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Harmonic measure

Let Q — R"” be a bounded domain with n > 2 be a domain. Consider the
Dirichlet problem

Au=0 inQ

u=rf on 09.

If 0Q2 is good enough, given z € Q we have a unique continuous
assignation C° — R mapping f — u(z). Thus, there is a unique Borel
probability measure w? on 02 so that

u(z) = fdw?.
oQ
We call w? the harmonic measure of Q with pole z. Different poles give
rise to mutually absolutely continuous measures. For this reason z is
often neglected.
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Questions about harmonic measure

@ What is the dimension of supp(w)?
o When is H" ~ w?
@ Connection to rectifiability?

Some answers:

@ In the plane, if Q is simply connected with #!(02) < o, then
H! ~ w (F. and M. Riesz)

@ Other results in C using complex analysis (Carleson, Makarov,
Jones, Bishop, Wolff, Garnett,...)

@ Analogue of Riesz theorem fails in higher dimensions (Wu, Ziemer)

o Real analysis techniques are needed in R"*1.
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@ Harnack chain condition:

If |x —y| < A(d(x,0Q2) A d(y,dQ)) < R then 3 a chain By,...,Bn c Q,
m < C(N), with x € By, y € By, and d(Bg, 0Q) ~ diam(Bk).
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NTA domain

@ Harnack chain condition:

If |x —y| < A(d(x,0Q2) A d(y,dQ)) < R then 3 a chain By,...,Bn c Q,
m < C(N), with x € By, y € By, and d(Bg, 0Q) ~ diam(Bk).

@ C-corkscrew domain:

Vﬁ € GQ and r € (0, R) there are two balls of radius r/C contained in
) " Q and B(&, r)\Q respectively.

Harmonic measure is doubling in NTA domains, and its support coincides
with the whole boundary [Jerison, Kenig'82]
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One-sided results

One-phase free boundary problem for harmonic measure: Characterize
geometrically the absolute continuity of w wrt o = H"|sq.

Theorem (Dahlberg, ARMA'77)

If Q2 is a Lipschitz domain, then 9% € RH,(c) and, thus, w € Ay (o)

Here, the RH,(0) condition means for balls B centered at 09

(f () ) <

Theorem (David, Jerison'90)

If Q is chord-arc (2 is NTA and 02 is n-AD regular), then w € Ay (o).

Recent big break-through: geometric characterization of weak-Ay,,
related to Dirichlet solvability [Hofmann,
Martell'18]+[Azzam,Mourgoglou, Tolsa'18].
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(b) Either w™ or w™ have very big pieces of uniformly n-rectifiable
measures

c) Q* have joint big pieces of chord-arc subdomains
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Two-sided results

Two-phase f.b.p.: Characterize geometrically w* ~ w™ for disjoint QF.

Theorem (Azzam, Mourgoglou, Tolsa; to appear in TAMS)

Let QT < R™?! be an NTA domain and let Q— = IR”“\Qi+ be an NTA
domain as well. Then TFAE:

(a) w™ € Aw(wt).

(b) Either w™ or w™ have very big pieces of uniformly n-rectifiable
measures

c) Q* have joint big pieces of chord-arc subdomains

Non-quantitative

(WHle xwT|g = IFs.t.wt|r~H"|F&wt(E\F) =0)

Jordan arcs in the plane [Bishop, Carleson, Garnett, Jones'89].
General domains in the plane [Bishop; Ark. Mat.'91]

NTA domains in R"*! [Kenig, Preiss, Toro; JAMS'08]

CDC domains in R™! [Azzam, Mourgoglou, Tolsa; CPAM'17]
General domains in R"*! [Azzam-Mourgoglou-Tolsa-Volberg'19]



Introduction
[e]e]e]e]e] lelelelele]e]

Reifenberg flatness

Given E c R™1 x e R™1! r >0, B= B(x,r) and P an n-plane, we set

supgg d(y, P) v supp.gd(y, E)
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Reifenberg flatness

Given E c R™1 x e R™1! r >0, B= B(x,r) and P an n-plane, we set

DE(X7 r, P) _ SupEde(y7 'D) \; SUPp~p d(y7 E) )

Qis a (0, R)-Reifenberg flat domain if:

(a) Vxe 09, 0 < r < R we have
infp DgQ(X7 r, P) <46

(b) Vx €09, 0 < r < R, for the minimizing
P, one of the connected components of

Bn{xeR"™ :d(x,P)>25r}

is contained in 2 and the other is

contained in QF¢.
Small ¢ implies that Q is NTA [Kenig, Toro; Duke'97].

