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The Beurling transform

The Beurling transform of a function f ∈ Lp(C) is:

Bf (z) = c0 lim
ε→0

ˆ
|w−z|>ε

f (w)

(z − w)2
dm(z).

It is essential to quasiconformal mappings because

B(∂̄f ) = ∂f ∀f ∈W 1,p.

Recall that B : Lp(C)→ Lp(C) is bounded for 1 < p <∞.
Also B : W s,p(C)→W s,p(C) is bounded for 1 < p <∞ and s > 0.

In particular, if z /∈ supp(f ) then Bf is analytic in an ε-neighborhood of
z and

∂nBf (z) = cn

ˆ
|w−z|>ε

f (w)

(z − w)n+2
dm(z).

back to T(P)
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The problem we face

Let Ω be a Lipschitz domain.

When is B : W s,p(Ω)→W s,p(Ω) bounded?
We want an answer in terms of the geometry of the boundary.
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Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for 0 < s ≤ 1,
2 < p <∞ with sp > 2, and ∂Ω smooth enough,

Theorem

B : W s,p(Ω)→W s,p(Ω) is bounded

if and only if
BχΩ ∈W s,p(Ω).

One can deduce regularity of a quasiregular mapping
in terms of the regularity of its Beltrami coefficient.
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Introducing the Besov spaces B s
p,p

The geometric answer will be given in terms of Besov spaces Bs
p,p.

Bs
p,p form a family closely related to W s,p. They coincide for p = 2.

For p < 2, Bs
p,p ⊂W s,p. Otherwise W s,p ⊂ Bs

p,p.

Definition

For 0 < s <∞, 1 ≤ p <∞, f ∈ Ḃs
p,p(R) if

‖f ‖Ḃs
p,p

=

(ˆ
R

ˆ
R

∣∣∣∣∣∆[s]+1
h f (x)

hs

∣∣∣∣∣
p
dm(h)

|h|
dm(x)

)1/p

<∞.

Furthermore, f ∈ Bs
p,p(R) if

‖f ‖Bs
p,p

= ‖f ‖Lp + ‖f ‖Ḃs
p,p
<∞.

We call them homogeneous and non-homogeneous Besov spaces
respectively.
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Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any 1 < p <∞,
and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to B
1−1/p
p,p (∂Ω), then B(χΩ) ∈W 1,p(Ω)

with
‖∇B(χΩ)‖Lp(Ω) ≤ c‖N‖

Ḃ
1−1/p
p,p (∂Ω)

.

They proved also an analogous result for smoothness 0 < s < 1.
This implies

Theorem

Let 0 < s ≤ 1, 2 < p <∞ with sp > 2. If the normal vector

is in the Besov space B
s−1/p
p,p (∂Ω), then the Beurling transform

is bounded in W s,p(Ω).

Tolsa proved a converse for Ω flat enough.
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Main results

T(P) Theorem

Let 2 < p <∞ and 1 ≤ n <∞. Let Ω be a Lipschitz domain.
Then the Beurling transform is bounded in W n,p(Ω)
if and only if for any polynomial of degree less than n
restricted to the domain, P = PχΩ, B(P) ∈W n,p(Ω).

This theorem is valid for any Calderon-Zygmund convolution operator
with enough smoothness and for any space Rd .

Theorem (Geometric condition on the boundary)

Let Ω be smooth enough. Then we can write

‖∂nBχΩ‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+H1(∂Ω)2−np.
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Proof of the T(P) Theorem
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Local charts

Beurling transform

We have a Lipschitz domain.

In particular, at every boundary point
we can center a cube
with fixed side-length R
inducing a parametrization C 0,1.

We make a covering of the boundary
by N of such cubes Qk

with some controlled overlapping
and find a partition of unity {ψj}Nj=0.

‖Bf ‖pW n,p(Ω) ≈ ‖Bf ‖
p
Lp(Ω) + ‖∇nBf ‖pLp(Ω).

