A T(1) theorem for Sobolev spaces on domains
PHD thesis in progress, directed by Xavier Tolsa

Marti Prats

Universitat Autonoma de Barcelona

September 19, 2013




Introduction

Introduction




Introduction
®00000

The Beurling transform
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The Beurling transform

The Beurling transform of a function f € LP(C) is:

Bf(z) = ¢o lim / f(iw)zdm(z).

€0 lw—z|>e (Z - W)

It is essential to quasiconformal mappings because

B(of) = of Vf € WhP,

Recall that B : LP(C) — LP(C) is bounded for 1 < p < cc.
Also B : W*P(C) — W*P(C) is bounded for 1 < p < oo and s > 0.

In particular, if z ¢ supp(f) then Bf is analytic in an e-neighborhood of
z and
f(w)

mdm(z).

9"Bf (2) = c» /

lw—z|>e
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The problem we face

Let Q2 be a Lipschitz domain.

When is B : W*P(Q) — W=P(Q) bounded?
We want an answer in terms of the geometry of the boundary.
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Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s <1,
2 < p < oo with sp > 2, and 992 smooth enough,

B: W*P(Q) — W*>P(Q) is bounded

if and only if
Bxq € W*P(Q).
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Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s <1,
2 < p < oo with sp > 2, and 992 smooth enough,

B: W*P(Q) — W*>P(Q) is bounded

if and only if
Bxq € W*P(Q).

One can deduce regularity of a quasiregular mapping
in terms of the regularity of its Beltrami coefficient.
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The geometric answer will be given in terms of Besov spaces B .
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Introducing the Besov spaces B; ,

The geometric answer will be given in terms of Besov spaces B .
B; , form a family closely related to W*P. They coincide for p = 2.
For p < 2, B;)p C W*P. Otherwise W*P C B;p.

Definition

For0<s<oo, 1< p<oo, feBs,(R)if

A[s]+1
Il = (/ / |

Furthermore, f € B; ,(R) if

am(n) o\
T dm(x) < 0.

1Flla; = Il + IFllg; , < co.

We call them homogeneous and non-homogeneous Besov spaces
respectively.
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p < o0,
and Q a Lipschitz domain,

If the normal vector N belongs to B;,;l/p(aﬂ), then B(xq) € WP(Q)
with

HVB(XQ)”LP < C”N”Bl 1/P(89)
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is in the Besov space B;;,l/ P(0Q), then the Beurling transform
is bounded in W*P(Q).
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p < o0,
and Q a Lipschitz domain,

If the normal vector N belongs to Bp,"/P(99), then B(xq) € WLP(Q)
with

IVB(xe)lls@) < cllNllg1-1/p(ag)-

They proved also an analogous result for smoothness 0 < s < 1.
This implies

Let0<s<1,2< p< oo with sp> 2. If the normal vector

is in the Besov space B;;,l/ P(0Q), then the Beurling transform
is bounded in W*P(Q).

Tolsa proved a converse for 2 flat enough.
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Main results

T(P) Theorem

Let2 < p<ooandl<n<oo. Let Q be a Lipschitz domain.
Then the Beurling transform is bounded in W"™P(Q)

if and only if for any polynomial of degree less than n
restricted to the domain, P = Pxq, B(P) € W™P(Q).
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Main results

T(P) Theorem

Let2 < p<ooandl<n<oo. Let Q be a Lipschitz domain.
Then the Beurling transform is bounded in W"™P(Q)

if and only if for any polynomial of degree less than n
restricted to the domain, P = Pxq, B(P) € W™P(Q).

This theorem is valid for any Calderon-Zygmund convolution operator
with enough smoothness and for any space RY.

Theorem (Geometric condition on the boundary)

Let Q2 be smooth enough. Then we can write

10"BxallZugy < IV

P 1 2—n
o vnom T (02,
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Local charts

@ We have a Lipschitz domain.

@ In particular, at every boundary point
we can center a cube
with fixed side-length R
inducing a parametrization C%!.

o We make a covering of the boundary
by N of such cubes Qy
with some controlled overlapping
and find a partition of unity {¢;}}\,.
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n ~ N n n
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@ Away from 9 we have good bounds:
IV'B(fyi)(2)| S moez [, |F(w)]dw
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Local charts

@ We have a Lipschitz domain.