Q is vanishing Reifenberg flat if, Q is a (d, Rs)-Reifenberg flat for every
0> 0.
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VMO

Given a Radon measure pin R™, fe L} (1), and A< R™™!, we write

1
my a(f :][fd,uzi/fd,u.
Al = 1T A s
Assume p to be doubling. We say f € VMO(p) if

lim  sup ][( ) |f = my, s f dp|” du = 0. (1)
B(x,r

r—0 XESUpPpU

It is well known that the space VMO coincides with the closure of the set
of bounded uniformly continuous functions on suppy in the BMO norm.
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following asymptotic weight conditions are equivalent for every p > 0

o limsupy gy lllogwl, o, = 0 (BMO norm inside Q wrt p).

1
. o, wPdp) P
@ lim Supe(Q)‘)O (l;(QTH) = 1.
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“vanishing reverse Holder space” w e VRH,(u).
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Asymptotic absolute continuity

Given a weight w in a doubling measure space, Korey shows that the
following asymptotic weight conditions are equivalent for every p > 0

o limsupy gy lllogwl, o, = 0 (BMO norm inside Q wrt p).

1
. wPdu)p
o limsup,g)—o % =1
First condition is log w € VMO(u). The second can be understood as a
“vanishing reverse Holder space” w € VRH,(1). Also a vanishing Aq(u)
condition and some vanishing A, (1) conditions are equivalent. The
weight w is called asymptotically absolutely continuous by Korey, written

w e Ax as(1t).
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One-sided problem for VMO

Theorem (Kenig, Toro '97,99,03)

Let Q < R"1 be a bounded chord-arc domain which is 0-Reifenberg flat,
with § > 0 small enough.Denote by w the harmonic measure in £ with
pole p € Q and write o = H"|sq. Then TFAE:
d
(a) log di’ e VMO(0). (i.e. w € A 2s(c))
o
(b) The inner normal N to 0X2 exists o-a.e. and it belongs to VMO(o).
(c) Q is vanishing Reifenberg flat and the inner normal N to 02 exists
o-a.e. and it belongs to VMO(o).
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Let Q* « R™1, n > 2 be a bounded NTA domain with Q= = QF° NTA.
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Theorem (P., Tolsa, to appear in CVPDE'20)

Let Q* « R™1, n > 2 be a bounded NTA domain with Q= = QF° NTA.
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Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let Q* « R™1, n > 2 be a bounded NTA domain with Q= = QF° NTA.
Suppose QT is a 6-RF domain, with § > 0 small enough. Then TFAE:

(a) log Z% € VMO(w™) (ie. w™ € Am os(w™)).

(b) Q* is vRF, N € VMO(w") and w* € RH35(w™).
(c) Q* is vRF, QT have joint big pieces of chord-arc subdomains, and

lim sup ][ IN — Ng|dw™ =0,
=0, (By<p JB

where Ng is interior normal to the plane L from RF property.

In (a) = (b), vRF was shown in [Kenig, Toro, Crelle’06]. By Korey, also
w* € RH35(w¥) follows from w™ € Ay os(w™). Our contribution is
N € VMO(w™).Note that we don't assume H"|sq to be locally finite.
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where Ng is interior normal to the plane L from RF property.
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The geometric condition

The geometric characterization contains

lim sup ][ IN — Ng| dw™ =0,
=0, (By<p /B

where Ng is interior normal to the plane L from RF property.
This does not imply N € VMO(w™):

Here Ng is “vertical” for all the balls whose diameter is a horizontal
segment of an iteration, while the harmonic measure is concentrated in
vertical lines so {5 Ndw™ = (1,0) and |Ng — {5 Ndw*| ~ /(2).
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Reifenberg flatness is necessary

The Reifenberg flatness condition on the domain is necessary in the
theorem. This can be easily seen by taking a suitable smooth truncation
of the cone QF = {x1,x2,x3,x3) € R* : xZ + x5 < xZ + x2}, for which the
harmonic measures w and w™ with pole at oo coincide:

dw™
e € VMO(w™), but N ¢ VMO(w™)!

log
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Some notation

Define:
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O(x) := 0 (x) = lim,_0©(B(x,r))
Maximal Hardy-Littlewood operator M,,f(x) = sup,.q fg, , |fldw

e Maximal operator on measures M w(x) = sup,-o ©(B(x,r))