‖∇nBf ‖pLp(Ω) ≈
∑N

k=0 ‖∇nB(f ψk)‖pLp(Qk ) + ‖∇nB(f ψk)‖pLp(Ω\Qk )

Away from Qk we have good bounds:
|∇nB(f ψk)(z)| . 1

Rn+2

´
Qk
|f (w)|dw

The restriction to the inner region is always bounded:
f ψ0 ∈W n,p(C).
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Local charts: Whitney decomposition

We perform an oriented Whitney covering W such that

dist(Q, ∂Ω ∩Q) ≈ `(Q) for every Q ∈ W.

The family {5Q}Q∈W has finite superposition.

...
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A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given f ∈W 1,p(Q),
1 ≤ p ≤ ∞,

‖f −mQ f ‖Lp(Q) . `(Q)‖∇f ‖Lp(Q).

Equivalently, for any Sobolev function f with 0 mean on Q,

‖f ‖Lp(Q) . `(Q)‖∇f ‖Lp(Q).

If we want to apply recursively the Poincaré inequality we need Df to
have mean 0 in 3Q for any partial derivative D.

Definition

Given f ∈W n,p(Ω) and a cube Q, we call PnQ f to the polynomial of
degree smaller than n restricted to Ω such that for any multiindex β with
|β| < n,  

3Q

DβPnQ f =

 
3Q

Dβf .
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Properties of approximating polynomials

P1.
∥∥f − PnQ f ∥∥Lp(3Q)

. `(Q)n‖∇nf ‖Lp(3Q).

P2. Given two neighbor Whitney cubes Q1 and Q2,∥∥PnQ1
f − PnQ2

f
∥∥
L∞(3Q1∩3Q2)

. `(Q1)n−
2
p ‖∇nf ‖Lp(3Q1∪3Q2).

...

P5. We can bound the coefficients of the polynomial
PnQ f (w) =

∑
|γ|<n mQ,γ(w − xQ)γ :

|mQ,γ | .
∑n−1

j=|γ|
∥∥∇j f

∥∥
L∞(3Q)

`(Q)j−|γ|.
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P2. Given two neighbor Whitney cubes Q1 and Q2,∥∥PnQ1
f − PnQ2

f
∥∥
L∞(3Q1∩3Q2)

. `(Q1)n−
2
p ‖∇nf ‖Lp(3Q1∪3Q2).

...

P5. We can bound the coefficients of the polynomial
PnQ f (w) =

∑
|γ|<n mQ,γ(w − xQ)γ :

|mQ,γ | .
∑n−1

j=|γ|
∥∥∇j f

∥∥
L∞(3Q)

`(Q)j−|γ|.
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The proof: BP ∈ W n,p(Ω)⇒ ‖Bf ‖pW n,p(Ω) . ‖f ‖
p
W n,p(Ω)

Assume that, we have a bound for the polynomials. Fix a point x0 ∈ Ω
and call Pλ(z) = (z − x0)λχΩ(z).

Given a cube Q, we can write

, using Newton’s binomial

PnQ f (w) = χΩ(w)
∑
|γ|<n

mQ,γ(w − xQ)γ

= χΩ(w)
∑
|γ|<n

mQ,γ

∑
(0,0)≤λ≤γ

(
γ

λ

)
(w − x0)λ(x0 − xQ)γ−λ

so

DαB(PnQ f )(z) =
∑
|γ|<n

mQ,γ

∑
(0,0)≤λ≤γ

(
γ

λ

)
(x0 − xQ)γ−λDα(BPλ)(z)

where, by P5,

|mQ,γ | .
n−1∑
j=|γ|

∥∥∇j f
∥∥
L∞(3Q)

`(Q)j−|γ|.
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The Sobolev Embedding Theorem appears

Thus∥∥DαB(PnQ f )
∥∥p
Lp(Q)

.
∑
j<n

∥∥∇j f
∥∥p
L∞

∑
|γ|≤j

0≤λ≤γ

‖DαBPλ‖pLp(Q)H
1(∂Ω)(j−|λ|)p.