@ In particular, at every boundary point
we can center a cube
with fixed side-length R
inducing a parametrization C%!.

o We make a covering of the boundary
by N of such cubes Qy
with some controlled overlapping
and find a partition of unity {¢;}}\,.

° HB’CHf/vn,p(Q) ~ HB’CHIZP(Q) + HV"BfHFL)p(Q)'
n ~ N n n
° ||V Bf”fp(g) ~ Zk:o IV B(ﬁ/’k)H[Zp(gk) +IV B(fwk)H[L)P(Q\Qk)
@ Away from 9 we have good bounds:
IV"B(fi)(2)] Sz So, IF(W)ldw

@ The restriction to the inner region is always bounded:
fipg € W™P(C).
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Local charts: Whitney decomposition

W(gk)'"""gk 0
\

We perform an oriented Whitney covering W such that
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We perform an oriented Whitney covering W such that
o dist(Q, 00N Q) = £(Q) for every Q € W.
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Local charts: Whitney decomposition

W) Q

We perform an oriented Whitney covering W such that
o dist(Q, 00N Q) = £(Q) for every Q € W.

@ The family {5Q} ey has finite superposition.
o ...
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We will use the Poincaré inequality, that is, given f € W1P(Q),
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We will use the Poincaré inequality, that is, given f € W1P(Q),
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Equivalently, for any Sobolev function f with 0 mean on Q,
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If we want to apply recursively the Poincaré inequality we need Df to
have mean 0 in 3Q for any partial derivative D.
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A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given f € WLP(Q),
1<p<oo,

- me“LP(Q) S é(Q)HVfHLP(Q)'
Equivalently, for any Sobolev function f with 0 mean on Q,

1Flluoay S €QIVFlloay-

If we want to apply recursively the Poincaré inequality we need Df to
have mean 0 in 3Q for any partial derivative D.

Definition

Given f € W™P(Q) and a cube Q, we call P f to the polynomial of
degree smaller than n restricted to Q such that for any multiindex § with

18] <,
][ Dﬁpgf:][ DPf.
3Q 3Q
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Properties of approximating polynomials

PL. ||f - pngLp(w) SUQ) IV Il o3y

P2. Given two neighbor Whitney cubes @; and @y,
Hp,él f— p2’2f“L""(3Q1I’T3Qz) S" E(Ql)n77 ||v f”’-" (3QLU3@y)"

P5. We can bound the coefficients of the polynomial
Pof(w) = Z|7|<nmo,7( w —xq)":
‘mQ7’Y| J |'y| ||v f||Lac Q)J |’Y|
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Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
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The proof: BP € W"P(Q) = HBfHWnp ||fHWnp

Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
Given a cube @, we can write, using Newton's binomial

Pof( w) Y mon(w —xq)

lvI<n
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The proof: BP € W"P(Q) = HBfHWnp ||fHWnp

Assume that, we have a bound for the polynomials. Fix a point xg € Q
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The proof: BP € W"P(Q) = HBfHWnp ||fHWnp

Assume that, we have a bound for the polynomials. Fix a point xg € Q
and call Py(z) = (z — x0) xa(2).
Given a cube @, we can write, using Newton's binomial

Pof( w) Y mon(w —xq)
lvl<n
v _
= Xxa(w meZ(www%ﬂWA
|yv|<n (0,0)<A<~v
SO

D= Y moy X (})0e- ) 0tER)E)

[v|<n (0,0)<A<y
where, by P5,

n—1
M0 S 3 [V, s QY.

=l
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The Sobolev Embedding Theorem appears

Thus

1D B Taoy S DIV FllEw Do 11D BPAI g M (90710,
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The Sobolev Embedding Theorem appears

Thus
LA HRED Dl A DL AR G
j<n (7<)
0<A<y

Adding with respect to Q € W, by the Sobolev Embedding Theorem
(HvaHLOO(QﬁQ) < CHvaHWLP(QﬁQ) when p > 2), we get

> 10BN Ty < DIV Flhniany 2o 1BPAGy-sq)
Qew j<n 0<A<y

S Hf”pww(gm)'
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Key Lemma: sticking to the essential

