R, and define

Definition

B (1, A) = infpepn z(/)HA PH

If there is no risk of confusion,
we will write just B, (/).




Geometric condition in terms of betas: The Besov space.

Definition

For0<s<oo, 1<p<oo feB;, (R)if

Al (0 |7
||f||B;,,=||f|Lp+<//’ o
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Geometric condition in terms of betas: The Besov space.

For0<s<oo, 1<p<oo feB;, (R)if

AP (x)
||f||B;,,=||f|Lp+<//’ o
’ R JR

Theorem (Dorronsoro)

P /p
dm(h)
T dm(x)) < 0.

Let f : R — R be a function in the Besov space B, ,. Then, for any

n> s,
1718, =91l + 3 (72 ) et

1eD
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Main idea: projecting cubes to the boundary.
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/ |0" Bxa(z)|Pdm(z)
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Main idea: projecting cubes to the boundary.
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Main idea: projecting cubes to the boundary.

Q Q

[ Bxatapan(e)
AN

<X [ 1oBxata)pam(e)
Jo

Qew

W(Qk
Q
& NS
man [tf:ﬁii;h[[[:;ﬁl(lrhiiz,,:,:.
#ﬁ‘i

e,
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Main idea: projecting cubes to the boundary.

Xo =Xo, + (xe = Xo)  ®(Q)

.................
........



Main idea: projecting cubes to the boundary.

Xa = X0, + (xo — xa)

°(Q)
OBxo,(2) =0

Uiersat Ao
"deBarcelona




Main idea: projecting cubes to the boundary.

oa0, eemsge

mammmmanaEnnn:
HHHH T e

Xo=Xog+ (Xa— X)) ®(Q)

9Bxo,(2) =

[0B(xa — xa,)(2)] < / dm(w)

Joag, |z —wf?

(o)

/ |0Bxa(2)|Pdm(z)
Qna

< Z |0l)’\n )[Pdm(z)

Qew

<> m(@Q)19Bxall~ g

Qew
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