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Measuring smoothness and integrability in Rd

1
p

p “ 1p “ 8

L4

Lebesgue spaces Ñ integrability.

Differentiablility classes Ñ smoothness.
Sobolev spaces Ñ both together.
Hölder continuous spaces Ñ fill gaps.
Interpolation to generalize.

}f }Lp “
`´
|f |p

˘1{p
,

}f }L8 “ ess sup|f |

}f }C s “ }f }L8 ` ¨ ¨ ¨ ` }∇s f }L8

}f }W s,p “ }f }Lp ` ¨ ¨ ¨ ` }∇s f }Lp

}f }C s “

}f }L8 ` ¨ ¨ ¨ ` sup |∇
tsuf pxq´∇tsuf pyq|
|x´y |tsu

}f }W s,p , }f }Bs
p,q
, }f }F s

p,q

By means of Sobolev embeddings, we have
either continuity or extra integrability.
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Hölder continuous spaces Ñ fill gaps.

Interpolation to generalize.

}f }Lp “
`´
|f |p

˘1{p
,

}f }L8 “ ess sup|f |

}f }C s “ }f }L8 ` ¨ ¨ ¨ ` }∇s f }L8

}f }W s,p “ }f }Lp ` ¨ ¨ ¨ ` }∇s f }Lp

}f }C s “

}f }L8 ` ¨ ¨ ¨ ` sup |∇
tsuf pxq´∇tsuf pyq|
|x´y |tsu

}f }W s,p , }f }Bs
p,q
, }f }F s

p,q

By means of Sobolev embeddings, we have
either continuity or extra integrability.



Introduction T(P) theorems The Beurling transform on planar domains Planar quasiconformal mappings Carleson measures The end

Measuring smoothness and integrability in Rd

1
p

s

0

2

4

W 3,4

C 1.75

L4

W 3{2,8{5

W 1,4{3

Lebesgue spaces Ñ integrability.
Differentiablility classes Ñ smoothness.
Sobolev spaces Ñ both together.
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Singular integral operators

The Beurling transform of a function f P LppCq is:

Bf pzq “ 1

´π
lim
εÑ0

ˆ
|w´z|ąε

f pwq

pz ´ wq2
dmpwq.

It is essential to quasiconformal mappings because

BpB̄f q “ Bf @f PW 1,p.

Recall that B : LppCq Ñ LppCq is bounded for 1 ă p ă 8.
Also B : W s,ppCq ÑW s,ppCq is bounded for 1 ă p ă 8 and s ą 0.

In general a convolution CZO of order s is defined as

Tf pxq “

ˆ
K px ´ yqf pyq dmpyq

if x R supppf q Ă Rd , with some cancellation property and some size and
smoothness conditions, say

|∇jK pxq| ď |x |´d´j for j ď s
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The problem we face

ÝÑ
T

If T : LppRdq Ñ LppRdq,

TΩ :“ χΩTχΩ : LppΩq Ñ LppΩq.
But for g PW 1,ppΩq maybe not ∇TΩpgq P L

ppΩq.
For Ω a rectangle, B χΩ is in every LppΩq but not in W 1,ppΩq for p ě 2.

We seek for answers in terms of test functions and in terms
of the geometry of the boundary.
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Lipschitz domains vs Uniform domains

Lipschitz domain
Local parameterizations of BΩ.
Whitney covering with straight
paths around BΩ.
Vertical shadow

Uniform domain
Cigars joining pairs of points
Whitney covering with ’cigar’
paths
Spherical shadow
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T(P) theorems
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Results

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a bdd C 1`ε domain Ω Ă Rd , a convolution CZO T
with homogeneous even kernel, 0 ă s ď 1 and sp ą d.
TΩp1q PW

s,ppΩq ðñ TΩ is bounded in W s,ppΩq.

Theorem (P., Tolsa, 2015)

Given a bdd uniform domain Ω Ă Rd , s P N, p ą d and an admissible
convolution CZO T. Then,
TΩpPq PW

s,ppΩq @P P Ps´1 ðñ TΩ is bounded in W s,ppΩq.

