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Lebesgue spaces — integrability.
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Sobolev spaces — both together.
Holder continuous spaces — fill gaps.
Interpolation to generalize.

o Il = (J1F1P)",

[f], = esssup|f]
o [fllcs = lIflpe + -+ [Vl
o [fllwse =l + -+ 1VF]L
° |ffc: =

[l + - - + sup L=V 0]

[x—yl[{s}

o [Flwss: Flsy - IF1r



Introduction
[ Jele]e]

Measuring smoothness and integrability in R?

s A
d=3
4 sp =
Supercritical
3
WW/5t,PL s
2 ;
S1— 5 .
O WP
v Subcrit€al
0 |

LP Lp;‘ P 1
p

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.
Interpolation to generalize.

o Il = (J1F1P)",

[f], = esssup|f]
o [fllcs = lIflpe + -+ [Vl
o [fllwse =l + -+ 1VF]L
o |flc =

|fll e + -+ -+ sup

[Vl F )=Vl £ ()]
[x—yl[{s}

o [Flwss: Flsy - IF1r

By means of Sobolev embeddings, we have
either continuity or extra integrability.
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Singular integral operators

The Beurling transform of a function f € LP(C) is:

—T e—0

Bf(z) — - Iim/ ) m(w).
lw—z|>e (Z - W)
It is essential to quasiconformal mappings because
B(of) = of Vfe Whe.

Recall that B : LP(C) — LP(C) is bounded for 1 < p < 0.
Also B : W*=P(C) — W*=P(C) is bounded for 1 < p < o and s > 0.

In general a convolution CZO of order s is defined as
7700 = [ Kx=y)f(y) dm(y)

if x ¢ supp(f) = RY, with some cancellation property and some size and
smoothness conditions, say

IVIK (x)] < |x|79 for j<s
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The problem we face

If T:LP(RY) — LP(RY), Tq :=xaTxa:LP(Q) — LP(Q).
But for g € WP(Q2) maybe not VTq(g) € LP(Q).

When is T : WP(Q) — W*P(Q) bounded?

We seek for answers in terms of test functions and in terms
of the geometry of the boundary.
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Lipschitz domains vs Uniform domains

Lipschitz domain Uniform domain

Local parameterizations of 0. Cigars joining pairs of points
Whitney covering with straight Whitney covering with 'cigar’
paths around 052. paths

Vertical shadow Spherical shadow
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Theorem (P., Tolsa, 2015)

Given a bdd uniform domain Q c RY, se N, p > d and an admissible
convolution CZO T. Then,
Ta(P) e WSP(Q) VP e PS~! —= Tq is bounded in WSP(Q).

Theorem (P., Saksman, 2015)

Given a bdd uniform domain Q c R, 0 <s< 1 andsp > d
and an admissible convolution CZO T. Then,
Ta(l) e WP(Q) <= Tq is bounded in W*P(Q).
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The key point: approximating by polynomials

A new approach for the case s = 1:

The following are equivalent:
O HVTQf”ILJP(Q) < C[fe P(Q)"
o Toow 5P IV Tallfh o) < ClfIney-

Enough to prove

Z HVTQ(f - )%QXQ)H[L)/J(Q) < vaH[ZP Q
Q

Idea: Break the local part and non-local part.

Local part is a good function, in W1P(R9).

For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Holder.
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Proof of the T(P) theorem (p > d)

We want to see that Tq is bounded
in WhP(Q) if T(xq) e WHP(Q).

2 BelPIV Txalfrg)
Qew

< |FIZ- IV T (xa)lZp(q)

< ClfI7-

Since p > d, by the Sobolev Embedding
Theorem

[l < Clflwrnoy-
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Further comments

@ The natural smoothness greater than one works analogously, but
with polynomials instead of means on cubes. The reasoning
becomes more subtle in this setting.

@ The fractional smoothness case with 0 < s < 1 works analogously,
but with much more work.

@ Some new results (Triebel-Lizorkin norms in terms of differences,
extension theorems for that situation, ...) arose to prove this
particular result.

@ These results have applications to PDE's, in particular
quasiconformal mappings, as we will see.
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Conclusions

o For p > d we have a T(P) theorem

s for any CZO of convolution type
in Q < RY if we have bounds
4 . . .
_ in the derivatives of its kernel.
o For0 <s <1, sp>d we have
sp=d a T(1) theorem for any CZO
2 in R? as long as its kernel satisfies
an s-Holder condition.
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Conclusions

A o For p > d we have a T(P) theorem
s for any CZO of convolution type
in Q c R? if we have bounds
—_— in the derivatives of its kernel.