Lemma
Let Q be a Lipschitz domain, @ a window, 1 € COO(IOO Q) with
Hij/JHLoo hS % for j > 0. Then, for any |a| = n and f = - f with
f e WP(Q), TFAE:

O HDan||IZP(Q) S Il »(QNQ)"

°© Yoew [D*BPGf HLP @ 1100y
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Key Lemma: sticking to the essential

Lemma

Let Q be a Lipschitz domain, @ a window, 1 € C°°(100 Q) with
Hij/JHLoo hS % for j > 0. Then, for any |a| = n and f = - f with
f e WP(Q), TFAE:

O HDan||IZP(Q) S Il »(QNQ)"

°© Yoew [D*BPGf HLP @ 1100y

Idea of the proof: separate local and non-local parts of the error term,

DBf(2) -~ D"B(PYF)(2)
= D*B(xaq(f — P31)(2) + D*B((1 — x20)(F ~ PN)(2).
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Defining some generalized betas of David-Semmes

at

A measure of the flatness of a set I':

Definition (P. Jones)
A T
Br(Q) = infy 23

“Q)
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

Boo(la A) = infpepr

ONII
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

. A—P
Bo(1, A) = infpep ﬁfHWHp
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider | C R, and define

Definition

B (1, A) = infpepn e(/)HA PH

If there is no risk of confusion,
we will write just B, (/).
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Relation between (3, and Bj

Theorem (Dorronsoro)

Let f : R — R be a function in the homogeneous Besov space B;p.
Then, for any n > [s],

I, =5 (72) .

1eD
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Local charts: Whitney decomposition

Ok Q

z® / |0" Bxa(z)[Pdm(z)
N0
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Local charts: Whitney decomposition

W(Qk) (o) Q

. / 10" Bxa(2)Pdm(2)
QNN

< Z \()”on )|Pdm(z)
{ I Qew:
T




Local charts: Whitney decomposition

A geometric condition for the Beurling transform
000®0000000

W(Qy)

.

Ok Q

|10 Buaaan()

QNN

< / 1" Ba(2)Pdm(2)
Qenw’@

< Y m(@Q) 19" Bxall)~q,
Qew

2(Q)
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Local charts: Bounds for the first derivative

A geometric condition for the Beurling transform

Xa = Xa, + (xa — xa,)

2Q)

[m]

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

=
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Local charts: Bounds for the first derivative

X0 = Xag + (Xa — Xag)

Q)
(?BXQC}(Z) =0

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

[m]

=

N
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Local charts: Bounds for the first derivative

W(Qx) Qi
Q
2® / |0Bxa(2)[Pdm(z)
QN
| <> / |0Bxal2)dm(2)
QAQ | ] ] Qew-
Q ] e Y
EEEmEmEa: i : T < )||0B -

Xa = Xa, + (xa — x00) (Q)

OBxoy(2) =0

. " :
080 - )@ < [ A
i JQAQ, |z — wf’
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Local charts: Second order derivative

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

[m] = = =




Local charts: Second order derivative

A geometric condition for the Beurling transform

00000e00000

W(Qx)

(o)

[ @Bt
QN

< Z /Q |0*Bxa(2)|Pdm(z)

Qew

| < Z m(Q) [|0*Bxal I,i\(Q)

QeW
QAQq "
y Xa = Xa, + (xa — x00) (Q) N
: Ny
4 ‘ Ca c
y a2 _ 2
|0°Bxq,(2)] = R <m

0B~ )2 < |
JOQAQ

dm(w)

|z —w|
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Local charts: Higher order derivatives

» First order derivative » Second order derivative » Higher order derivatives » Skip higher order derivatives

[m] = =
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Local charts: Higher order derivatives

e Qi
Q

= / |0"Bxa(z)[Pdm(z)

N0
= Z/ |0" Bxa(2)[Pdm(z)

} J Qenw’@

| < Y ml@ 10" Bxalljq)

QeW

Xa = Xa, + (xa — x00) (Q)

0" Bxog(2) <7

1" Blxa — xo0)(2)| < / dm(w)

aaq, |7 — w2
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Bounding the polynomial region

Qe

|, B pan(a
acn

e [ o)