Adding with respect to Q ∈ W, by the Sobolev Embedding Theorem
(
∥∥∇j f

∥∥
L∞(Q∩Ω)

≤ C
∥∥∇j f

∥∥
W 1,p(Q∩Ω)

when p > 2), we get∑
Q∈W

∥∥DαB(PnQ f )
∥∥p
Lp(Q)

.
∑
j<n

∥∥∇j f
∥∥p
W 1,p(Q∩Ω)

∑
0≤λ≤γ

‖BPλ‖pW n,p(Ω)

. ‖f ‖pW n,p(Q∩Ω).
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Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, Q a window, ψ ∈ C∞( 99
100Q) with∥∥∇jψ

∥∥
L∞

. 1
R j for j ≥ 0. Then, for any |α| = n and f = ψ · f̃ with

f̃ ∈W n,p(Ω), TFAE:

‖DαBf ‖pLp(Q) . ‖f ‖
p
W n,p(Q∩Ω).∑

Q∈W
∥∥DαB(PnQ f )

∥∥p
Lp(Q)

. ‖f ‖pW n,p(Q∩Ω).

Idea of the proof: separate local and non-local parts of the error term,

DαBf (z)− DαB(PnQ f )(z)

= DαB(χ2Q(f − PnQ f ))(z) + DαB((1− χ2Q)(f − PnQ f ))(z).

Sketch of the proof
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A geometric condition for the Beurling transform
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Theorem (Geometric condition on the boundary)

Let Ω be smooth enough. Then we can write

‖∂nBχΩ‖pLp(Ω) . ‖N‖
p

B
n−1/p
p,p (∂Ω)

+H1(∂Ω)2−np.
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Defining some generalized betas of David-Semmes

A measure of the flatness of a set Γ:

Definition (P. Jones)

βΓ(Q) = infV
w(V )
`(Q)

If there is no risk of confusion,
we will write just β(n)(I ).



Introduction Proof of the T(P) Theorem A geometric condition for the Beurling transform

Defining some generalized betas of David-Semmes

A measure of the flatness of a set Γ:

Definition (P. Jones)

βΓ(Q) = infV
w(V )
`(Q)

If there is no risk of confusion,
we will write just β(n)(I ).



Introduction Proof of the T(P) Theorem A geometric condition for the Beurling transform

Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider I ⊂ R, and define

Definition

β∞(I ,A) = infP∈P1

∥∥∥A−P
`(I )

∥∥∥
∞

If there is no risk of confusion,
we will write just β(n)(I ).
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider I ⊂ R, and define

Definition

βp(I ,A) = infP∈P1
1

`(I )
1
p

∥∥∥A−P
`(I )

∥∥∥
p

If there is no risk of confusion,
we will write just β(n)(I ).
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Defining some generalized betas of David-Semmes

The graph of a function y = A(x):
Consider I ⊂ R, and define

Definition

β(n)(I ,A) = infP∈Pn
1
`(I )

∥∥∥A−P
`(I )

∥∥∥
1

If there is no risk of confusion,
we will write just β(n)(I ).
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Relation between β(n) and Bn
p,p

Theorem (Dorronsoro)

Let f : R→ R be a function in the homogeneous Besov space Ḃs
p,p.

Then, for any n ≥ [s],

‖f ‖p
Ḃs
p,p

≈
∑
I∈D

(
β(n)(I )

`(I )s−1

)p

`(I ).
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First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Local charts: Higher order derivatives

First order derivative Second order derivative Higher order derivatives Skip higher order derivatives
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Bounding the polynomial region

We can choose the window length R small enough so that

Proposition

If we denote by ΩQ the region with boundary a minimizing polynomial for
β(n)(Φ(Q)), we get ∣∣∂nBχΩQ

∣∣ ≤ C

Rn
.
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Bounding the interstitial region

Proposition

Choosing a minimizing polynomial for β(n)(Φ(Q)), we get

ˆ
Ω∆ΩQ

dm(w)

|z − w |n+2
.