@ For 0 <s <1, sp> d we have

sp=d a T(1) theorem for any CZO

2 in R? as long as its kernel satisfies

an s-Holder condition.
| Expected further results:
0o @ Proving analogous results for s € R.
= @ Other characterizations of W*P(Q)
may lead to wider range of indices.
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Results

Theorem (P., 2015)
For Q = C smooth enough, if the vector normal to the boundary of Q

21
is in the Besov space B;p" (0Q) withseN, 1 < p < o,
then B(xq) € W*P(Q), and

S} P < P
VB0 ) < IV vy

V. Cruz and X. Tolsa proved the case * < s < 1.
Tolsa proved a converse for s = 1 and 2 flat enough.
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Ingredients for the proof

Theorem (P. 2015)
For QQ — C smooth enough, if the vector normal to the boundary of Q)

1
is in the Besov space By, (0Q) withse N, 1 < p < o,
then B(xq) € W=P(2), and

s P < P
VB ) < IV

Ingredients:
@ Generalized Peter Jones’ betas
(using polynomials instead of lines).
o Equivalence between B " norm
and a sum of betas (Dorronsoro).

@ Beurling of characteristic functions
of circles, half-planes, polynomials.
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@ In the complex plane, the Besov regularity B;;,l/p
of the vector normal to the boundary of the domain
gives us a bound of B(xq) in W=P(Q2) (s € N and % <s<1).
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Conclusions

oc=s<1 Be s Ws:P
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@ In the complex plane, the Besov regularity B;;,l/p
of the vector normal to the boundary of the domain
gives us a bound of B(xq) in W=P(Q2) (s € N and % <s<1).

@ Combined with the previous results, when sp > 2 and p > 2
we get that Bgq is bounded in W*P(Q).
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@ Expected further results:
e Proving analogous results for any s € R.
e Studying higher dimensions.
o Sharpness of all those results for s # 1.
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Let e LZ(C) with k := |pu],, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider

hi=p+ pB(p) + pB(pB(u)) + - -
=( — uB)~*(p),

since [pu- Bl ) < k[Blp0) = k <1.
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The Beltrami equation

T =

Let e LZ(C) with k := |pu],, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider

hi=p+ pB(p) + pB(pB(u)) + - -
=( = pB) Y (n),

since - Bl 50y < kBl 22y = k < 1.

Then, he L? and f:i*h—l—z.
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[ Jelelele}

The Beltrami equation

T =

Let e LZ(C) with k := |pu],, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

has a unique solution f € W,i’cz such
that f(z) =z+ O(1/z) as z — .

Consider

hi=p+ pB(p) + pB(pB(u)) + - -
=( — pB) Y (n),

since - Bl 50y < kBl 22y = k < 1.

Then, he L2 and f = i*h—i—z.
This remains true if | B, ,) < 1/k.
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x
T
-
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and p > 2.
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Let Q « C be a bdd domain, with normal vector N € B;;,l/p(é‘ﬂ), seN
and p > 2. Let e WP (Q) n L* with k := |p|., <1 with suppu < Q.
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We study supercritical case.

Let Q < C be a bdd domain, with normal vector N € B;;,l/p(é‘ﬂ), seN
and p> 2. Let pe W9P(Q) n L* with k := ||u| , < 1 with suppu < Q.
Then lg — puBq is invertible in W*P(Q).
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We study supercritical case.

Let Q < C be a bdd domain, with normal vector N € B;;,l/p(é‘ﬂ), seN
and p> 2. Let pe W9P(Q) n L* with k := ||u|, <1 with suppp < Q.
Then the principal solution f € W5+1:P(Q).
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@ Objective: Prove that log — uBBq is invertible.

