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Abstract. In this paper we give necessary and sufficient conditions on a row-finite graph
E so that the corresponding (not necessarily unital) Leavitt path K-algebra LK(E) is either
artinian or noetherian from both a local and a categorical perspective. These extend the
known results in the unital case to a much wider context. Besides the graph theoretic con-
ditions, we provide in both situations isomorphisms between these algebras and appropriate
direct sums of matrix rings over K or K[x, x−1].

Introduction

Leavitt path algebras of row-finite graphs have attracted a good deal of attention recently.
Although their origin can be traced back to the pioneering work of Leavitt in his quest for
finding universal rings failing to satisfy the IBN property (see [19]), they have only come
to life as such in recent years (see, e.g. [1], and [7]). Speaking informally, a Leavitt path
algebra is a graph K-algebra over a field K together with two naturally occurring relations,
known as the Cuntz-Krieger relations. This terminology evolves from the construction due
to Cuntz and Krieger of algebras defined out of finite {0, 1}-matrices towards the so-called
graph C∗-algebras (see [20]).

As with their analytic relatives, Leavitt path algebras provide a source of examples of rings
whose algebraic structure is determined by highly visual properties of the underlying graph
(see [10]). For example, conditions on the graph allow us to decide when the corresponding
Leavitt path algebra is simple [1], purely infinite simple [2], exchange [9], finite-dimensional [4].
Some of the graph conditions parallel the corresponding structural properties that one encoun-
ters in C∗-algebras (notably simplicity and the exchange property), but the routes towards
the proofs are in general quite different.

A whole range of examples of algebras arise as Leavitt path algebras. Besides the (now
already) classical examples investigated by Leavitt, we also find algebraic analogues of the
Toeplitz algebra, arbitrary matrices over the Laurent polynomial ring K[x, x−1] over a field
K, and, up to Morita equivalence, all K-ultramatricial algebras (i.e. countable direct limits
of K-matricial algebras).

Finiteness conditions have already been studied in the unital case (i.e. when the graph is
in fact finite), notably in [5]. Such conditions relate finite dimensionality (as vector spaces) to
chain conditions (artinian and noetherian conditions). It is but natural to push these results
further to the row-finite case, that is, when one allows the graph to have countably many
vertices that each emit at most finitely many edges. The algebras under consideration are
no longer unital, but have local units, and as in the unital situation, one expects to obtain
a characterization in terms of the graph and also in terms of the (unitary) modules over the
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algebras. This is the main objective of the present paper, fully accomplished for both the
artinian and noetherian situations.

In outline our results are organized as follows. We start by recalling the basic definitions
and notations that will be used throughout. These include the appropriate notions of artinian
and noetherian from a categorical point of view (i.e. in terms of finitely generated modules)
and also from a local point of view (i.e. in terms of finite subsets being included in appropriate
corners). This distinction is pertinent as the local and categorical notions are not equivalent
in general.

Section 2 contains our first main result (Theorem 2.7), in which we provide a charac-
terization of the semisimple path algebras as those which are either categorically artinian
or locally artinian (left or right). Furthermore, these algebras comprise precisely the class
of von Neumann regular Leavitt path algebras such that their monoid of finitely generated
projective modules is cancellative and atomic (in fact, isomorphic to a finite or countable
product of copies of Z+). Following the spirit of other results in the literature, we give an
explicit description of these algebras up to isomorphism, in the form of arbitrary direct sums
of (possibly infinite) matrix rings over the base field. They arise precisely from acyclic graphs
having the property that every infinite path ends in a sink.

The natural subsequent step is taken in Section 3, where we study the noetherian condition
on Leavitt path algebras. Our second main result is Theorem 3.9 which, in a manner much
akin to the artinian situation, shows the classes of locally noetherian and categorically noe-
therian (left or right) Leavitt path algebras to agree. We also provide in this case the explicit
description of these algebras. Namely, they are arbitrary direct sums of (possibly infinite)
matrix rings over the base field or over the algebra of Laurent polynomials. They arise from
those graphs in which no cycle has an exit, and every infinite path ends either in a sink or in
a cycle.

