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1 1st session

1.1 Review of the Beurling transform

The Beurling transform is defined as the principal value

Bϕpzq :� �
1

π
lim
εÑ0

»
|w�z|¡ε

ϕpwq

pz � wq2
dmpwq, (1.1)

for ϕ P C8
0 pCq. Notice that the principal value is necessary since the integral is not absolutely

convergent, and it exists pointwise by Green’s formula.

Lemma 1.1 (Properties of the Beurling transform). One has

• Bϕ � BCϕ for ϕ P C8
0 .

• BpBfq � Bf for f P L1
loc X

9W 1,2.

• Bpfq � F�1
�
ζ
ζ
pf	 .

• B extends as an isometry in L2, (B2 :� }B}L2ÑL2 � 1) and the principal value is well
defined.

• B is a bounded operator in Lp with norm Bp for 1   p   8 and the principal value is well
defined.

• The map p ÞÑ Bp is Lipschitz continuous.

Partial proof. By Green’s formula,

Bϕpzq �
1

π
lim
εÑ0

»
|w�z|¡ε

Bϕpwq

pz � wq
dmpwq �

i

2π
lim
εÑ0

»
|w�z|�ε

ϕpwq

pz � wq
dmpwq � CBϕpzq � BCϕpzq.

From the Cauchy formula, being ϕ of compact support we have that in C8
0 , C � B � I and,

thus,
BpBϕq � Bϕ.
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By integration by parts one can see that
��Bϕ��

L2 � }Bϕ}L2 and, togehter with some approximation
methods one sees that

}Bpϕq}L2 � }ϕ}L2

for all ϕ P C8
0 .

By density again one can define the Beurling transform acting on L2. That is, the Beurling
transform is an isometry in L2.

1.2 Relation with quasiconformal mappings: Solving the Beltrami equa-
tion

Consider 0 ¤ k   1 and a measurable and compactly supported function µ such that }µ} � k for
z P C (we call it Beltrami coeficient). The Beltrami equation

sBfpzq � µpzqBfpzq

has a unique solution f PW 1,2
loc such that

fpzq � z �Op1{zq as z Ñ8.

The solution will be of the following form. Consider

h :� pI � µBq�1pµq,

where we consider the mapping I � µB : Lp Ñ Lp with }µ �B}pp,pq ¤ kBp � k   1 for p � 2 � ε
and ε small enough. Then,

f � Cphq � z.

One can check that, indeed, sBf � h

and, since pI � µBqphq � µ,
µBf � µBphq � µ � h

With some more effort one can see that this solution is indeed a K-quasiconformal homeomor-
phism for K � 1�k

1�k .
What can we say on the regularity of the solution? We consider µ compactly supported. If

µ P A is then h P A? In which spaces can we invert I � µB?

1. [AIS01] For p in the critical interval, p P ppk, qkq, we have that

µ P Lp ùñ h P Lp

and it fails otherwise.

2. [AIM09] With Schauder estimates they get for 0   α   1

µ P C`,αloc pΩq ùñ f P C`�1,α
loc pΩq

and it fails for α � 0 and α � 1.

3. [CMO13] For any 1   p   8 and 1   q   8 and sp ¡ 2 (that is, when we have that Bsp,q
and F sp,q are multiplication algebras of bounded continuous functions),

µ P Asp,q ùñ h P Asp,q.
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1.3 Known results:

Theorem ([CMO13]). Let Ω be a bounded C1,ε domain for ε ¡ 0, and let 1   p   8 and 0   s ¤ 1
such that sp ¡ 2. Then the Beurling transform is bounded in the Sobolev space W s,ppΩq if and
only if BpχΩq PW

s,ppΩq.

Using this, a Hölder estimate for C1,ε-domains and Fredholm theory they prove the following.

Corollary ([CMO13]). If ε ¡ s,

µ PW s,ppΩq ùñ h PW s,ppΩq.

Tolsa and Cruz looked for weaker conditions on the regularity of Ω to bound BpχΩq:

Theorem ([CT12]). Let Ω � C be a Lipschitz domain and its unitary outward normal vector N

is in the Besov space B
s�1{p
p,p pBΩq for s ¤ 1, then one has BpχΩq PW

s,ppΩq.

Notice that, if sp ¡ 2, B
s�1{p
p,p � C0,s�2{p, so one can use the result in [CMO13]

Corollary ([CT12]). If sp ¡ 2 and N P B
s�1{p
p,p pBΩq, then B is bounded in W s,ppΩq.