Theorem (P., Saksman, 2015)

Given a bdd uniform domain Ω Ă Rd , 0 ă s ă 1 and sp ą d
and an admissible convolution CZO T. Then,
TΩp1q PW

s,ppΩq ðñ TΩ is bounded in W s,ppΩq.
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The key point: approximating by polynomials

A new approach for the case s “ 1:

Key Lemma

The following are equivalent:

}∇TΩf }
p
LppΩq ď C}f }pW 1,ppΩq.

ř

QPW |f3Q |
p}∇TΩ1}pLppQq ď C}f }pW 1,ppΩq.

Enough to prove
ÿ

Q

}∇TΩpf ´ f3QχΩq}
p
LppQq À }∇f }pLppΩq.

Idea: Break the local part and non-local part.
Local part is a good function, in W 1,ppRdq.
For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Hölder.

back
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Proof of the T(P) theorem (p ą d)

We want to see that TΩ is bounded
in W 1,ppΩq if T pχΩq PW

1,ppΩq.

ÿ

QPW
|f3Q |

p}∇TχΩ}
p
LppQq

ď }f }pL8}∇T pχΩq}
p
LppΩq

ď C}f }pL8 .

Since p ą d , by the Sobolev Embedding
Theorem

}f }L8 ď C}f }W 1,ppΩq.
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Further comments

The natural smoothness greater than one works analogously, but
with polynomials instead of means on cubes. The reasoning
becomes more subtle in this setting.

The fractional smoothness case with 0 ă s ă 1 works analogously,
but with much more work.

Some new results (Triebel-Lizorkin norms in terms of differences,
extension theorems for that situation, ...) arose to prove this
particular result.

These results have applications to PDE’s, in particular
quasiconformal mappings, as we will see.
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Conclusions

d “ 3

sp “ d

1
p

s

0

2

4

For p ą d we have a T pPq theorem
for any CZO of convolution type
in Ω Ă Rd if we have bounds
in the derivatives of its kernel.

For 0 ă s ă 1, sp ą d we have
a T p1q theorem for any CZO
in Rd as long as its kernel satisfies
an s-Hölder condition.

Expected further results:

Proving analogous results for s P R.

Other characterizations of W s,ppΩq
may lead to wider range of indices.
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The Beurling transform on planar domains
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Results

Theorem (P., 2015)

For Ω Ă C smooth enough, if the vector normal to the boundary of Ω

is in the Besov space B
s´ 1

p
p,p pBΩq with s P N, 1 ă p ă 8,

then BpχΩq PW
s,ppΩq, and

}∇sBpχΩq}
p
LppΩq À }N}

p

B
s´1{p
p,p pBΩq

.

V. Cruz and X. Tolsa proved the case 1
p ă s ď 1.

Tolsa proved a converse for s “ 1 and Ω flat enough.
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Ingredients for the proof

Theorem (P. 2015)

For Ω Ă C smooth enough, if the vector normal to the boundary of Ω

is in the Besov space B
s´ 1

p
p,p pBΩq with s P N, 1 ă p ă 8,

then BpχΩq PW
s,ppΩq, and

}∇sBpχΩq}
p
LppΩq À }N}

p

B
s´1{p
p,p pBΩq

.

Ingredients:

Generalized Peter Jones’ betas
(using polynomials instead of lines).

Equivalence between B
s´1{p
p,p norm

and a sum of betas (Dorronsoro).

Beurling of characteristic functions
of circles, half-planes, polynomials.
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Conclusions

Bσp,p

1
p

0

2

N P B
s´1{p
p,p

σ “ s ´ 1
p

W s,p

1
p

s

0

2

BχΩ PW
s,ppΩq

In the complex plane, the Besov regularity B
s´1{p
p,p

of the vector normal to the boundary of the domain
gives us a bound of BpχΩq in W s,ppΩq (s P N and 1

p ă s ă 1).

Combined with the previous results, when sp ą 2 and p ą 2
we get that BΩ is bounded in W s,ppΩq.
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Conclusions
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σ “ s ´ 1
p
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Expected further results:

Proving analogous results for any s P R`.
Studying higher dimensions.
Sharpness of all those results for s ‰ 1.
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Planar quasiconformal mappings
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The Beltrami equation

1
p

p “ 1p “ 8

µ

Let µ P L8c pCq with k :“ }µ}8 ă 1.