< > m(Q19"Bxallng)
o

\

We can choose the window length R small enough so that

Proposition

If we denote by Q¢ the region with boundary a minimizing polynomial for
B(m)(®(Q)), we get

C
|8HBXQQ| S ﬁ
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Bounding the interstitial region

W(Qu) [+

/ 0" Ba(2)dm(z)
< Z/ 18" Bxa(2)|"dm(z)
! dawle

i b ; <> mlQ) 10" Bxalliig
QAQq i "\—\.\
X0 = xoy (o= x00) 9@ A
0" Bxay(2)] <7

B )l < [

Proposition

Choosing a minimizing polynomial for 3,y (®(Q)), we get

aaq, |z — w2 i «n"  Rn
®(Q)CICH(Qy)
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Holder inequalities do the rest

/ (0" Bxa(z)|Pdm(2)

Jora

I < Z/ 18" Bxalz)|"dm(z)
gl

<> m(Q) 10" Bxalliq

Let Q be a Lipschitz domain of order n. Then, with the previous notation,

N
10" Bxallfra) S D Z ( 5(”") 1)/p> 0(1) + H(OQ)>">.

k=1 |¢e




A geometric condition for the Beurling transform
00000000080

Holder inequalities do the rest

[, 0" Bxata)Fam(s)

Let Q be a Lipschitz domain of order n. Then, with the previous notation,

HanBXQHIZp(Q) i Z ||Ak||gg—p1/p+1 + HH9Q)>"P.

N
k=1
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Holder inequalities do the rest

Using a decomposition in windows,

Let Q) be a Lipschitz domain of order n. Then, with the previous notation,

107Bxalg) S N2 11 g, + H (O,

P (0%)
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

@ In the complex plane, the Besov regularity B,',’;l/p
of the normal vector to the boundary of the domain
gives us a bound of B(P) in W™P (and 0 < s < 1).
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Conclusions

@ For p > 2 we have a T(P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

@ In the complex plane, the Besov regularity B,Z,;l/*’
of the normal vector to the boundary of the domain
gives us a bound of B(P) in W™P (and 0 < s < 1).

o Next steps:
o Proving analogous results for any s € R...
o Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
o Giving a necessary condition for the boundedness
of the Beurling transform when p < 2.
o Sharpness of all those results.



Farewell

Thank you!






Key Lemma: sticking to the essential

Lemma
Let Q2 be a Lipschitz domain, Q a window, v € C"‘J(100 Q) with
||VJ'1/)HL(X, < % for j > 0. Then, for any |a| = n and f = - f with
f e WnP(Q), TFAE:

e HDan”LP(Q) < Il »(ONQ)-

. ZQeW HDCY pQ ||LP(Q) S ||fH€VmP(QmQ)'
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Lemma
Let Q2 be a Lipschitz domain, Q a window, v € C"‘J(100 Q) with
||VJ'1/)HL(X, < % for j > 0. Then, for any |a| = n and f = - f with
f e WnP(Q), TFAE:
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We will see that
P

DBf — Y xoD*B(Pgf)

Qew

S Il wne(one):
Lr(Q)
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Breaking the integral into local and non-local parts

Take X:q < 9o < Xx2¢ a smooth bump function. For z € Q,
D*Bf(z) - D"B(PY)(2)
= D*B(pq(f —Pof))(z) + D*B((xa — vo)(f — Pof))(2).

Thus, we need to prove that the local part is bounded

D=3 [I0°B(¢alf = Po)fno) < IFI5umsiona)

Qew

and the non-local part is bounded

@)= > [D°B((xa = va)(f =P gy S IFllfmsioray

Qew



The local part @ = ZQEW HDQ}B@PQ(’: = plg?f))H[L)p(Q)

As po(f —Pof) € W"P(C), the Beurling transform commutes with the
derivative

HDQB(S"QU - D'(’;)f))HIZp(Q) = HBD(X(QPQ(f - pz)f))”fp(o)
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The local part @ = ZQEW HDQ}B@PQ(’: = plg?f))H[L)p(Q)

As po(f —Pof) € W"P(C), the Beurling transform commutes with the
derivative

1D°B(2a(f = P10y S IBILID™ (2alf = PN
Using P1 and P4, we get

|D*B(po(f — Pof) HLP(Q SV f||,_,, (3Q)’



Breaking the non-local part
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transform (let’s call it B(~%))



Breaking the non-local part

)= > oew ||DBl(xa — vo)(f — D'ng))H’Zp(Q)

In the non-local part we can take the derivative in the kernel of the
transform (let’s call it B(=®)) and use a partition of unity

XQ — 9Q = Y_scy Yqs related to the covering {25} sew with the usual
bounds in their derivatives.