1. Preliminaries

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and maps r, s :
E1 → E0. The elements of E0 are called vertices and the elements of E1 edges. If s−1(v)
is a finite set for every v ∈ E0, then the graph is called row-finite. Throughout this paper
we will be concerned only with row-finite graphs. If E0 is finite, then, by the row-finite
hypothesis, E1 must necessarily be finite as well; in this case we say simply that E is finite.
A vertex which emits no edges is called a sink. A path µ in a graph E is a sequence of edges
µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1. In this case, s(µ) := s(e1) is the
source of µ, r(µ) := r(en) is the range of µ, and n is the length of µ. For n ≥ 2 we define En

to be the set of paths of length n, and E∗ =
⋃

n≥0 En the set of all paths. Throughout the
paper K will denote an arbitrary field.

We define the Leavitt path K-algebra LK(E), or simply L(E) if the base field is understood,
as the K-algebra generated by a set {v | v ∈ E0} of pairwise orthogonal idempotents, together
with a set of variables {e, e∗ | e ∈ E1}, which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee∗ for every v ∈ E0 that emits edges.
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The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The set
{e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e). If µ = e1 . . . en is a path, then we denote by µ∗ the element e∗n . . . e∗1 of L(E), and by µ0

the set of its vertices, i.e., {s(µ1), r(µi) | i = 1, . . . , n}. It was shown in [1, Lemma 1.5] that
every monomial in L(E) is of the form: kv, with k ∈ K and v ∈ E0, or ke1 . . . emf ∗1 . . . f ∗n for
k ∈ K, m, n ∈ N, ei, fj ∈ E1. For any subset H of E0, we will denote by I(H) the ideal of
L(E) generated by H.

Note that if E is a finite graph then we have
∑

v∈E0 v = 1L(E). On the other hand, if
E0 is infinite, then by [1, Lemma 1.6] L(E) is a nonunital ring with a set of local units. In
fact, in this situation, L(E) is a ring with enough idempotents (see e.g. [16] or [22]), and we
have the decomposition L(E) = ⊕v∈E0L(E)v as left L(E)-modules. (Equivalently, we have
L(E) = ⊕v∈E0vL(E) as right L(E)-modules.) If R is a ring with enough idempotents, then
by a left R-module we mean a unitary left R-module, that is, a module M in the usual sense
with the added condition that RM = M .

Definition 1.1. Let R be a ring with local units.

(i) We say R is categorically left artinian in case every finitely generated left R-module is
artinian.

(ii) We say R is categorically left noetherian in case every finitely generated left R-module
is noetherian.

The analogous definitions of categorically right artinian and categorically right noetherian
are obvious. These concepts will allow us to extend appropriately the corresponding notions
from the unital case, as is evident from the following proposition.

Proposition 1.2. Suppose E is a set of idempotents in the ring R for which R = ⊕e∈ERe.
Then R is categorically left artinian (resp. noetherian) if and only if each Re is a left artinian
(resp. noetherian) R-module. In particular, if R is a unital ring, then R is left artinian (resp.
noetherian) if and only if R is categorically left artinian (resp. noetherian).

Proof. The left regular module R is a generator for the category R−Mod of left R-modules.
(This is of course true for unital rings, but in fact, by the hypothesis that RM = M for each
left R-module M , follows easily for rings with enough idempotents as well.) If each Re is
artinian (resp. noetherian), then standard arguments yield that any factor of any finite direct
sum of such modules is also artinian (resp. noetherian), so that any finitely generated left
R-module is artinian (resp. noetherian) as well. The second statement is then obvious, as
R = R · 1. �

For us, by a countable set we mean a set which is either finite or countably infinite. The
symbol M∞(K) will denote the K-algebra of matrices over K of countable size but with only
a finite number of nonzero entries.

Corollary 1.3.

(i) Any ring of the form ⊕
i∈Υ

Mni
(K),

where Υ is a countable set and ni ∈ N ∪ {∞}, is categorically artinian.
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(ii) Any ring of the form ⊕
i∈Υ1

Mni
(K)⊕

⊕
j∈Υ2

Mmj
(K[x, x−1]),

where Υ1 and Υ2 are countable sets and ni, mj ∈ N ∪ {∞}, is categorically noetherian.

