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Let K > 1, Q = C bounded domain. We say v € G(K,Q) when
e Compactly supported: supp(y — 1) < Q.
’y_lHoo < K.

e Strongly elliptic: 7], < K,
@ Isotropic conductivity: v: C - R,.
Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

V- (’}/VU) =0,
U‘aQ = f.

(1)

Existence granted in the weak sense for f € H/2(0Q).
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Uniformly strongly elliptic boundary value problems

Let K > 1, Q < C bounded domain. We say v € G(K,Q) when
e Compactly supported: supp(y —1) = Q.

’yilHoo < K.

@ Isotropic conductivity: 7: C — R,.

e Strongly elliptic: [|v],, < K,

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

{V - (yVu) = 0, O

U‘QQ =f.
Neumann BVP: prescribed electric current in the boundary, find voltage

{v - (YVu) =0, )

(YO, u) o = &-
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Dirichlet-to-Neumann map

Given v € G(K,Q), and f : 0Q — R, we consider Dirichlet solution
u.r. Then

/\A, . f — (val,u%f)bg.

Note that we map Dirichlet boundary data to Neumann boundary data of
the function. The “forward map”

A G(K,Q) -~ <H1/2((9Q), H—1/2(aQ)) :
Y g /\7,

is continuous for the distance |1 — 72,
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Calderén’s problem

Given boundary measurements can we recover the conductivity? That is,
find the inverse map

Al (Hl/z(aQ), H*1/2(8§2)) ~ 4K, Q),
7w — v.

Original problem: find oil with measurements of voltage-current on the
surface. Now used for Electric Impedance Tomography (EIT): monitor
cardiac activity, lung function, vocal folds disorders, breast cancer
detection, non-destructive testing concrete structures,...
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Everything is wrong

A problem is well-posed if the following conditions hold (Hadamard'03):
(%) (if we have perfect, complete data),
@ The solution is unique (planar case, see [Astala, Pdivarinta '06]),

@ The solution depends continuously on the input (a priori conditions
needed).

Calderén's CIP is severely “ill-posed”.
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Uniqueness

Theorem (Astala, Paivarinta '06)
Let Q c C a bdd domain, v1,72 € G(K,Q). If Ay, = \,, then y1 = 7.

The proof depends on the topology of C. Not useful for higher
dimensions (for R”, with n > 3, see [Caro, Rogers '15], [Haberman'15],

»
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Stability

There are counterexamples to unconditional stability. They imply that
A1 AG(K,Q)) — G(K,Q) is NOT continuous neither in L® nor in LP
distance.
Question: find F < G(K, Q) so that A= : A(F) — F is continuous with
LP norm: p-stability for 2. Let s > 0. Then
o F={veG(K,Q):|v|c < C}, has L stability, Lipschitz domain
[Barceld, Faraco, Ruiz '07].
o F={veG(K,Q):|v|ys», < C}, has LP stability, domain with
rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].
We present a sufficient a priori condition for stability which
@ Includes all previous results.
o Valid for every bounded domain.
@ Yields a characterization for conductivities supported away from the
boundary.

@ Settles Alessandrini’s 2007 conjecture.
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Regularization strategy

In practice, there is the additional issue of regularization: the data
obtained may not correspond to any conductivity.

Regularization
Define I : £ (HY2(0Q), H-Y2(0Q)) — G(K, Q) so that if H/”\ - /\”H =0
then HF(/N\) — 7” — 0.
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Take up, uj solution to Dirichlet BVP's with data ¢.
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There is LP continuity of the forward map for “compactly supported”
conductivities:

Let {v;}7 G(K, Q) with v — Yo in LP, Qcc Q.

Take ug, uj solution to Dirichlet BVP's with data . Let £ + % = 1. For
P big enough
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< [ =0l 51 Vol o) VUil 2
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Tools: Alessandrini's identity, Holder inequality, higher integrability
[Meyers'63]-[Astala’'00].
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Forward map for compactly supported

There is LP continuity of the forward map for “compactly supported”
conductivities:

Let {v;}7 G(K, Q) with v — Yo in LP, Qcc Q.