Analogous definitions for ©_, M- f(x), Mpw~. Given a signed Radon
measure v we consider the n-dimensional Riesz transform

/IX—yI{+1 ).

whenever the integral makes sense. For ¢ > 0,
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Some notation

Define:
o w:i=wt =whP+ wT = w P
_ w(B)
° O(B) = 75y

O(x) := 0 (x) = lim,_0©(B(x,r))
Maximal Hardy-Littlewood operator M,,f(x) = sup,.q fg, , |fldw

e Maximal operator on measures M w(x) = sup,-o ©(B(x,r))

Analogous definitions for ©_, M- f(x), Mpw~. Given a signed Radon
measure v we consider the n-dimensional Riesz transform

/IX—yI{+1 ).

whenever the integral makes sense. For ¢ > 0,

y
Rev(x) :/ 7d1/( ),
|[x—y|>e ‘X_y|n+1

and we set Ry v(x) = sup..o |Rev(x)]. Also write R, f = R(fpu).
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By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains Q*
with common boundary (...) and with w* and w™ mutually absolutely
continuous, then

@ 00T has an n-rectifiable subset F with full harmonic measure such
that

@ both harmonic measures are mutually absolutely continuous with
respect to the Hausdorff measure H" on F,

@ all points in F are tangent points for 0Q* and
o F is dense in 0Q7".

@ N is the interior unit normal, defined w-a.e.
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CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains Q*
with common boundary (...) and with w* and w™ mutually absolutely
continuous, then

@ 00T has an n-rectifiable subset F with full harmonic measure such
that

@ both harmonic measures are mutually absolutely continuous with
respect to the Hausdorff measure H" on F,

@ all points in F are tangent points for 0Q* and
@ F is dense in Q.
@ N is the interior unit normal, defined w-a.e.

Being n-rectifiable means that it is 7{"-a.e. contained in a countable
union of C! n-dimensional manifolds.
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are not available.
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Jump formulas for the Riesz transform

Assumptions of the theorem do not grant that the Hausdorff measure is
locally finite. Thus, traditional jump formulas (Hofman-Mitrea-Taylor)
are not available.

A recent work by Tolsa in arXiv provides jump formulas for n-rectifiable
sets. In our setting, we get the following:

For w-a.e. x we have that

RTwt (x) — R wh(x) = c,©(x)N(x)
RYwt (x) + R™wt(x) = 2p.v.Rw™ (x) =: 2Rw™ (x)




Preliminaries
[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:



Preliminaries

[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying




Preliminaries

[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying

) |nfL90 fB dist( x)L dw < 50




Preliminaries
[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)
Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying

) |nfL90 fB dist( x)L dw < 50

b) P(B) :=Y,270(2B) < GO(B).




Preliminaries

[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying

) |nfL90 fB dist( x)L dw < 50

b) P(B):=2;2770(2B) < GO(B).
c) There exists a good set with w(B\Gg) < dow(B), with




Preliminaries

[e]e]e] ]

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying

) |nfL90 fB dist( x)L dw < 50

b) P(B) :=3},276(2B) < GO(B).
c) There exists a good set with w(B\Gg) < dow(B), with
d) M,(xsw) + R«(xsw) < GO(B) in Gg and




Preliminaries
[e]e]e] ]

Rectifiability criterion
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Theorem (Girela-Sarrién, Tolsa)
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Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying

) |nfL90 fB dist( x)L dw < 50

b) P(B):=2;2770(2B) < GO(B).
c) There exists a good set with w(B\Gg) < dow(B), with
d) Mup(xsw) + Ry(xsw) < GGO(B) in Gg and

o, [Rw — my, 6, (Rw)Pdw < 10(B)?,

there exists a uniform n-rectifiable set ' st. w(Gg N T) = 6w(B).
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Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrién and Tolsa gave the following local version:

Theorem (Girela-Sarrién, Tolsa)

Y Co, Ci > 1, 369, 70, 0 st. given a ball B = R"*! satisfying
a) infrso {5 dist( X)L dw < dp.
b) P(B):=2;2770(2B) < GO(B).
c) There exists a good set with w(B\Gg) < dow(B), with
d) M,(xsw) + R«(xsw) < GO(B) in Gg and
fGB |Rw — my, 6, (Rw)[2dw < 100(B)?,

there exists a uniform n-rectifiable set ' st. w(Gg N T) = 6w(B).