Proof. Let T be any unital ring, let R = Mn(T ) where n ∈ N ∪ {∞}, and let e = eii denote
any standard matrix idempotent in R. It is straightforward to show that there is an inclusion-
preserving bijection between the set of left ideals of T and the set of R-submodules of Re.
(More specifically, every R-submodule of Mn(T )e is of the form Mn(I)e for I a left ideal of T .)
As any field K is artinian, statement (i) then follows from this observation and Proposition
1.2. As the Laurent polynomial algebra K[x, x−1] is noetherian for any field K, statement
(ii) follows similarly. �

We note here that if R is a nonunital ring with enough idempotents, then the decomposition
R = ⊕e∈ERe shows that R can never be left artinian (resp. noetherian) in the usual sense.
Thus the notion of categorically artinian (resp. noetherian) is the germane one here.

Definition 1.4.

(i) Following [15], the ring R is called locally left (resp. right) artinian if for any finite
subset S of R there exists e = e2 ∈ R such that S ⊆ eRe, with eRe left (resp. right)
artinian.

(ii) The ring R is called locally left (resp. right) noetherian if for any finite subset S of R
there exists e = e2 ∈ R such that S ⊆ eRe, with eRe left (resp. right) noetherian.

As it turns out, the locally artinian condition is characterized, in the setting of semiprime
rings, by the fact that every local ring at an element is artinian, equivalently, they coincide
with their socle. For a ring R and an element a ∈ R, the local ring of R at a (denoted
Ra) is defined to be the ring aRa, with the sum inherited from R, and product given by
axa · aya = axaya. (See [17] for an equivalent definition and information about the exchange
of properties between a ring and its local rings at elements.) In particular, if e is an idempotent
in the ring R, then the local ring of R at e is just the corner eRe. We will investigate this
further in Section 2.

By the definition of a set of local units, it is easy to see that a ring R is locally left or right
artinian (resp. noetherian) precisely when R has a set of local units E for which eRe is left
or right artinian (resp. noetherian) for each e ∈ E.

Clearly if R is unital, then R is locally left (resp. right) artinian if and only if R is left
(resp. right) artinian; it was noted above that in this situation R is necessarily categorically
artinian as well. However, in the nonunital setting the categorically artinian and locally
artinian properties need not be the same. For instance, let R be the ring TN(K) of countably
infinite square matrices which are lower triangular, and have at most finitely many nonzero
entries. Then T is locally artinian, since for each matrix idempotent f the algebra fTf is
finite dimensional. However, the finitely generated left T -module Te11 is not left artinian,
since it is easy to check that Te11 ) Te21 ) Te31 ) .... (A generalization of this example is
presented in [15, p. 1256].) Nonetheless, the converse implication does hold.

Lemma 1.5. Let R be a ring with local units. If R is categorically left (resp. right) artinian,
then R is locally left (resp. right) artinian.
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Proof. We do the “left” case, the “right” case is virtually identical. Let E be a set of local
units for R. It suffices to show that eRe is left artinian for every e ∈ E. Since the left ideal
Re is finitely generated, it is by hypothesis artinian. Now consider a decreasing sequence of
left eRe-ideals I1 ⊇ I2 ⊇ ... . Then RI1 ⊇ RI2 ⊇ ... is a decreasing sequence of R-submodules
of Re, hence the sequence stabilizes, so that RIk = RIk+1 = ... for some integer k, which in
turn yields eRIk = eRIk+1 = ... . But for each positive integer j we have eRIj = Ij (because
Ij ⊆ eRe gives eIj = Ij), so that we get Ik = Ik+1 = ... and we are done. �

We have an analogous result in the noetherian situation. An example of a ring with local
units which is locally noetherian but not categorically noetherian is given in [15, p. 1256]
(take X to be the chain of real numbers, for instance.) But, arguing as in Lemma 1.5, we get

Lemma 1.6. Let R be a ring with local units. If R is categorically left (resp. right) noetherian,
then R is locally left (resp. right) noetherian.

