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1 1st session

1.1 Review of the Beurling transform

The Beurling transform is defined as the principal value

Byp(z) := _1 lim Mdm(w), (1.1)

T e0 |lw—z|>e (Z - w)2

for ¢ € C§°(C). Notice that the principal value is necessary since the integral is not absolutely
convergent, and it exists pointwise by Green’s formula.

Lemma 1.1 (Properties of the Beurling transform). One has
e Bp=0Cyp for pe Cf.

e B(0f)=0f for fe Ll n wh2,
« BU)=F"'(EF).

e B extends as an isometry in L?, (By := |B|;2_ ;2 = 1) and the principal value is well
defined.

e B is a bounded operator in LP with norm B, for 1 < p < o0 and the principal value is well
defined.

o The map p — By, is Lipschitz continuous.

Partial proof. By Green’s formula,

Byp(z) = 1 limjl dp(w) dm(w) + z limfl pw) dm(w) = Cop(z) = 0Cp(z).

T e—0 w—z|>e (Z - w) 21 -0 w—z|=¢e (Z - w)

From the Cauchy formula, being ¢ of compact support we have that in Cg°, C 00 = I and,
thus,

B(0p) = dp.
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By integration by parts one can see that ||§<p|| 12 = [0¢] > and, togehter with some approximation
methods one sees that

1Bz = llell2

for all p € CF°.
By density again one can define the Beurling transform acting on L2. That is, the Beurling
transform is an isometry in L2. O

1.2 Relation with quasiconformal mappings: Solving the Beltrami equa-
tion

Consider 0 < k < 1 and a measurable and compactly supported function p such that ||u|| = & for
z € C (we call it Beltrami coeficient). The Beltrami equation

0f(2) = u(2)0f (2)

has a unique solution f € Wlif such that

f(z)=24+0(1/z) asz— .
The solution will be of the following form. Consider

hi= (I —pB)~ (n),

where we consider the mapping I — uB : LV — L? with ||u- B, ,, < kBp =k <1lforp=2+e¢
and ¢ small enough. Then,

One can check that, indeed,

and, since (I — uB)(h) = p,
pof =pB(h) +p=nh

With some more effort one can see that this solution is indeed a K-quasiconformal homeomor-

phism for K = %

What can we say on the regularity of the solution? We consider p compactly supported. If
1 € Ais then h € A? In which spaces can we invert I — uB?

1. [AISO01] For p in the critical interval, p € (pk, qx), we have that
nwelLP = hel?
and it fails otherwise.

2. [AIMO09] With Schauder estimates they get for 0 < aw < 1

peChYQ) = feCthQ)

and it fails for « = 0 and o = 1.

3. [CMO13] For any 1 < p < o0 and 1 < ¢ < o and sp > 2 (that is, when we have that B
and F; , are multiplication algebras of bounded continuous functions),

peA,, = hed; .



1.3 Known results:

Theorem ([CMO13]). Let Q be a bounded C*¢ domain fore >0, and let1 <p <o and0 < s < 1
such that sp > 2. Then the Beurling transform is bounded in the Sobolev space W*P(Q) if and
only if B(xq) € W*P().

Using this, a Holder estimate for C'1*-domains and Fredholm theory they prove the following.
Corollary ([CMO13]). Ife > s,

weWP(Q) = heW?P(Q).
Tolsa and Cruz looked for weaker conditions on the regularity of Q2 to bound B(xq):

Theorem ([CT12]). Let Q < C be a Lipschitz domain and its unitary outward normal vector N
is in the Besov space B;;,l/p(ﬁﬁ) for s <1, then one has B(xq) € WP(Q).

Notice that, if sp > 2, B;;l/p c C%*~2/P 50 one can use the result in [CMO13]

Corollary ([CT12]). If sp > 2 and N € B;;l/p(ﬁQ), then B is bounded in W*P(Q).

Theorem ([Tol13]). This geometric condition is necessary when the Lipschitz constants of 02 are
small.

1.4 Results found:

Theorem 1.2. Let Q < R? be a Lipschitz domain, T a smooth convolution Calderdn-Zygmund
operator of order n € N and p > d. Then the following statements are equivalent:

a) The operator T is bounded in W™P(£2).
b) For every polynomial P of degree at most n — 1, we have that T(P) € W™P(Q).