Uniform n-rectifiable means that I is n-AD regular and there are
M,6 > 0 so that for all x € E, 0 < r < diam(I"), 3g : B = BX" — R
M-Lipschitz with

H'(T ng(B)nB(x,r)) = 0r"
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will define G = Q (the “good set”) and LD < Q (low density) VQ € D.
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Q Q\GuLD QNG\LD

Choose Cq = %, and note that )ﬁ — | < plu=vl,

[ul
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Since w is doubling, define a Christ dyadic structure D = | J, Dk. We
will define G = Q (the “good set”) and LD < Q (low density) VQ € D.

:=/ \N—CQ|2dw</ |N7cQ|2dw+/ IN — Col|*dw
Q Q\GuLD QNG\LD

_ m, c(ON) u v lu—v|
Choose Cg = T c (@M and note that W~ T <2 e Then

2
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Away from the low density, we have ©(x) > 7©(Q). Thus,
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= w(Q) < cw(Q)
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Main argument

Since w is doubling, define a Christ dyadic structure D = | J, Dk. We
will define G = Q (the “good set”) and LD < Q (low density) VQ € D.

:=/ \N—CQ|2dw</ |N7cQ|2dw+/ IN — Col|*dw
Q Q\GuLD QNG\LD

_ m, c(ON) u v lu—v|
Choose Cg = T c (@M and note that W~ T <2 e Then

2
[N - Cal < 5lON = m,c(ON)|

Away from the low density, we have ©(x) > 7©(Q). Thus,

S w(Q\G) +w(LD) + Tzel(Q)z/Q c

%w(@) <ew(Q)

If £ goes to zero uniformly on ¢(Q) then N € VMO(w) and we are done.

|ON — mg(ON)|?dw

< a1w(Q) + erw(Q) +
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Key elements

We have used the following:
@ The low density set contains all low density points: ©(x) > 70(Q)
in LD,
@ The low density set is small: w(LD) < eow(Q).
@ The good set is big w(Q\G) < e1w(Q)
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Key elements

We have used the following:
@ The low density set contains all low density points: ©(x) > 70(Q)
in LD,
@ The low density set is small: w(LD) < eow(Q).
@ The good set is big w(Q\G) < e1w(Q)
@ "Riesz transform” does not oscillate much in the good set

fone |ION — mg(ON)Pdw < £30(Q)?
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Low density set

Define LD, as the maximal family of cubes P c Q st ©(P) < 70(Q)
and LD := LD; = Jpe,p. P- First property (©(x) > 70(Q) in LD"') i
immediate. The second is the lemma:

Veo, > 0, 37(e2) st w(LD;) < exw(Q)

Proof by induction: 7 = MM 0<X<1and M(7) >> 1. Then, writing
LD* := LD,«, LD* := LD, we prove

Let A(n) be small. 3n € (0,1) st Yk > 0, if P € LDy, then
w(P n LD**1) < nw(P).

Thus, g5 = 77M.
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Proof of the claim
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Proof of the claim

Theorem (Girela-Sarrién, Tolsa)

VG, G > 1, 360, 70,0 st. given a ball B c R™! satisfying
a) infrso 5= d'St XL ) dw < 5.
b) P(B) =3} 2‘19(218) < GO(B).
c) There exists a good set with w(B\Gg) < dow(B), with
d) Mp(x2sw) + Rs(xesw) < GGO(B) in Gg and
e, IRw — My, s (Rw)Pdw < 100(B)?,

there exists a uniform n-rectifiable set I st. w(Gg N T) = 6w(B).

Condition (a) is immediate form RF, (b) is shown using RF for small
enough balls. We need to check (c)-(e). The AD-regularity of I is used
to show the claim.
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Our assumption is that log h € VMO for h := gz—t, that is, the oscillation
of log h vanishes uniformly as ¢(Q) — 0.
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Our assumption is that log h € VMO for h := ZZ—J:, that is, the oscillation

of log h vanishes uniformly as ¢(Q) — 0. Consider
h
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aQ
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For better estimates, we consider a slightly modified set G:Q so that, if
é(Q) < Kl(él, VMO) then

o w(Q\Gg) < Co1w(Q) (i.e., condition (c) in [GT] is satisfied),

o for x& Go. r < Q). then S{G) ~ ZECe] and
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Definition of the good set

Our assumption is that log h € VMO for h := ZZ—J:, that is, the oscillation

of log h vanishes uniformly as ¢(Q) — 0. Consider

)

Go = {XEQZ
aQ

for ag :=e fologhdw fQ hdw (by John-Nirenberg).
For better estimates, we consider a slightly modified set G:Q so that, if
é(Q) < Kl(él, VMO) then

o w(Q\Gg) < Co1w(Q) (i.e., condition (c) in [GT] is satisfied),

o for xe 5@, r < £(Q), then i;ggg ~ Z;Egg:gg and

® 0+(B(x,r)) £ 0+(Q), so My(xew)(x) < O(Q).