We will analyze the structure of various graphs in the sequel. An important role is played
by the following three concepts. An edge e is an exit (resp. entrance) for a path µ = e1 . . . en

if there exists i such that s(e) = s(ei) (resp. r(e) = r(ei)) and e 6= ei. If µ is a path in E, and
if v = s(µ) = r(µ), then µ is called a closed path based at v. If s(µ) = r(µ) and s(ei) 6= s(ej)
for every i 6= j, then µ is called a cycle. A graph which contains no cycles is called acyclic.

We define a relation ≥ on E0 by setting v ≥ w if there is a path µ ∈ E∗ with s(µ) = v
and r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H. A
hereditary set is saturated if every vertex which feeds into H and only into H is again in H,
that is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H. Denote by H (or by HE when it is
necessary to emphasize the dependence on E) the set of hereditary saturated subsets of E0.

The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest hereditary subset of
E0 containing v. We extend this definition for an arbitrary set X ⊆ E0 by T (X) =

⋃
x∈X T (x).

The hereditary saturated closure of a set X is defined as the smallest hereditary and saturated
subset of E0 containing X. It is shown in [7] that the hereditary saturated closure of a set
X is X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X), and
Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n ≥ 1.

Recall that a vertex v in E0 is a bifurcation (or that there is a bifurcation at v) if s−1(v)
has at least two elements, and we say that there exists a cycle at v if v is a vertex of some
cycle. A vertex u in E0 will be called a line point if there are neither bifurcations nor cycles
at any vertex w ∈ T (u). We will denote by Pl(E) the set of all line points in E0. Clearly
Pl(E) is always a hereditary set.

Definitions 1.7. We say that an infinite path γ = (en)∞n=1 ends in a sink if there exists
m ≥ 1 such that the infinite subpath µ = (en)∞n=m has neither bifurcations nor cycles, or
equivalently, if µ0 ⊆ Pl(E). The infinite path µ is called an infinite sink.

Definition 1.8. We say that an infinite path γ = (en)∞n=1 ends in a cycle if there exists
m ≥ 1 and a cycle c such that the infinite subpath (en)∞n=m is just the infinite path ccc . . . .

We recall here some graph-theoretic constructions which will be of interest. For a hereditary
subset of E0, the quotient graph E/H is defined as

(E0 \H, {e ∈ E1| r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1),
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and the restriction graph is

EH = (H, {e ∈ E1| s(e) ∈ H}, r|(EH)1 , s|(EH)1).

The definitions of the following graph are particular cases of those appearing in [14, Defi-
nition 1.3]:

Let E be a graph, and let ∅ 6= H ∈ HE. Define

FE(H) = {α = (α1, . . . , αn) | αi ∈ E1, s(α1) ∈ E0 \H, r(αi) ∈ E0 \H for i < n, r(αn) ∈ H}.
Denote by FE(H) another copy of FE(H). For α ∈ FE(H), we write α to denote a copy of α
in FE(H). Then, we define the graph HE = (HE0, HE1, s′, r′) as follows:

(1) HE0 = (HE)0 = H ∪ FE(H).
(2) HE1 = (HE)1 = {e ∈ E1 | s(e) ∈ H} ∪ FE(H).
(3) For every e ∈ E1 with s(e) ∈ H, s′(e) = s(e) and r′(e) = r(e).
(4) For every α ∈ FE(H), s′(α) = α and r′(α) = r(α).

2. Artinian Leavitt path algebras

In this section we focus our attention on algebraic and graph theoretic characterizations of
artinian Leavitt path algebras. This study can be regarded as a natural followup of the work
done in [4] for finite-dimensional Leavitt path algebras, and the work done in [8], where the
socle of a Leavitt path algebra was described.

Our goal in this article is to study chain conditions on the one-sided ideals of Leavitt path
algebras. It is well known that for any unital K-algebra R, a subset I of R is a left (resp.
right) ideal of R if and only if I is a left (resp. right) algebra ideal of R (i.e., I is also closed
under scalar multiplication by K). It is not hard to show that this same property holds for
any K-algebra R which has enough idempotents (see e.g. [22, Lemma 3.11]). Consequently,
when we describe chain conditions on Leavitt path algebras, these conditions may be viewed
equivalently as chain conditions in either the ring-theoretic or the algebra-theoretic sense.