Take ug, uj solution to Dirichlet BVP's with data . Let £ + % = 1. For
P big enough

KAy = Asy)ips )] = ’/Q(% —j)Vug - Vu;
< [ =0l 51 Vol o) VUil 2

2
< i =0l sl

We have continuity of the forward map.
Tools: Alessandrini's identity, Holder inequality, higher integrability
[Meyers'63]-[Astala’'00].
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First stability counterexample

Characteristic functions: L* stability fails!
Take a constant conductivity in C.
Add the characteristic of 1/4D, i.e.
Yo :=1+ X1/ap-
Translate it € to define v, := 1 + x.11/4p-
Clearly |70 — e[, = 1.

But [yo — 7[5 < Ce?, and thus,

o=

1 2
KA = Ao, el < e7llely

Thus, A; — Ag, but 7. = 9. We must seek LP stability.
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Second stability counterexample

But take v € G(2,D) defined by

’Yj(z) =1+ %XQ(Z)Xchessboard(jz)-

Now, 7; G-converge to v [Alessandrini, Cabib]
As a consequence, the flux u; weakly converge to
up. The DtN maps converge as well [Faraco,
Kurylev, Ruiz].

But {v;} has no partial LP-convergent!!

LP stability fails in general! Thus, we seek a
priori conditions.
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Compactness issues

Lemma (Alessandrini'07)

Let F cc G(K,Q) in the LP distance, with  cc Q. Then, F is
LP-stable for 2.

Continuity forward map + Uniqueness ([AP]) + compactness imply
continuity of inverse. But no control on its modulus of continuity.

Theorem (Mandache'01)
NG (K, o)) is a pre-compact subset of L(HY?(dD), H=Y/?(oD)).

Let K> 1, let y <1 and let F < G(K, roD). The family F is L?-stable
for D if and only if it is pre-compact.
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modulus of continuity.

Let 7,f(x) = f(x — y). Integral modulus of continuity of f:

wpf(t) := sup |f —7,f|,, for 0 < t < oo,
ly|<t

Given a modulus of continuity w, we say that u € By if

wpu(t)
w(t)

lullgs = llullis +sup < .
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Theorem (Kolmogorov-Riesz)
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Kolmogorov-Riesz criterion

An increasing function w : Ry — R, with lim;_qw(t) = 0 is called
modulus of continuity.

Let 7,f(x) = f(x — y). Integral modulus of continuity of f:

wpf(t) := sup |f —7,f|,, for 0 < t < oo,
ly|<t

Given a modulus of continuity w, we say that u € By if

wpu(t)
w(t)

lullgs = llullis +sup < .
t>0

Theorem (Kolmogorov-Riesz)

F < G(K,Q) is LP-precompact if and only if it has a uniform p-integral
modulus of continuity |f|ger <1: F = G(K,Q, p,wr).
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Questions

Any stability in C®-conductivities cannot be better than logarithmic
(obtained by a quantification of the argument in [Mandache]!).
Alessandrini conjecture:

o If the integral modulus of continuity is a power t°, then we have
logarithmic stability. Shown by Barceld, Clop, Faraco, Rogers, Ruiz,
for quite general domains.

@ There is stability for any w.

Problem: Quantify continuity of inverse mapping for any w.
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for every 0 < s < o0. Moreover, if w is continuous,

J’_ e
|log(p | log(p)[*x

bep
1e) Sip (1 +) | Cpe (C")') -
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Our result

Theorem

Let K>1, let 0 < p < o0, let Q be a bounded domain and let w be a
modulus of continuity. Then the family G(K,Q, p,w) is L?-stable for Q.

In particular
1

I = 2lls < Con (WA = Avall oy ) *

for every 0 < s < o0. Moreover, if w is continuous,

bk p
Ck Ck
<kp(dtw) | Copo | —K ) + 5K

We have gotten every bounded domain and every modulus of continuity.
No “compactly supported” condition!! Every conductivity has an integral
modulus of continuity.
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Interesting behavior in k: for every z

aTU’Y(Zv k)

ey = ct(k) =: 7(k).