Proof of (a) implies (b)
[e]e]e]e]e] lele)

Control of maximal operators

By the definition of harmonic measure, we have that

for xe xqo-, RwT(x)=K((x-p")
for x € xq+, Rw (x) =K(x—p7)



Proof of (a) implies (b)
[e]e]e]e]e] lele)

Control of maximal operators

By the definition of harmonic measure, we have that

for xe xqo-, RwT(x)=K((x-p")
for x € xq+, Rw (x) =K(x—p7)

If £(Q) < ¢1(61, VMO), then for x € GQ we get (by CZ estimates and
[Kenig, Toro, Duke'97])

Ma(xew)(x) + Rx(xow)(x) < ©(Q)

(this shows that condition (d) in [GS] is satisfied).
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Control of maximal operators

By the definition of harmonic measure, we have that
for x € xq-, Rwt(x)=K(x—-p")
for x € xq+, Rw (x) =K(x—p7)

If £(Q) < ¢1(61, VMO), then for x € GQ we get (by CZ estimates and
[Kenig, Toro, Duke'97])

Mi(xow)(x) + Ry (xow)(x) < ©(Q)

(this shows that condition (d) in [GS] is satisfied). By T(b)-theorem of
Nazarov, Trail and Volberg, this implies that

IRelizol o < O(Q)

and also weak-(1,1) boundedness

R : {finite Radon measures in R""!} — [ ().
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For w-a.e. in 02 we have that

R-wh =K(-—p"), RYw™ =K(-—p7)
ON =R "w—-R w and Rw =R "w+ R w,

that is,

ON = L(Rtw—K(-—p*)) and Rw— %(Rm LK(—p)

Cn
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Jump identities

For w-a.e. in 02 we have that

R-wh =K(-—p"), RYw™ =K(-—p7)
ON =R "w—-R w and Rw =R "w+ R w,

that is,

1 1
ON = C—(R%J —K(-—p")) and Rw= §(R+w +K(-—ph)
Thus, to control the oscillation of ©N in the main proof and the
oscillation of Rw in the nondegeneracy, it is enough to control oscillation

of RTw.
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We define in the main argument G := éAQ for A big enough, while in the
nondegeneracy argument we choose Gg := Gpp.

Ve', if N = N(e') is big enough and §1(¢’, \) small enough, whenever
2(Q) < £r(d1,N,€") we have that

][ _ RTw - ColPdw < £'6(Q)?
Qf\G/\Q

Note that Rtw = RT(wt —cw™) + cK(- — p7) a.e. in 0Q7.
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Oscillation of RTw

We define in the main argument G := éAQ for A big enough, while in the
nondegeneracy argument we choose Gg := Gpp.

Ve', if N = N(e') is big enough and §1(¢’, \) small enough, whenever
2(Q) < £r(d1,N,€") we have that

][ ~ IRTw — CQ\zdw < 6/9(Q)2
QN Grg

Note that Rtw = RT(wt —cw™) + cK(- — p7) a.e. in 0Q7.

The proof is obtained by combining jump formulas, the weak
boundedness of the Riesz transform, the pointwise control of the maximal
operators, and the estimates on the good set introduced before. The
scaling parameter A is used to separate the local part from the non-local
part, and CZ “off-diagonal” estimates appear which are small for A big.
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(from [Azzam,Mourgoglou, Tolsa IMRN'17])

Consider QF and the good set

G < 0Q* to be defined.

Take a Whitney covering of G€¢ so that
£(S) ~ min{ry, 83d(S, G)}

Select the cubes that intersect the
boundary of the domain.

Take ball Bs centered in a boundary
point of each cube S with radius

5o H(S).

Consider the domains

Qf :=Q* u|JBs and

Q= Q°\Bs.
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Approximating domains

(from [Azzam,Mourgoglou, Tolsa IMRN'17])

e Consider QF and the good set
G < 0Q* to be defined.

@ Take a Whitney covering of G° so that
£(S) ~ min{ry, 83d(S, G)}

@ Select the cubes that intersect the
boundary of the domain.