Theorem 1.3. Let T be a smooth convolution Calderdn-Zygmund operator of order n, and consider
a Lipschitz domain Q and let 1 < p < d. If the measure |V"T P(x)|Pdx is a p-Carleson measure for
every polynomial P of degree at most n — 1 restricted to the domain, then T is a bounded operator
on W™P(Q).

Theorem 1.4. This condition is in fact necessary for n = 1 and small Lipschitz constant.

Theorem 1.5. Let Q be ¢ C* 11 domain. Then,

+H(09)2 T

p P
HBXQ“Wn,p(Q) S [IV] BrYP(00)

with constants depending only on p, n and the Lipschitz character of the domain.
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2.1 Proof of Theorem 1.2

Proof. The implication a) = b) is trivial.

To see the converse, we will use a Whitney covering of (2.

Recall that the Poincaré inequality tells us that, given a cube @ and a function f € WP(Q)
with 0 mean in the cube,

HfHLp(Q) < E(Q)HVJCHLP(Q)



Since we want to iterate that inequality, we also need the gradient of f to have 0 mean on @ and

SO on.
Given f € W™P(Q), we define P (f) € P"(€2) as the unique polynomial (restricted to Q) of
degree smaller or equal than n such that

][ DPPY f dm =][ DP fdm (2.1)
Q Q

for every multiindex 8 € N with |3] < n
Let z¢ be the center of (). If we consider the Taylor expansion of P;g L1 at zQ,

P () = xa(y) Y moq(y— ), (2.2)
Nd
Pi<n

then the coefficients mg , are bounded by

Imq| < cn Z ”Dﬁf”L’ 3Q )FM'
B=y
[Bl<n

Now, fix a point g € Q. We have a finite number of monomials Py(z) = (z — z¢)*xa(z) for
multiindices A € N and |\| < n, so the hypothesis can be written as

|T(Px)[wer o) < C. (2.3)

Assume f e W™P(Q). We will see later that it is enough to prove that

D T®EG ) gy S 1 ey
QeEW

Taking the Taylor expansion of the polynomial ng Lfin 20, one has

PRI ) = xol@) X mos 3 ()= 0w - o

|v]<n 0<a<y
Thus,
DTRG NG = X mos X (]) - aay D R)m) (2.4)
[vl<n 0<a<y

Raising (2.4) to the power p, integrating in () and using the bounds on |mg | we get

HD“T (P!

VS 2D ey X diam@I DT R,
IBl<n GsA$ﬂ

By the Sobolev Embedding Theorem, we know that ijfHL‘D(Q) < C”ij”Wl‘p(Q) as long as
p > d. If we add with respect to @ € W and we use (2.3) we get

PO V2] I Y L D DU T2 N AR T
Qew [Bl<n 0<,\s6
with constants depending on the diameter of €2, p, d and n. O



2.2 The Key Lemma

To complete the proof of Theorem 1.2 it remains to prove the following lemma which says that it
is equivalent to bound the transform of a function and its approximation by polynomials.

Key Lemma 2.1. Given a multiindez o with |a] = n, we whave

P
> |0 =Pt n| < IV (2:5)
Oew Lr(Q)

Proof. For each cube @ € W we define a bump function ¢g € C° such that X3qQ S PQ < X2 and

ijany ~ ((Q)~7 for every j € N. Then we can break (2.5) into local and non-local parts as
follows:

p

Lr(Q)

5 s -riztnf < 8 o s ')

QeW

+ Q;W HD“T ((XQ — o) (f = Pyg" )> iv(@)

=+®. (2.6)

First of all we will show that the local term in (2.6) satisfies

@ = 3 |7 (valr ~P5" )|, o) S IV iy (2.7)

QeW

To do so, notice that g (f — Pgél ) € WnP(R?) and, by (??) and the boundedness of T" in LP,

o7 (vots =P D), o, < 172 (et ~P3 D),
=CHD°‘ (WQ(f Png )) Lr(2Q)

where |[-[,, , stands for the operator norm in L” (R4). Using first the Leibnitz formula, and then
using j times the Poincaré inequality, we get

D7 (cats =P D), SR | e [V =P D e
g Qr|vr(s - Pigt )H’;p ooy = "IV sy
Summing over all ) we get (2.7).
For the non-local part in (2.6),
@= 3 o7 (e -0 - P D
we will argue by duality. We can write
@ = s 3 | 0T - )f ~Pig D] @] gt (28)

l9ll L <1 Qew



Note that given x € @, one has
DT[(xa - ¢Q)(f — Pig' f)l(x) = j DK (x - y) (1 = o) (/(v) — P33 f()) dy.