∑
I∈D

Φ(Q)⊂I⊂Φ(Qk )

β(n)(I )

`(I )n
+

1

Rn
.
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Hölder inequalities do the rest

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) .
N∑

k=1

∑
I∈Dk

(
β(n)(I )

`(I )n−1/p

)p

`(I ) +H1(∂Ω)2−np.

Back
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Hölder inequalities do the rest

Using a decomposition in windows,

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

‖∂nBχΩ‖pLp(Ω) . ‖N‖
p

B
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Conclusions

For p > 2 we have a T (P) theorem
for any Calderon-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

In the complex plane, the Besov regularity B
n−1/p
p,p

of the normal vector to the boundary of the domain
gives us a bound of B(P) in W n,p (and 0 < s < 1).

Next steps:

Proving analogous results for any s ∈ R+.
Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
Giving a necessary condition for the boundedness
of the Beurling transform when p ≤ 2.
Sharpness of all those results.
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Farewell

Thank you!



∅



Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, Q a window, ψ ∈ C∞( 99
100Q) with∥∥∇jψ

∥∥
L∞

. 1
R j for j ≥ 0. Then, for any |α| = n and f = ψ · f̃ with

f̃ ∈W n,p(Ω), TFAE:

‖DαBf ‖pLp(Q) . ‖f ‖
p
W n,p(Q∩Ω).∑

Q∈W
∥∥DαB(PnQ f )

∥∥p
Lp(Q)

. ‖f ‖pW n,p(Q∩Ω).

We will see that∥∥∥∥∥DαBf −
∑
Q∈W

χQD
αB(PnQ f )

∥∥∥∥∥
p

Lp(Q)

. ‖f ‖pW n,p(Q∩Ω).
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Breaking the integral into local and non-local parts

Take χ 3
2 Q
≤ ϕQ ≤ χ2Q a smooth bump function.

For z ∈ Q,

DαBf (z)− DαB(PnQ f )(z)

= DαB(ϕQ(f − PnQ f ))(z) + DαB((χΩ − ϕQ)(f − PnQ f ))(z).

Thus, we need to prove that the local part is bounded

1 =
∑
Q∈W

∥∥DαB(ϕQ(f − PnQ f ))
∥∥p
Lp(Q)

. ‖f ‖pW n,p(Q∩Ω)

and the non-local part is bounded

2 =
∑
Q∈W

∥∥DαB((χΩ − ϕQ)(f − PnQ f ))
∥∥p
Lp(Q)

. ‖f ‖pW n,p(Q∩Ω)
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The local part 1 =
∑

Q∈W
∥∥DαB(ϕQ(f − Pn

Qf ))
∥∥p
Lp(Q)

As ϕQ(f − PnQ f ) ∈W n,p(C), the Beurling transform commutes with the
derivative∥∥DαB(ϕQ(f − PnQ f ))

∥∥p
Lp(Q)

=
∥∥BDα(ϕQ(f − PnQ f ))

∥∥p
Lp(Q)

Using P1 and P4, we get∥∥DαB(ϕQ(f − PnQ f ))
∥∥p
Lp(Q)

. ‖∇nf ‖pLp(3Q).
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Breaking the non-local part
2 =

∑
Q∈W

∥∥DαB((χΩ − ϕQ)(f − Pn
Qf ))

∥∥p
Lp(Q)

In the non-local part we can take the derivative in the kernel of the
transform (let’s call it B(−α))

and use a partition of unity
χΩ − ϕQ =

∑
S∈W ψQS related to the covering {2S}S∈W with the usual

bounds in their derivatives.
Then,

2 ≤
∑
Q∈W

(∑
S∈W

∥∥∥B(−α)(ψQS(f − PnS f ))
∥∥∥
Lp(Q)

)p

+
∑
Q∈W

(∑
S∈W

∥∥∥B(−α)(ψQS(PnS f − P
n
Q f ))

∥∥∥
Lp(Q)

)p

= 3 + 4 .
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The non-local part re-localized 3

The re-localized sum is the easier to bound. Using the Hölder inequality
and the Poincaré inequality, we get

|B(−α)(ψQS(f − PnS f ))(z)| . `(S)
n+ 2

p′

D(Q,S)n+2
‖∇nf ‖Lp(3S).