@ Fredholm Theory: Show that for m big log — (uBq)™ = A+ K
with A invertible and K compact in W*P(Q).

o Compactness of the commutator: [u, Ba] = uBa(-) — Ba(u).

o Approximate by smooth Beltrami coefficients (easy).
e Show that if p is smooth, then the commutator is smoothing and,
therefore, compact (harder, using T (P) techniques).

o Compactness of the ‘double reflection’ xaB(xa-B™(xq"))-

o Approximate by smoothly truncated double reflections (very hard,
T(P), complex and harmonic analysis techniques).
e Show that they are smoothing and, therefore, compact (easy).
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@ In the complex plane, if N e B;;,l/p(aﬂ) and p > 2,
then e WSP(Q) = fe WsTLP(Q).
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@ In the complex plane, if N € B;;,l/p(aﬂ) and p > 2,

then pe W*P(Q) = fe WS+17”(Q).
o Expected further results:
e Proving analogous results for any se Ry. 0 <s < 1, sp > 2 seems
ready to be done.

o Subcritical situation: is there any condition on dQ which can lead to
analogous results?
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According to [Arcozzi, Rochberg, Sawyer],
i.e., Carleson measures for Besov space of
analytic functions B, (p),

Definition

We say that v is p-Carleson for Q — R iff
for every Whitney cube P,

3 L(Sh(Q)PU(Q)FT < Cu(Sh(P)).

QcSh(P)
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Results

Lipschitz domains, s € N.

Theorem (P., Tolsa, 2014)

Given a domain Q = RY and p > d. If To(P) e W*P(Q)
for polynomials P € P*~1(Q), then Tq is bounded in W*P(Q).
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Results

Lipschitz domains, s € N.

Theorem (P., Tolsa, 2014)

Given a domain Q = RY and p > d. If To(P) e W*P(Q)
for polynomials P € P*~1(Q), then Tq is bounded in W*P(Q).

Theorem (P., Tolsa, 2014)

Forany 1 < p < d, if |V°*Tq(P)(x)|Pdx is a p-Carleson measure in
for every P € P*~1(Q), then Tq is bounded in WP (Q).
If s = 1, the converse is true.
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Proof of Carleson = boundedness (p < d)

Assume that s = 1 and
dv(x) = |V Tqal(x)|Pdx
is p-Carleson for Q. We want

3 160PIV Talll g < Clfloin
QeWw

But, by Poincaré inequalities and some p-Carleson measure properties,
P
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Proof of Carleson = boundedness (p < d)

Assume that s = 1 and
dv(x) = |V Tqal(x)|Pdx
is p-Carleson for Q. We want

3 160PIV Talll g < Clfloin
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But, by Poincaré inequalities and some p-Carleson measure properties,
P

D IBelPr(Q) < ) D e —fae | v(Q)

Qew QeW \ P: QcSh(P)
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Hypothesis: Tq bounded in W1P(2). Then the averaging function

Af(x) = Y xe(x) fia;

Qew
by the Key Lemma, is also bounded A : WP(Q) — LP(v) for
dv(x) = |V Tql(x)|Pdx.
By duality, A* : LP' (1) — (WLP(Q))* is also bounded.
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The converse is true for s = 1: a duality argument

Hypothesis: Tq bounded in W1P(2). Then the averaging function

Af(x) = Y xe(x) fia;
Qew

by the Key Lemma, is also bounded A : WP(Q) — LP(v) for
dv(x) = |V Tql(x)|Pdx.

By duality, A* : LP' (1) — (WLP(Q))* is also bounded.

(p=d =2) For g = Xsn(p),

S USh(Q)) < - < [A*E gy < 813, = v(Sh(P))
QcSh(P)

W*2(Q) is Hilbert, there is A*(g) € W12(Q).
A*(g) solves a Neumann problem Ah = g.
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Further comments

@ To avoid some cancellation issues, the Neumann problem is solved in
the half-space.

@ The necessity of the Carleson condition for WP with p # 2
is shown with the same scheme, but the lack of self-duality makes
the proof trickier.

e A sufficient Carleson condition for Triebel-Lizorkin spaces f7 , with

0O<s<1lands> % — % is also obtained in the thesis.
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Conclusions

@ Forp>dandseNor0<s<1,

S sp > d we have obtained a T(P)
4 theorem.
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sp > d we have obtained a T(P)
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sp=d but it suffices that they are Carleson
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@ Forp>dandseNor0<s<1,

sp > d we have obtained a T(P)
theorem.

@ For p < d it is not enough to have
the images of polynomials bounded,

sp=d but it suffices that they are Carleson
measures. When s = 1, this yields a

complete characterization.

o Expected further results:
e Proving analogous results for any
se Ry
o Sharpness of all those results.

oI



The end

Moltes gracies!!
Muchas gracias!!
Kiitos paljon!!