Breaking the non-local part

(@) =3 0ew [|DB((xa — va)(f — PA))||7,

In the non-local part we can take the derivative in the kernel of the
transform (let’s call it B(=®)) and use a partition of unity

XQ — 9Q = Y_scy Yqs related to the covering {25} sew with the usual
bounds in their derivatives.

Then,

@< (ZHB “)(as(f — PEF )HL(Q)>
Qew

Sew
p
+c§v<§vHB( (Vas(PIf — % ))HLP(QJ

=(3)+().



The non-local part re-localized (3)

The re-localized sum is the easier to bound. Using the Holder inequality
and the Poincaré inequality, we get
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The non-local part re-localized (3)

The re-localized sum is the easier to bound. Using the Holder inequality
and the Poincaré inequality, we get

os)" v
B was(r ~ PRI S gz 1 sy

Using this uniform bound on Q, the properties of the covering and some
Holder inequalities, we bound

(B SV F1I5 0y
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Internal structure of the cubes family

Qr Reo @ We can define the long

distance

D(Q, R) =

n(Q,R) +4(Q) + ¢(R).
e We find a natural way to

define fathers and sons in

the Whitney family.

@ Given two cubes Q and R we
can look for a common

. ancestor, but it is better to

— look for neighbor ancestors,

[ ] :

ER H-H Qr and Ro:

D(Q,R) =~ {(Qr) =~ £(Rg)-
D(Q,R)
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@ The difference between polynomials of
distant cubes can be huge.

EaERS.

1B [(02f — Py )ves] (2)] £

HH ||
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0s D(Q,S)"2 dm(w)




Sketch of the boundedness of the non-local part @

Qs| So

@ The difference between polynomials of
distant cubes can be huge.

@ We take a tour changing between
neighbor cubes.

S
B [(03F ~Pgf)vas] (2)] < /2 . L fg(%fs‘)ﬁi(w)' dm(w)

1 . )
S D(Q,S)"""Z/QS Z |Ppf(w) _pN(P)f(W)|dm(W)

QLIPS

HH ||




Sketch of the boundedness of the non-local part @

S
e @ The difference between polynomials of
distant cubes can be huge.

@ We take a tour changing between
neighbor cubes.

:H o We apply the property P3 to one
branch to illustrate.
HHH -O-i

HH ||

2f(w) — P2 f(w
B [(vgf - ng yves] (1< [ B &;, Sffiz( )

55 L, 20 IPBFw) = i ) dm(w)

S<P<S

—1
< Y sy )) (PY 3 19"l s

$<P<$Q

dm(w)



Sketch of the boundedness of the non-local part @

+y|

TR

Pew

The difference between polynomials of
distant cubes can be huge.

@ We take a tour changing between
neighbor cubes.

We apply the property P3 to one
branch to illustrate.

[

Holder inequalities and the propeties of
the Whitney covering will do the rest.

< X IV en (PP Y (szp_,ze(s

S IV Lo ona)-



The uniform bound in every square leads to

2 P

4Q)¢(S)™ 7

®x 3 (& ki

~ n+2 Lr(3S)
Qew \Sew b(@.s)

and, applying the Holder inequality,

@< Z Z ) \|V"f||/_n3s (Z £(5)51>P

dew sew D sew D(@,S5)*"



The uniform bound in every square leads to

P

UQ)FUS)™ ¥

®s Y <Z =SV ogss)
Qew \Sew b(Q, 5)

and, applying the Holder inequality,

@< Z Z ) \|V"f||/_n3s (Z £(5)51>P

dew sew D sew D(@,S5)*"

Let b > a > 1. Then,




3G > US)™IV |0 as) Z Q) T UQ)~:

Sew Qew

As % + np > % > 1, we can use the previous lemma again to get

@ < Cnp Z E np”van P(3$)€( )

Sew
S IV FllZeana)



We have
- B [(ogf oz, f)wos} (2)
D(P, 5) _2
< 3 s P IV ey
S<P<Sq Q S) 2

On the other hand, as S < P < S5, we have
D(P,S) = ¢(P) < {(Sq) ~ D(Q,S)

and

D(Q,S) = £(Sq) = {(Pg) =~ D(Q, P).