Using this uniform bound on Q, the properties of the covering and some
Hölder inequalities, we bound

3 . ‖∇nf ‖pLp(Q).

Proof
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Internal structure of the cubes family

Q

R

δh(Q,R)

We can define the long
distance

D(Q,R) =
δh(Q,R) + `(Q) + `(R).

We find a natural way to
define fathers and sons in
the Whitney family.

Given two cubes Q and R we
can look for a common
ancestor, but it is better to
look for neighbor ancestors,
QR and RQ :
D(Q,R) ≈ `(QR) ≈ `(RQ).
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Sketch of the boundedness of the non-local part 4

Q
S

The difference between polynomials of
distant cubes can be huge.

We take a tour changing between
neighbor cubes.

We apply the property P3 to one
branch to illustrate.

|B(−α)
[
(PnS f − P

n
Q f )ψQS

]
(z)|

.
ˆ

2S

|PnS f (w)− PnQ f (w)|
D(Q,S)n+2

dm(w)

.
1

D(Q,S)n+2

ˆ
2S

∑
Q≤P<S

|PnP f (w)− PnN (P)f (w)|dm(w)

.
∑

Q≤P<S

`(S)2 D(P,S)n−1

D(Q,S)n+2
`(P)1− 2

p ‖∇nf ‖Lp(5P)
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Sketch of the boundedness of the non-local part 4

Q
S

SQ

The difference between polynomials of
distant cubes can be huge.

We take a tour changing between
neighbor cubes.

We apply the property P3 to one
branch to illustrate.

Hölder inequalities and the propeties of
the Whitney covering will do the rest.

Details

4* .
∑
P∈W

‖∇nf ‖pLp(5P)`(P)p−
5
2

∑
Q∈W

`(Q)
3
2

D(Q,P)2p− 1
2

∑
S<P

`(S)p+ 1
2

. ‖∇nf ‖pLp(Q∩Ω).

Back



Bounding 3

The uniform bound in every square leads to

3 .
∑
Q∈W

(∑
S∈W

`(Q)
2
p `(S)

n+ 2
p′

D(Q,S)n+2
‖∇nf ‖Lp(3S)

)p

and, applying the Hölder inequality,

3 .
∑
Q∈W

∑
S∈W

`(Q)2`(S)np

D(Q,S)
3
2 +np
‖∇nf ‖pLp(3S)

(∑
S∈W

`(S)2

D(Q,S)2+ p′
2p

) p
p′

Lemma

Let b > a > 1. Then,∑
R∈W

`(R)a

D(Q,R)b
≤ Ca,b`(Q)a−b.
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3 .
∑
Q∈W

∑
S∈W

`(Q)2`(S)np

D(Q,S)
3
2 +np
‖∇nf ‖pLp(3S)

(∑
S∈W

`(S)2

D(Q,S)2+ p′
2p

) p
p′

Lemma

Let b > a > 1. Then,∑
R∈W

`(R)a

D(Q,R)b
≤ Ca,b`(Q)a−b.



Bounding 3

3 ≤ Cp

∑
S∈W

`(S)np‖∇nf ‖pLp(3S)

∑
Q∈W

`(Q)2

D(Q,S)
3
2 +np

`(Q)−
1
2

As 3
2 + np > 3

2 > 1, we can use the previous lemma again to get

3 ≤ Cn,p

∑
S∈W

`(S)np‖∇nf ‖pLp(3S)`(S)−np

. ‖∇nf ‖pLp(Q∩Ω)

Back



Bounding 4

We have

4∗QS = |B(−α)
[
(PnS f − P

n
SQ
f )ψQS

]
(z)|

.
∑

S<P≤SQ

`(S)2 D(P,S)n−1

D(Q,S)n+2
`(P)1− 2

p ‖∇nf ‖Lp(5P).