The Beltrami equation

B̄f pzq “ µpzqBf pzq

has a unique solution f PW 1,2
loc such

that f pzq “ z `Op1{zq as z Ñ8.

Consider
h:“ µ` µBpµq ` µBpµBpµqq ` ¨ ¨ ¨
“pI ´ µBq´1pµq,
since }µ ¨ B}p2,2q ď k}B}p2,2q “ k ă 1.

Then, h P L2 and f “ 1
πz ˚ h ` z .

This remains true if }B}pp,pq ă 1{k.
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Results without boundaries

W s,p
loc

1
p

s

0

2

µ
k

k`1
1

k`1

Let µ P L8c pCq with k :“ }µ}8 ă 1.

h P Lp for k
k`1 ă

1
p [A92, AIS01].

µ P VMOpĈq ùñ h P Lp for
1 ă p ă 8. [I]

µ P C n`ε
loc ùñ h P C n`ε

loc [AIM].

µ P As
p,q ùñ h P As

p,q for sp ą 2
[CMO].

µ PW 1,2 ùñ h PW 1,2´ε for
p “ 2 [CFMOZ].

µ PW 1,p ùñ h PW 1,q for p ă 2,
1
q ą

1
p `

k
k`1 [CFMOZ].
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Results with boundaries
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N P B
s´1{p
p,p

σ “ s ´ 1
p

W s,ppΩq

1
p

s

0

2

We study supercritical case.

Theorem

Let Ω Ă C be a bdd domain, with normal vector N P B
s´1{p
p,p pBΩq, s P N

and p ą 2.

Let µ PW s,ppΩqX L8 with k :“ }µ}8 ă 1 with suppµ Ă Ω.
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Theorem

Let Ω Ă C be a bdd domain, with normal vector N P B
s´1{p
p,p pBΩq, s P N

and p ą 2. Let µ PW s,ppΩq X L8 with k :“ }µ}8 ă 1 with suppµ Ă Ω.
Then IΩ ´ µBΩ is invertible in W s,ppΩq.
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We study supercritical case.

Theorem

Let Ω Ă C be a bdd domain, with normal vector N P B
s´1{p
p,p pBΩq, s P N

and p ą 2. Let µ PW s,ppΩq X L8 with k :“ }µ}8 ă 1 with suppµ Ă Ω.
Then the principal solution f PW s`1,ppΩq.
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Tools

Objective: Prove that IΩ ´ µBΩ is invertible.

Fredholm Theory: Show that for m big IΩ ´ pµBΩq
m “ A` K

with A invertible and K compact in W s,ppΩq.

Compactness of the commutator: rµ,BΩs “ µBΩp¨q ´ BΩpµ¨q.

Approximate by smooth Beltrami coefficients (easy).
Show that if µ is smooth, then the commutator is smoothing and,
therefore, compact (harder, using T pPq techniques).

Compactness of the ‘double reflection’ χΩBpχΩcBmpχΩ¨qq.

Approximate by smoothly truncated double reflections (very hard,
T pPq, complex and harmonic analysis techniques).
Show that they are smoothing and, therefore, compact (easy).
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Conclusions

Bσp,p

1
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0

2

N P B
s´1{p
p,p

σ “ s ´ 1
p

W s,ppΩq

1
p

s

0

2

f
µ h

In the complex plane, if N P B
s´1{p
p,p pBΩq and p ą 2,

then µ PW s,ppΩq ùñ f PW s`1,ppΩq.

Expected further results:

Proving analogous results for any s P R`. 0 ă s ă 1, sp ą 2 seems
ready to be done.
Subcritical situation: is there any condition on BΩ which can lead to
analogous results?
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Carleson measures
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The Carleson measures

According to [Arcozzi, Rochberg, Sawyer],
i.e., Carleson measures for Besov space of
analytic functions Bppρq,

Definition

We say that ν is p-Carleson for Ω Ă Rd iff
for every Whitney cube P,

ÿ

QĂShpPq

νpShpQqqp
1

`pQq
p´d
p´1 ď CνpShpPqq.
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Results

Lipschitz domains, s P N.