Theorem ([Tol13]). This geometric condition is necessary when the Lipschitz constants of BΩ are
small.

1.4 Results found:

Theorem 1.2. Let Ω � Rd be a Lipschitz domain, T a smooth convolution Calderón-Zygmund
operator of order n P N and p ¡ d. Then the following statements are equivalent:

a) The operator T is bounded in Wn,ppΩq.

b) For every polynomial P of degree at most n� 1, we have that T pP q PWn,ppΩq.

Theorem 1.3. Let T be a smooth convolution Calderón-Zygmund operator of order n, and consider
a Lipschitz domain Ω and let 1   p ¤ d. If the measure |∇nTP pxq|pdx is a p-Carleson measure for
every polynomial P of degree at most n� 1 restricted to the domain, then T is a bounded operator
on Wn,ppΩq.

Theorem 1.4. This condition is in fact necessary for n � 1 and small Lipschitz constant.

Theorem 1.5. Let Ω be a Cn�1,1 domain. Then,

}BχΩ}
p
9Wn,ppΩq

À }N}
p
9B
n�1{p
p,p pBΩq

�H1pBΩq2�np

with constants depending only on p, n and the Lipschitz character of the domain.

2 2nd session

2.1 Proof of Theorem 1.2

Proof. The implication aq ñ bq is trivial.
To see the converse, we will use a Whitney covering of Ω.
Recall that the Poincaré inequality tells us that, given a cube Q and a function f P W 1,ppQq

with 0 mean in the cube,
}f}LppQq À `pQq}∇f}LppQq
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Since we want to iterate that inequality, we also need the gradient of f to have 0 mean on Q and
so on.

Given f P Wn,ppQq, we define PnQpfq P PnpΩq as the unique polynomial (restricted to Ω) of
degree smaller or equal than n such that

 
Q

DβPnQf dm �

 
Q

Dβf dm (2.1)

for every multiindex β P Nd with |β| ¤ n.
Let xQ be the center of Q. If we consider the Taylor expansion of Pn�1

3Q f at xQ,

Pn�1
3Q fpyq � χΩpyq

¸
γPNd

|γ| n

mQ,γpy � xQq
γ , (2.2)

then the coefficients mQ,γ are bounded by

|mQ,γ | ¤ cn
¸
β¥γ
|β| n

��Dβf
��
L8p3Qq

`pQqj�|γ|.

Now, fix a point x0 P Ω. We have a finite number of monomials Pλpxq � px � x0q
λχΩpxq for

multiindices λ P Nd and |λ|   n, so the hypothesis can be written as

}T pPλq}Wn,ppΩq ¤ C. (2.3)

Assume f PWn,ppΩq. We will see later that it is enough to prove that¸
QPW

}DαT pPn�1
3Q fq}pLppQq À }f}pWn,ppΩq.

Taking the Taylor expansion of the polynomial Pn�1
3Q f in x0, one has

Pn�1
3Q fpxq � χΩpxq

¸
|γ| n

mQ,γ

¸
~0¤λ¤γ

�
γ

λ



px� x0q

λpx0 � xQq
γ�λ.

Thus,

DαT pPn�1
3Q fqpyq �

¸
|γ| n

mQ,γ

¸
~0¤λ¤γ

�
γ

λ



px0 � xQq

γ�λDαpTPλqpyq. (2.4)

Raising (2.4) to the power p, integrating in Q and using the bounds on |mQ,γ | we get���DαT pPn�1
3Q fq

���p
LppQq

À
¸

|β| n

��Dβf
��p
L8pΩq

¸
~0¤λ¤β

diamΩp|β|�|λ|qp}DαpTPλq}
p
LppQq.

By the Sobolev Embedding Theorem, we know that
��∇jf��

L8pΩq
¤ C

��∇jf��
W 1,ppΩq

as long as

p ¡ d. If we add with respect to Q PW and we use (2.3) we get¸
QPW

���DαT pPn�1
3Q fq

���p
LppQq

À
¸

|β| n

��Dβf
��p
W 1,ppΩq

¸
~0¤λ¤β

}DαpTPλq}
p
LppΩq À }f}

p
Wn,ppΩq,

with constants depending on the diameter of Ω, p, d and n.
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2.2 The Key Lemma

To complete the proof of Theorem 1.2 it remains to prove the following lemma which says that it
is equivalent to bound the transform of a function and its approximation by polynomials.