(scattering transform).
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Hodge-* conjugation

Dictionary of dlvergence equation and Beltrami equation:
Let n:= 12 Let f, := Reu, + iImu,-1. Then

1+~ pP= ‘AAW'HL
of, = uof, . [AM,.(5 k)l e
fu(z, k) = e’ (1 + M), with M, (-, k) e WP(C)

We have Lipschitz continuity on the mapping
c(H20Q) H20Q))  —  Whe(De),
AW — MM('v k)

with [My(-, k) = Ma(-, k)l s e, < €4l ([BFR'07))
Tools: Hilbert transform, principle of the argument.
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Recover the scattering transform

pi= AN,

The scattering transform can be computed with the first |AM,, (-, k)
terms of the Laurentz series of M,, and M_,;:

lwoe
AT (k)| 5 pel
WhP(DS) - C,
My (k) = Tu (k).

The Lipschitz character is preserved.
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Subexponential behavior in k

The logarithm ¢, := % is a quasiconformal principal pi= AN,
= vz

mapping of C.

HAM/I<'~, k)HWEc

= I - oClK]
Opu(c, k) = *%,u() e_k(pu(-, k) dpu(-, k). AT (k)] < p
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Subexponential behavior in k

The Ic.>garithm P = % is a quasiconformal -pr_incipal pi= AN,
mapping of C. lts inverse 1, := ¢, (-, k) ! satisfies the ’
linear Beltrami equation |AM,, (-, k)| ype

Clk|
(71/1[(() _ 7%# o ka() e—k(') awk() ‘AT/L(kH < pe
log f,, — izk = o(k)
We show that ¢, (-, k) — Id||,.. < v(|k|™1).
Tools: interaction of modulus of continuity with
translation invariant operators and Fourier transform,
control of the Neumann series in k, interaction of the

modulus of continuity when composing with gc-maps,...
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Back to the conductivity

pi= A,
HA/\//,,(~, k)HWDc
‘ATu(kH < Peqk‘

log f,, — izk = o(k)

We see that log(uy) = log(fy,) fora A : C x C — D

depending on the point. We infer the same asymptotic
behavior

log uy, — izk = o(k)

|log(uy) (2, k) — izk| < [K[u(|K| ™).
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A Cauchy problem

Next we need to solve the Cauchy problem
Oruy(z, k) = —iT,(k)uy(z, k).

There is not enough decay of 7, to solve it by standard
means (fixed point, Cauchy transform,...). Instead, we
get uniqueness and (bold) stability by using both
variables at the same time.

Tools: delicate topological argument using both the
control on |11 — 72| and |log(u,)(z, k) — izk|.

pim DA,
HAM“(-,/()HWDC
AT, (k)] < pecl¥!
log f,, — izk = o(k)
log u, — izk = o(k)

HAU‘, HL"I (D) < L(/))
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Final interpolation

pi= AN,
By the preceding ideas, we obtain a control like |AM,(, k)HWJ_,
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Final interpolation

pi= AN,
By the preceding ideas, we obtain a control like |AM,(, k)HWJ_,
[in — ], < e(JA1 — A2 p)- A7, (K)] < peClK

To end we need to infer a control on |1 — 72|l,. log f,, — izk = o(k)
log u, — izk = o(k)
| Ay oy < t(p)
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Final interpolation

By the preceding ideas, we obtain a control like
luy = w2y < e(A1 = A2l ).

To end we need to infer a control on |1 — 72|l,.
Tools: Caccioppoli inequalities for moduli of continuity,
interaction of the Fourier transform with the integral
moduli.

pi= AN,
[AML( 1)l
AT (k)| < pel
log f,, — izk = o(k)
log u, — izk = o(k)
180, ) < 1(0)
|27, < n(p)
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Let ¢ be K-qc, and let e LY. Consider 0 < p < 0 and
small enough

wq(p o @)(t) < Ci,q,p WPN(CKt%)'
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Quasiconformal mappings and moduli

Let ¢ be K-qc, and let e LY. Consider 0 < p < 0 and . Fort

small enough

>

T [X

1
q

wq(p o @)(t) < Ci,q,p WPN(CKt%)-

Theorem

Let pe LE with |pll,c <k <1 and support inD. Let f be a
quasiregular solution to _ o

of = pof.
Let 1 < p < p,, satisfy that k|B|,,_,,, <1, let r € [p, ps) and let q be
defined by % = % + % Then, we have that

.

wp(0F)(t) Sprp |If

Lr(z]{»)wqﬂ(t) + HfHW1+p(2D)|t




The end
The end

Moltes gracies!!
Muchas gracias!!
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