Taking absolute values, we can bound

Pn 1
e = ea)ld = Pig lf)](I)| < JQ\ sQ - |)37— |n+<{( )|dy
f Pn 1 1
s H D(Q, S)nfd - (2.9)

Sew
We cannot use Poincaré inequality here, but we have

¢8)4D(P, S)" !
Z ((P)d—1

n—1
|7-Ps

< ||anHL1(3P)'
B pefs.ql

Proof. Consider the chain function [@, S] connecting @ and S by the shortest hyperbolic path.

P’

o S =P5 g+ 2 ISR s fHLl(S) (2.10)
Pe[S,

where we write A/(P) for the next cube in the chain. For every polynomial ¢ € P"~!, from the
equivalence of norms of polynomials of bounded degree P"~1(Q(0,1)) it follows that

HqHLl(Q) ~ g(Q)d”qHLD(Q)a

and for r > 1, also
”q“L‘I(TQ) < TnilHq“L“ﬂ(Q)a

with constants depending only on d and n. Applying these estimates to ¢ = Pg;lf — PQX/%P)f

with r ~ DZ((I;’)S), it follows that
Pnfl _ Pnfl ~ Pnfl _ Pnfl oS d
H sp f 3N(P)f L1(S) sp [ SN(P)f L% (S) ()
(S)eD(p, S)nt
< n—1 ’
S |Pap /- P3N(P)f L*(3PA3N(P)) ((P)n—1

(s)'p(p,S)" !
L13PA3N(P)) L(P)"~H(P)d

1%

n—1 n—1
Psp [ =Poyvipy S

Using that and the Poincaré inequality,

0S)¢D(P,S) !
SIORIE P s om e

(S)'D(p,S)
< Z IV fllzr s a1
Pe[S,Q] K(P)

n—1
7=,




Plugging this expression and (2.9) into (2.8), we get

@% < SuplQ;WJQ x)dz Z 2

lgll,r< Sew Pe[S,Q]

dD(P )"V flpsp)
P)-1D(Q, S)n+d

Finally, we use that P € [S, Q] implies D(P,S) < D(Q, S) (one can prove that using the Lipschitz
condition) to get

@% < swp J LSV fl L apy
- lgll, 1QS€WP€[SSQ Z(P)d 1D(@, 5)

+ sup
gl /SlQ SeW Pel[Qs,Q]

@)@

where ()5 and Sg are two neighbor cubes of maximal size in this path. We consider first the term

@ where P € [S, Sg] and, thus, D(Q, S) ~ D(P, Q). Rearranging the sum,

anf“Ll(BP SQg
@S sup Z g(p)d—l D Q p d+1 Z é

US)IV" i apy
J K(P)d 'D(Q, §)*H

Il <1 peyy S<P
We have
D) U8 ~ UP)Y,
s<P
and
2 SQ g() dx inf,esp Mg(x)
T S oP)
&, D(Q.P)
An analogous argument can be performed with @, leading to
anf“L1(3P) infzp Mg
e)+(2)s< s s UPY' S sup 3 IVF Ml
lol <1 PeW Pyt AP lol, <1 p;W

and, by Holder inequality and the boundedness of the Hardy-Littlewood maximal operator in L”',
the theorem is proved. O

2.3 Carleson measures

Theorem 2.2. [ARS02, Theorem 3] Let 1 < p < o and let p(z) = dist(z,0Q)?P (a weight on
Q), pw(Q) = £(Q)4P (a weight on the tree T of Whitney cubes). For a nonnegative measure p
on T, the following statements are equivalent:

i) There exists a constant C = C(u) such that

IZl oy < ClPl Lo )



it) There exists a constant C = C(u) such that for every P € W one has

> (Z u(5)> (@' <C Y Q). (2.11)

Q<P \S<Q Q<P

iit) For every a € ) one has

< Cu(Sh(a).