P
USY(PY# [V F o spy
<C
<ng5<;s Q P)
Q

Thus,




We have
=8~ [(ngf DL fes] (2)
P S)n 1 1—2
< Z us n ((P) "||an||Lp(5p)~

On the other hand, as S < P < S5¢, we have
D(P,S) = ¢(P) < {(Sq) ~ D(Q,S)

and
D(Q,5) ~ {(Sq) = ((Pq) = D(Q, P).
Using Holder inequality, we get

USPPUPY IV Euisp)  * A7)
9= (2 (5 =) () )




= 1BC) [(03F — P2, Fas| (2)]

The sum 3 ¢_pcg, ((P)% is geometric. Thus

ny L USFT US)H
( > UP) ) SUSQE ~ o= 5

S<P<Sq




= 1BC) [(03F — P2, Fas| (2)]

The sum 3 ¢_pcg, ((P)% is geometric. Thus

( 3 e(P)SL> se(sQ)ngS)“_l s

S<P<Sq

Then,

«S) ZPE(P)P-fnv"fuw g A7\
(S (s ame) (Saer) )

(syiep )"‘fIIV”fIILp(sp * syt
<
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=[B(-) [(pgf — DZQfWQs} (2)].

The sum 3 ¢ _pcg, ((P)% is geometric. Thus

Y L HS)ET s)E
(Z E(P)) SHSQ)* ~ o 0 s)

S<P<S,

Then, we apply Holder inequality

p+%g(p)p—5”vnf”“ 5P) ’ 6(5)1_71!’
5<P<SQ

D(Q, Py~

H(PYP RV 5y f g
: ; D(Q, P>~ Z D( O Sy



= 180 (P2 — 0%, Nves] (=)

The sum 3¢ _pcs, ¢(P)% is geometric. Thus

£\ s o ST US)E
( > «p) ) < (o) S

S<P<Sg D(Q.,P)>

Then, we apply Holder inequality and the properties of the covering,

USYP2U(PYP RV F I sp) DAY
’SZ Z D(Q P)2p7— ZDQS

S 5<P<Sq

p+zg( )P 3

Z Z Q p 2p77€(Q)% anfHLP(SP)

SEW S<P<Sq




Bounding @
= |BU) |[(P3F — PE, Nvas| (2)]-
Then,

p+ -3
COEIIDS Pif(P’ IV 2sp)
SeW S<P<Sq Q ()2




()= (Z | BC) (was(03F — 13, 7)) LP(Q)Y
Sew

Qew

Then,

«s )W(P
SEW5<P<SQ D(Q, ()2

Summing with respect to @, we have

(Py-:
@y ury ¥ S E(Qﬁuv Fllogsr)

Qew Sew 5<P<SQ

< 3 IV IGen P Y (é(c,‘?)2,, 2 13)

Pew Qew




Z(ZHB( (Yas (O3 —PL,f )HL(Q)>

QeW \Sew

We have found out

S 3 IV FIen P

Pew

s (Q)? ol
2 sz D(Q(, P))2P—% > sy,

S<P



-y (ZHB( (s (PLF —PLf )HL(Q)>

QeW \Sew

We have found out

] U(Q)? pil
< ST IV ey (P ZWZ@(S) +,

Pew Qew S<P

Now, being p—l—% > 1 and 2p—%> % > 1 imply

> (S) P)P*: and Z Q P)2P” < ¢(P)~2(-D)



- 3 (5 e v, )

QeW \Sew
We have found out
U(Q)? 1
(32 S IV e PPE S —— S~ (s,
@ Pew Qew D(Q’ 'D)zp 2 S<P

Now, being p—l—% > 1 and 2p—%> % > 1 imply

Zf P)P*? and Z Q P)2P” < g(P)2P-D)
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