On a similar note, throughout the article we will have occasion to establish isomorphisms
between Leavitt path algebras and various other K-algebras (e.g., direct sums of matrix
rings over K or over K[x, x−1]). Because our primary interest here will be in the ring-
theoretic structure of these Leavitt path algebras, it is sufficient for our needs to establish
simply that such isomorphisms are ring isomorphisms. In fact, all the isomorphisms we will
establish between these K-algebras can be checked to be K-algebra isomorphisms as well.
Thus the reader may interpret the symbol ∼= either as “ring isomorphic to”, or as “K-algebra
isomorphic to”, throughout the article.

A semiprime ring A is called semisimple if it is the sum (equivalently, the direct sum) of its
minimal left ideals (equivalently, of its minimal right ideals). This is equivalent to saying that
A is semiprime and coincides with its socle. If A is a ring with local units (or, more generally,
a ring for which the left regular module AA is a generator for A−Mod), then this condition
is equivalent to saying that every left A-module is a direct sum of simple submodules.

For an arbitrary algebra, finite-dimensional implies left (and right) artinian. The following
result shows that for Leavitt path algebras the converse holds too.

Proposition 2.1. Let E be a finite graph. The Leavitt path algebra L(E) is left (equivalently,
right) artinian if and only if L(E) ∼=

⊕t
i=1 Mni

(K) for some positive integers {n1, ..., nt}.
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Proof. The “only if” direction is clear. Conversely, assume that L(E) is left artinian. By
the finiteness of E, L(E) is unital. So we may invoke the structure theorem of semiprime
artinian rings (see, for example Jacobson’s book [18]), specifically, that semiprime and artinian
is equivalent to being semisimple and artinian. Since L(E) is semiprime ([8, Proposition 1.1]),
it is a direct sum of matrix rings over division rings. On the other hand we know that for
every minimal left ideal I of L(E) there exists a vertex v ∈ Pl(E) such that I ∼= L(E)v ([8,
Theorem 3.3]) and vL(E)v ∼= K ([8, Proposition 2.7]), therefore L(E) ∼=

⊕t
i=1 Mni

(K) as
desired. The right artinian case is similar. �

Proposition 2.1 provides a key step towards the following important consequence.

Theorem 2.2. Let E be a finite graph (in other words, let L(E) be unital). The following
conditions are equivalent.

(i) L(E) is semisimple.
(ii) L(E) is left artinian.
(ii)′ L(E) is right artinian.
(iii) L(E) ∼=

⊕t
i=1 Mni

(K) for some positive integers {n1, ..., nt}.
(iv) E is acyclic.
(v) L(E) is finite dimensional.

Proof. (v) ⇒ (iv) is [9, Proposition 3.6], while (iv) ⇒ (iii) is [9, Proposition 3.5]. The
implications (iii) ⇒ (i), (iii) ⇒ (ii), (iii) ⇒ (ii)′, (i) ⇒ (ii), and (i) ⇒ (ii)′ are well known.
But by Proposition 2.1 both (ii) and (ii)′ imply (iii), which in turn clearly implies (v), and
we are done. �

Remark 2.3. For a finite graph F and field K one can construct the usual path algebra of F
with coefficients in K, denoted KF . As it turns out, the condition for the path algebra KE
to be artinian is identical to the condition for the Leavitt path algebra L(E) to be artinian,
namely, that E is acyclic. (This is a well-known result in path algebras: if E is acyclic then
in fact KE is finite dimensional, while if c is a cycle in E then the powers of c generate a
properly decreasing chain of left ideals in KE.) However, conditions (i) and (iii) of Theorem
2.2 do not carry over to the path algebra case.

We now develop the ideas which will allow us to extend Theorem 2.2 to all row-finite
graphs.

Lemma 2.4. Let e be an idempotent in a Leavitt path algebra L(E). The corner eL(E)e is
a division ring if and only if it is isomorphic to K as a ring.

Proof. Suppose that eL(E)e is a division ring. Recall that the Leavitt path algebra is
semiprime by [8, Proposition 1.1]. As such, an application of [18, §IV.3, Proposition 1]
yields that division corners eL(E)e give rise to minimal right (respectively, left) ideals eL(E)
(respectively, L(E)e). Thus, L(E)e is a minimal left ideal and by [8, Theorem 3.3], there ex-
ists v ∈ Pl(E) such that L(E)e is isomorphic to L(E)v as left L(E)-modules. In this situation
[8, Proposition 2.7] applies to give that vL(E)v = Kv ∼= K as rings.