On the other hand, as S < P ≤ SQ , we have

D(P,S) ≈ `(P) ≤ `(SQ) ≈ D(Q,S)

and
D(Q,S) ≈ `(SQ) = `(PQ) ≈ D(Q,P).

Thus,

4∗Q ≤ C

∑
S∈W

∑
S<P≤SQ

`(S)2`(P)1− 2
p ‖∇nf ‖Lp(5P)

D(Q,P)3

p

.
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D(P,S) ≈ `(P) ≤ `(SQ) ≈ D(Q,S)

and
D(Q,S) ≈ `(SQ) = `(PQ) ≈ D(Q,P).

Using Hölder inequality, we get

4∗Q .

∑
S

(∑
P

`(S)2p`(P)p−
5
2 ‖∇nf ‖pLp(5P)

D(Q,P)3p

) 1
p
(∑

P

`(P)
p′
2p

) 1
p′
p

.



Bounding 4
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n
SQ
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S<P≤SQ
`(P)

p′
2p is geometric. Thus ∑

S<P≤SQ

`(P)
p′
2p

 1
p′

. `(SQ)
1

2p ≈ `(S)
1

2p−1

D(Q,P)−
1

2p−1

`(S)1− 1
2p

D(Q,S)

Then,

4∗Q .

∑
S

(∑
P

`(S)2p`(P)p−
5
2 ‖∇nf ‖pLp(5P)

D(Q,P)3p

) 1
p
(∑

P

`(P)
p′
2p

) 1
p′
p

.

∑
S

 ∑
S<P≤SQ

`(S)p+ 1
2 `(P)p−

5
2 ‖∇nf ‖pLp(5P)

D(Q,P)2p− 1
2

 1
p

`(S)1− 1
2p

D(Q,S)


p
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5
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2 `(Q)
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‖∇nf ‖pLp(5P).

Summing with respect to Q, we have

4* .
∑
Q∈W

`(Q)2
∑
S∈W

∑
S<P≤SQ

`(S)p+ 1
2 `(P)p−

5
2

D(Q,P)2p− 1
2 `(Q)

1
2

‖∇nf ‖pLp(5P)

≤
∑
P∈W

‖∇nf ‖pLp(5P)`(P)p−
5
2

∑
Q∈W

`(Q)
3
2

D(Q,P)2p− 1
2

∑
S<P

`(S)p+ 1
2 .
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We have found out

4* .
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5
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∑
Q∈W

`(Q)
3
2

D(Q,P)2p− 1
2

∑
S<P

`(S)p+ 1
2 .

Now, being p + 1
2 > 1 and 2p − 1

2 >
3
2 > 1 imply

∑
`(S)p+ 1

2 . `(P)p+ 1
2 and

∑ `(Q)
3
2

D(Q,P)2p− 1
2

. `(P)−2(p−1)

so

4* .
∑
P∈W

`(P)p−
5
2−2p+2+p+ 1

2 ‖∇nf ‖pLp(5P) . ‖∇
nf ‖pLp(Q∩Ω).

Back
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2 ‖∇nf ‖pLp(5P) . ‖∇
nf ‖pLp(Q∩Ω).
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4* =
∑
Q∈W

(∑
S∈W

∥∥∥B(−α)(ψQS(PnS f − P
n
SQ
f ))
∥∥∥
Lp(Q)

)p

We have found out

4* .
∑
P∈W

‖∇nf ‖pLp(5P)`(P)p−
5
2

∑
Q∈W

`(Q)
3
2

D(Q,P)2p− 1
2

∑
S<P

`(S)p+ 1
2 .

Now, being p + 1
2 > 1 and 2p − 1

2 >
3
2 > 1 imply

∑
`(S)p+ 1

2 . `(P)p+ 1
2 and

∑ `(Q)
3
2

D(Q,P)2p− 1
2

. `(P)−2(p−1)

so

4* .
∑
P∈W

`(P)p−
5
2−2p+2+p+ 1

2 ‖∇nf ‖pLp(5P) . ‖∇
nf ‖pLp(Q∩Ω).
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