@ Take ball Bs centered in a boundary
point of each cube S with radius
5o H(S).
o Consider the domains
Qf :=Q* u|JBs and
Q= Q°\Bs.
@ Analogously define Q, and Q7.

Q,
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Approximating domains

(from [Azzam,Mourgoglou, Tolsa IMRN'17])

e Consider Q* and the good set
G < QT to be defined.

@ Take a Whitney covering of G° so that
£(S) ~ min{ry, 83d(S, G)}

@ Select the cubes that intersect the
boundary of the domain.

@ Take ball Bs centered in a boundary
point of each cube S with radius
5o H(S).
o Consider the domains
Qf :=Q* u|JBs and
QS_ = QS\U Bs.
@ Analogously define Q, and Q7.
If QF is (01, ro)-RF with d1(dg) small enough, then Qf/s are also

(C(SO%7 ro/2)-RF and dQ n 10Bs is a Lipschitz graph.

Q,
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That is, Ve > 0, VB with r(B) < {(e),
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Select a good set Gy = G(B) = B\(LD,(AB) u HDA(AB)).

Then by the maximum principle,
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We want to see that w™ € Ay 2s(w™) = VRHp(wt) for a certain p > 1.
That is, Ve > 0, VB with r(B) < {(e),

W (£ () ) <028

Select a good set Gy = G(B) = B\(LD,;(AB) u HDs(AB)). Since

w™ € Ap(w'), we have that w™ € RH,(w™). Write g =: 1 + 203, define
p =1+ 3. Then by the maximum principle, Holder and RH inequalities
and estimates on the size of Gy we get
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Reverse Holder for the approximate domains' measures

The key identity to prove is the following:
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*,Ar(B),o

Moy

Assume it to be true. By stopping conditions and the fact that Qf is a

Lipschitz domain, we show that they are also chord-arc. From the
one-phase problem [Kenig, Toro, Duke'97] chord-arc and Ng:+ € VMO

(not satisfied: we need a quantitative version) imply that

0 € Ay as(wi) = VRH3(w}) and similarly w,” € VRHa (o) with modulus

of continuity e3.
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00e00

End of the proof

The last RH inequality together with the previous reasoning implies

(B (@ (B))” ne ) (@ (BN
(e) (@) 0@ ) (58)
Finally, we see that w*(B) < (1 + e4)w} (B) and
w, (B) < (1 + e4)w™(B) for r(AB) small enough, A big enough and do

small enough, using the Holder continuity of harmonic measure and the
separation between B and (AB)°.
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The key estimate

The key estimate remaining
Moz, 1o S CATIINae Ly sonsy o +21(00)
is deduced from

Lemma

Let QT = R be bdd two-sided NTA (8o, ro)-Reifenberg flat for some
do > 0 and ry > 0. Suppose also that w* € RH3)>(w™) and that

N e VMO(w™). Let B be a ball centered in dQ+ with Nor(B) < ro/4.
Let Lg be a best approximating n-plane for 0Q* n B and Ng the unit

normal to Lg pointing to Q". For any 1 > 0,

|Ng — mg o+ No+| < &1 = e1(8, r(B)),

with €1 as small as wished if & is small enough and r(B) small enough,

v




Proof of (b) implies (a)
0000e

The key estimate

To get
|NB — Mmpg ,+ NQ+| <eég = €1((50, I’(B)),

we show the estimate

ONqg+ dw — N
/G(AB) o r(B)" g

if the constants are big/small enough. Then we argue as in the

=]
<ok,

u v

implication (a) = (b) with T




Proof of (b) implies (a)
0000e

The key estimate

To get
|NB — Mmpg ,+ NQ+| <eég = €1((50, I’(B)),

we show the estimate

ONqg+ dw — N
/G(AB) o r(B)" g

if the constants are big/small enough. Then we argue as in the

=]
<ok,

u v

implication (a) = (b) with T

The estimate is obtained using again:

Jump formulas [Tolsa; arXiv '18]

Holder continuity of the harmonic measure and

change of pole formulas from [Jerison, Kenig; Adv. Math.'82]
Monotonicity formula [Alt, Caffarelli, Friedmann; TAMS'84]
Refined doubling properties of w in [Kenig, Toro; Duke'97]

Hypothesis w* € B3/»(w™) is needed in this proof.



The end

Kiitos paljon! Tack! Moltes gracies!



	Introduction
	Preliminaries
	Proof of (a) implies (b)
	Proof of (b) implies (a)