Key Lemma 2.1. Given a multiindex α with |α| � n, we whave¸
QPW

���DαT pf �Pn�1
3Q fq

���p
LppQq

À }∇nf}pLppΩq. (2.5)

Proof. For each cube Q PW we define a bump function ϕQ P C8
c such that χ 3

2Q
¤ ϕQ ¤ χ2Q and��∇jϕQ��8 � `pQq�j for every j P N. Then we can break (2.5) into local and non-local parts as

follows: ¸
QPW

���DαT pf �Pn�1
3Q fq

���p
LppQq

À
¸
QPW

���DαT
�
ϕQpf �Pn�1

3Q fq
	���p
LppQq

�
¸
QPW

���DαT
�
pχΩ � ϕQqpf �Pn�1

3Q fq
	���p
LppQq

� 1 � 2 . (2.6)

First of all we will show that the local term in (2.6) satisfies

1 �
¸
QPW

���DαT
�
ϕQpf �Pn�1

3Q fq
	���p
LppQq

À }∇nf}pLppΩq. (2.7)

To do so, notice that ϕQpf �Pn�1
3Q fq PWn,ppRdq and, by (??) and the boundedness of T in Lp,���DαT

�
ϕQpf �Pn�1

3Q fq
	���p
LppQq

À }T }
p
pp,pq

���Dα
�
ϕQpf �Pn�1

3Q fq
	���p
LppRdq

� C
���Dα

�
ϕQpf �Pn�1

3Q fq
	���p
Lpp2Qq

,

where }�}pp,pq stands for the operator norm in LppRdq. Using first the Leibnitz formula, and then
using j times the Poincaré inequality, we get���DαT

�
ϕQpf �Pn�1

3Q fq
	���p
LppQq

À
ņ

j�1

��∇jϕQ��pL8p2Qq���∇n�jpf �Pn�1
3Q fq

���p
Lpp2Qq

À
ņ

j�1

1

`pQqjp
`pQqjp

���∇npf �Pn�1
3Q fq

���p
Lpp3Qq

� n}∇nf}pLpp3Qq.

Summing over all Q we get (2.7).
For the non-local part in (2.6),

2 �
¸
QPW

���DαT
�
pχΩ � ϕQqpf �Pn�1

3Q fq
	���p
LppQq

,

we will argue by duality. We can write

2
1
p
� sup

}g}Lp1¤1

¸
QPW

»
Q

���DαT
�
pχΩ � ϕQqpf �Pn�1

3Q fq
�
pxq

��� gpxq dx. (2.8)
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Note that given x P Q, one has

DαT rpχΩ � ϕQqpf �Pn�1
3Q fqspxq �

»
Ω

DαKpx� yq p1� ϕQpyqq
�
fpyq �Pn�1

3Q fpyq
	
dy.

Taking absolute values, we can bound

|DαT rpχΩ � ϕQqpf �Pn�1
3Q fqspxq| À

»
Ωz 3

2Q

|fpyq �Pn�1
3Q fpyq|

|x� y|n�d
dy

À
¸
SPW

���f �Pn�1
3Q f

���
L1pSq

DpQ,Sqn�d
. (2.9)

We cannot use Poincaré inequality here, but we have���f �Pn�1
3Q f

���
L1pSq

¤
¸

PPrS,Qs

`pSqdDpP, Sqn�1

`pP qd�1
}∇nf}L1p3P q.

Proof. Consider the chain function rQ,Ss connecting Q and S by the shortest hyperbolic path.���f �Pn�1
3Q f

���
L1pSq

¤
��f �Pn�1

3S f
��
L1pSq

�
¸

PPrS,Qq

���Pn�1
3P f �Pn�1

3N pP qf
���
L1pSq

(2.10)

where we write N pP q for the next cube in the chain. For every polynomial q P Pn�1, from the
equivalence of norms of polynomials of bounded degree Pn�1pQp0, 1qq it follows that

}q}L1pQq � `pQqd}q}L8pQq,

and for r ¡ 1, also
}q}L8prQq À rn�1}q}L8pQq,

with constants depending only on d and n. Applying these estimates to q � Pn�1
3P f � Pn�1

3N pP qf

with r � DpP,Sq
`pP q , it follows that���Pn�1

3P f �Pn�1
3N pP qf

���
L1pSq

�
���Pn�1

3P f �Pn�1
3N pP qf

���
L8pSq

`pSqd

À
���Pn�1

3P f �Pn�1
3N pP qf

���
L8p3PX3N pP qq

`pSqdDpP, Sqn�1

`pP qn�1

�
���Pn�1

3P f �Pn�1
3N pP qf

���
L1p3PX3N pP qq

`pSqdDpP, Sqn�1

`pP qn�1`pP qd
.