Jog P17 (M) SB@NY o

In virtue of [ARS02, Theorem 1], when d = 2 and the domain {2 is the unit disk in the plane,
the first condition is equivalent to p being a Carleson measure for the analytic Besov space Bpy(p),
that is, for every analytic function defined on the unit disc D,

dm(z)
p P — 2 /
gy S 1T = IO + [ (1= PP P o) 7
Theorem 2.3. If for every multiindex |\| < n
dp(x) = |V"TPy(x)|Pdx

defines a p-Carleson measure, then T is a bounded operator on W™P(().

This proof is very much in the spirit of Theorem 1.2. Again we fix a point zy € 2 and we
use the polynomials Py (z) = (z — x¢)*xqa(x) for every multiindex |A\| < n, but now the key point
is to use the Poincaré inequality instead of the Sobolev Embedding Theorem. Our hypothesis is
reduced to dux(z) = |[V*T Px(z)[Pdz being a p-Carleson measure for € for every || < n.

Sketch of the proof. Arguing as in the T(P) theorem, we can bound

Qew \5\<n Qew
0<a<p

HA

where 1 (Q) = [V"TPy[7, g
Substracting the mean in the central cube Qg if necessary, we have f3Q0 DP fdm = 0. Thus,

][BQDﬁfdm— (][ DB fdm — f Dﬁfdm>,

and we can use the Poincaré inequality to find that

¢ Bfldm . )
Nevie) = WZQ ng (I;Q (P) ]ip IVD? ] > (@) (2.12)
J<a<p

Pe[Q,Qo)

QeW

By assumption, uy is a p-Carleson measure for every |A\| < n. By Theorem 2.2, we have that,
for every h € IP(pyy),

> (Z WD)) Q) < C Y h(QPUR), (2.13)

QeEW \P=Q QeW



where py(Q) = £(Q)*7.
Let us fix 8 and A momentarily and take h(P) = ¢(P) f., [VDF f|dm in (2.13). Using Jensen’s
inequality and the finite overlapping of the quintuple cubes, we have

> (2 (P) ]£P|VDBf|dm> m@ <y (]iQwDﬂﬂdm) (Q)*

QeEW \Pz=Q QeW

< f@ VD 1P dm ¢(Q)?

Qew 5
sf |V DP f|P dm, (2.14)
Q

finishing the proof. O

2.4 The converse implication

Sketch of the proof. We are going to perform a duality argument for the case n = 1. Recall that
our hypothesis is that our operator 7' bounded in W1?(£2). Then the averaging function

Af@) = ) xa(@) fse,
QewW
by the Key Lemma, is also bounded A : W1?(Q) — LP(u) for

p(z) = |VTxa(x)[Pdx.

For the sake of simplicity, let us consider the case p = 2, d = 2. By duality, A* : L?(n) —
W12(Q) is also bounded.
We want to show that for any P,

Y. u(Sh(Q))* < Cu(Sh(P)).
QcSh(P)
For g = XSh(P)»
2
| A* g 3y12 () < Il 72 = 1(Sh(P))

To get

Z #(Sh(Q))* < HA*ng/Vl,Q(Q) + error terms
QcSh(P)

we need to estimate |A*g[y1.(q) from below.
For fe Wh%(Q)

<«4*(9),f>=£zg«4(f)du=L@’fdm

But using Hilbert structure of W12(Q), A*(g) is represented by a function h € W12(Q) with

(A*(9), f) = f Vh-Vf= —f Ah f dx +J o,h f do.
Q Q o0
Thus, h is the solution of the Neuman problem
—Ah =g in Q,
o,h =0 in 0.

It is well known that .
h(z) := N[(RY ™ go)do](x) — Ngo(z). (2.15)



Claim 2.4. One has

3] WShQ) M@ < 1l o+ 3 | (ﬁ Zd_mdﬁ(‘“”“) "

Q<P Q<P 2:124>Tq} |x_Z|d
=-0+®. (2.16)

Finally, we bound the negative contribution of the (d—1)-dimensional Riesz transform in (2.16),
that is we bound @

Claim 2.5. One has

’

®-3 ([{ Mﬁ(w(z))ﬁ) dz < u(Sh(P)). (2.17)

Q<P Z:124>Tq} |.7J - z|d
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