Theorem (P., Tolsa, 2014)

Given a domain Ω Ă Rd and p ą d. If TΩpPq PW
s,ppΩq

for polynomials P P Ps´1pΩq, then TΩ is bounded in W s,ppΩq.

Theorem (P., Tolsa, 2014)

For any 1 ă p ď d, if |∇sTΩpPqpxq|
pdx is a p-Carleson measure in Ω

for every P P Ps´1pΩq, then TΩ is bounded in W s,ppΩq.
If s “ 1, the converse is true.
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Proof of Carleson ñ boundedness (p ď d)

Assume that s “ 1 and

dνpxq “ |∇TΩ1pxq|pdx

is p-Carleson for Ω.

We want
ÿ

QPW
}∇TΩf }

p
LppQq ď C}f }pW 1,ppΩq.

But,

by Poincaré inequalities and some p-Carleson measure properties,

ÿ

QPW
|f3Q |

pνpQq

ď
ÿ

QPW

¨

˝

ÿ

P: QĂShpPq

|f3P ´ f3N pPq|

˛

‚

p

νpQq

ď
ÿ

QPW

¨

˝

ÿ

P: QĂShpPq

}∇f }Lpp5Pq`pPq
1´ d

p

˛

‚

p

νpQq

ď C
ÿ

QPW
}∇f }pLpp5Qq ď C}f }pW 1,ppΩq
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by Poincaré inequalities and some p-Carleson measure properties,

ÿ

QPW
|f3Q |

pνpQq

ď
ÿ

QPW

¨

˝

ÿ

P: QĂShpPq

|f3P ´ f3N pPq|

˛

‚

p

νpQq

ď
ÿ

QPW

¨

˝

ÿ

P: QĂShpPq

}∇f }Lpp5Pq`pPq
1´ d

p

˛

‚

p

νpQq

ď C
ÿ

QPW
}∇f }pLpp5Qq ď C}f }pW 1,ppΩq



Introduction T(P) theorems The Beurling transform on planar domains Planar quasiconformal mappings Carleson measures The end

Proof of Carleson ñ boundedness (p ď d)

Assume that s “ 1 and

dνpxq “ |∇TΩ1pxq|pdx

is p-Carleson for Ω. We want
ÿ

QPW
|f3Q |

p}∇TΩ1}pLppQq ď C}f }pW 1,ppΩq.

But,
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The converse is true for s “ 1: a duality argument

Hypothesis: TΩ bounded in W 1,ppΩq. Then the averaging function

Af pxq :“
ÿ

QPW
χQpxq f3Q ,

by the Key Lemma, is also bounded A : W 1,ppΩq Ñ Lppνq for

dνpxq “ |∇TΩ1pxq|pdx .

Key Lemma

By duality, A˚ : Lp
1

pνq Ñ pW 1,ppΩqq˚ is also bounded.
(p “ d “ 2)

For g “ χShpPq,

ÿ

QĂShpPq

νpShpQqqp
1

`pQq
p´d
p´1 À

¨ ¨ ¨ ÀÀÀÀÀÀ }g}2
L2pνq “

νpShpPqq

W 1,2pΩq is Hilbert, there is A˚pgq PW 1,2pΩq.
A˚pgq solves a Neumann problem ∆h “ rg .
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Further comments

To avoid some cancellation issues, the Neumann problem is solved in
the half-space.

The necessity of the Carleson condition for W 1,p with p ‰ 2
is shown with the same scheme, but the lack of self-duality makes
the proof trickier.

A sufficient Carleson condition for Triebel-Lizorkin spaces F s
p,q with

0 ă s ă 1 and s ą d
p ´

d
q is also obtained in the thesis.
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Conclusions

d “ 3

sp “ d

1
p

s

0

2

4

For p ą d and s P N or 0 ă s ă 1,
sp ą d we have obtained a T pPq
theorem.

For p ď d it is not enough to have
the images of polynomials bounded,
but it suffices that they are Carleson
measures. When s “ 1, this yields a
complete characterization.

Expected further results:

Proving analogous results for any
s P R`.
Sharpness of all those results.
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The end

Moltes gràcies!!
Muchas gracias!!

Kiitos paljon!!