Using that and the Poincaré inequality,���f �Pn�1
3Q f

���
L1pSq

À
¸

PPrS,Qs

��f �Pn�1
3P f

��
L1p3P q

`pSqdDpP, Sqn�1

`pP qd�n�1

¤
¸

PPrS,Qs

}∇nf}L1p3P q

`pSqdDpP, Sqn�1

`pP qd�1
.
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Plugging this expression and (2.9) into (2.8), we get

2
1
p
À sup

}g}p1¤1

¸
QPW

»
Q

gpxq dx
¸
SPW

¸
PPrS,Qs

`pSqdDpP, Sqn�1}∇nf}L1p3P q

`pP qd�1DpQ,Sqn�d
.

Finally, we use that P P rS,Qs implies DpP, Sq À DpQ,Sq (one can prove that using the Lipschitz
condition) to get

2
1
p
À sup

}g}p1¤1

¸
Q,SPW

¸
PPrS,SQs

»
Q

gpxq dx
`pSqd}∇nf}L1p3P q

`pP qd�1DpQ,Sqd�1

� sup
}g}p1¤1

¸
Q,SPW

¸
PPrQS ,Qs

»
Q

gpxq dx
`pSqd}∇nf}L1p3P q

`pP qd�1DpQ,Sqd�1

� 2.1 � 2.2 ,

where QS and SQ are two neighbor cubes of maximal size in this path. We consider first the term

2.1 where P P rS, SQs and, thus, DpQ,Sq � DpP,Qq. Rearranging the sum,

2.1 À sup
}g}p1¤1

¸
PPW

}∇nf}L1p3P q

`pP qd�1

¸
QPW

³
Q
gpxq dx

DpQ,P qd�1

¸
S¤P

`pSqd.

We have ¸
S¤P

`pSqd � `pP qd,

and ¸
QPW

³
Q
gpxq dx

DpQ,P qd�1
À

infxP3P Mgpxq

`pP q
.

An analogous argument can be performed with 2.2 , leading to

2.1 � 2.2 À sup
}g}p1¤1

¸
PPW

}∇nf}L1p3P q

`pP qd�1

inf3P Mg

`pP q
`pP qd À sup

}g}p1¤1

¸
PPW

}∇nf �Mg}L1p3P q

and, by Hölder inequality and the boundedness of the Hardy-Littlewood maximal operator in Lp
1

,
the theorem is proved.

2.3 Carleson measures

Theorem 2.2. [ARS02, Theorem 3] Let 1   p   8 and let ρpxq � distpx, BΩqd�p (a weight on
Ω), ρWpQq � `pQqd�p (a weight on the tree T of Whitney cubes). For a nonnegative measure µ
on T , the following statements are equivalent:

i) There exists a constant C � Cpµq such that

}Ih}Lppµq ¤ C}h}Lppρq
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ii) There exists a constant C � Cpµq such that for every P PW one has

¸
Q¤P

� ¸
S¤Q

µpSq

�p1
ρWpQq1�p

1

¤ C
¸
Q¤P

µpQq. (2.11)

iii) For every a P Ω one has»
�Shpaq

ρpxq1�p
1

pµpShpxq X Shpaqqqp
1 dx

distpx, BΩqd
¤ CµpShpaqq.

In virtue of [ARS02, Theorem 1], when d � 2 and the domain Ω is the unit disk in the plane,
the first condition is equivalent to µ being a Carleson measure for the analytic Besov space Bppρq,
that is, for every analytic function defined on the unit disc D,

}f}
p
Lppµq À }f}

p
Bppρq

� |fp0q|p �

»
D
p1� |z|2qp|f 1pzq|pρpzq

dmpzq

p1� |z|2q2
.

Theorem 2.3. If for every multiindex |λ|   n

dµλpxq � |∇nTPλpxq|pdx

defines a p-Carleson measure, then T is a bounded operator on Wn,ppΩq.

This proof is very much in the spirit of Theorem 1.2. Again we fix a point x0 P Ω and we
use the polynomials Pλpxq � px� x0q

λχΩpxq for every multiindex |λ|   n, but now the key point
is to use the Poincaré inequality instead of the Sobolev Embedding Theorem. Our hypothesis is
reduced to dµλpxq � |∇nTPλpxq|pdx being a p-Carleson measure for Ω for every |λ|   n.

Sketch of the proof. Arguing as in the T(P) theorem, we can bound¸
QPW

���∇nT pPn�1
3Q fq

���p
LppQq

À
¸

|β| n
~0¤λ¤β

¸
QPW

���� 
3Q

Dβf dm

����p µλpQq,
where µλpQq � }∇nTPλ}pLppQq.

Substracting the mean in the central cube Q0 if necessary, we have
ffl

3Q0
Dβf dm � 0. Thus,

 
3Q

Dβf dm �
¸

PPrQ,Q0q

� 
3P

Dβf dm�

 
3FpP q

Dβf dm

�
,

and we can use the Poincaré inequality to find that

¸
QPW

���∇nT pPn�1
3Q fq

���p
LppQq

À
¸

|β| n
~0¤λ¤β

¸
QPW

� ¸
P¥Q

`pP q

 
5P

|∇Dβf | dm

�p
µλpQq. (2.12)

By assumption, µλ is a p-Carleson measure for every |λ|   n. By Theorem 2.2, we have that,
for every h P lppρWq,

¸
QPW

� ¸
P¥Q

hpP q

�p
µλpQq ¤ C

¸
QPW

hpQqp`pQqd�p, (2.13)
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where ρWpQq � `pQqd�p.
Let us fix β and λ momentarily and take hpP q � `pP q

ffl
5P
|∇Dβf | dm in (2.13). Using Jensen’s

inequality and the finite overlapping of the quintuple cubes, we have¸
QPW

� ¸
P¥Q

`pP q

 
5P

|∇Dβf | dm

�p
µλpQq ¤ C

¸
QPW

� 
5Q

|∇Dβf | dm


p
`pQqd

À
¸
QPW

 
5Q

|∇Dβf |p dm`pQqd

À

»
Ω

|∇Dβf |p dm, (2.14)

finishing the proof.

2.4 The converse implication

Sketch of the proof. We are going to perform a duality argument for the case n � 1. Recall that
our hypothesis is that our operator T bounded in W 1,ppΩq. Then the averaging function

Afpxq :�
¸
QPW

χQpxq f3Q,

by the Key Lemma, is also bounded A : W 1,ppΩq Ñ Lppµq for

µpxq � |∇TχΩpxq|
pdx.

For the sake of simplicity, let us consider the case p � 2, d � 2. By duality, A� : L2pµq Ñ
W 1,2pΩq is also bounded.

We want to show that for any P ,¸
Q�ShpP q

µpShpQqq2 ¤ CµpShpP qq.

For g � χShpP q,

}A�g}2W 1,2pΩq À }g}
2
L2pµq � µpShpP qq

To get ¸
Q�ShpP q

µpShpQqq2 À }A�g}2W 1,2pΩq � error terms

we need to estimate }A�g}W 1,2pΩq from below.

For f PW 1,2pΩq

xA�pgq, fy �
»

Ω

gApfq dµ �
»

Ω

rg f dx
But using Hilbert structure of W 1,2pΩq, A�pgq is represented by a function h PW 1,2pΩq with

xA�pgq, fy �
»

Ω

∇h �∇f � �

»
Ω

∆h f dx�

»
BΩ

Bνh f dσ.

Thus, h is the solution of the Neuman problem#
�∆h � rg in Ω,

Bνh � 0 in BΩ.

It is well known that
hpxq :� N rpR

pd�1q
d g0qdσspxq �Ng0pxq. (2.15)
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Claim 2.4. One has

¸
Q¤P

µpShpQqqp
1

`pQq
p�d
p�1 À }Bdh}

p1

Lp1 pShωpP qq
�

¸
Q¤P

»
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d

rgpωpzqqdz�p1 dx
� 1 � 2 . (2.16)

Finally, we bound the negative contribution of the pd�1q-dimensional Riesz transform in (2.16),

that is we bound 2 .

Claim 2.5. One has

2 �
¸
Q¤P

»
Qω

�»
tz:zd¡xdu

zd � xd
|x� z|d

rgpωpzqqdz�p1 dx À µpShpP qq. (2.17)
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