To finish the proof we perform the following isomorphisms: Since L(E)e ∼= L(E)v as left
L(E)-modules, then EndL(E)(L(E)e) ∼= EndL(E)(L(E)v) as rings. But it is well-known that
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for any ring R and any idempotent e ∈ R we have EndR(Re) ∼= eRe as rings. Thus, we
obtain the following ring isomorphisms

eL(E)e ∼= EndL(E)(L(E)e) ∼= EndL(E)(L(E)v) ∼= vL(E)v ∼= K.

The converse is obvious. �

Lemma 2.5. Let E be any row-finite graph. The Leavitt path algebra L(E) is semisimple if

and only if Pl(E) = E0.

Proof. We know from [8, Theorem 4.2] that Soc(L(E)) = I(Pl(E)), so that L(E) is semisimple

if and only if L(E) = I(Pl(E)). Now use the lattice isomorphism between graded ideals
Lgr(L(E)) and the hereditary saturated subsets H explained in [9, Remark 2.2] to get that

L(E) = I(Pl(E)) if and only if Pl(E) = E0. �

We now prove a general result about semiprime rings, a result which will play a key role
in the proof of Theorem 2.7.

Theorem 2.6. For a semiprime ring R the following conditions are equivalent:

(i) R is locally left artinian.
(i)′ R is locally right artinian.
(ii) R is semisimple.
(iii) For every element a ∈ R, the local ring Ra of R at a is left artinian.
(iii)′ For every element a ∈ R the local ring Ra of R at a is right artinian.
(iv) R ∼=

⊕
i∈Υ Mni

(eiRei), where Υ is an arbitrary set, ni ∈ N ∪ {∞} and the ei’s are
minimal idempotents.

In particular, if R is a ring with local units, then the conditions above are equivalent to the
following ones.

(v) Every corner of R is left artinian.
(v)′ Every corner of R is right artinian.

If moreover R has a countable set of local units, then all conditions above are equivalent to:

(vi) R ∼=
⊕

i∈Υ Mni
(eiRei), where Υ is a countable set, ni ∈ N ∪ {∞} and the ei’s are

minimal idempotents.

Proof. (i) ⇔ (i)′ and (v) ⇔ (v)′ follow because for every idempotent e, eRe is a semiprime
ring, hence it is left artinian if and only if it is right artinian.

The equivalence (iii) ⇔ (iii)′ can be proved similarly, utilizing the fact that every local ring
at an element of a semiprime ring is also semiprime ([17, Proposition 2.1 (i)]).

(i) ⇒ (ii). Let a be in R. By the hypothesis, there exists e2 = e ∈ R such that a ∈ eRe and
eRe is an artinian (and semiprime) ring, hence it coincides with its socle. By [17, Proposition
2.1 (v)], Ra = (eRe)a is artinian, and applying the same result we have that a ∈ Soc(R).

(ii) ⇒ (iv). Since the socle is a direct sum of simple rings, we may restrict our attention
to the simple case, and therefore we have a primitive ring which coincides with its socle.
By [12, Theorems 4.3.8 and 4.3.9] there exists a dual pair of vector spaces (∆V, W∆) over a
division ring ∆ such that R = FW (V ). By Littof’s Theorem ([12, Theorem 4.3.11]), for every
element a ∈ FW (V ) there exists an idempotent e ∈ FW (V ) such that a ∈ eRe and the ring
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eRe is isomorphic to Mn(∆), where ∆ is a division ring isomorphic to uRu, for u a minimal
idempotent of R.

(iv) ⇒ (iii). For every element a ∈ R, since the number of entries in a is finite, Ra is a
direct sum of matrix rings over division rings, that is, it is left artinian.

(ii) ⇔ (iii) ⇔ (iii)′ is [17, Proposition 2.1 (v)] taking into account that a semiprime ring is
left artinian if and only if it is right artinian.

(ii) ⇒ (i). Since (ii) and (iii) are equivalent, every corner is a left artinian ring. Now, if
x1, . . . , xn are elements in R, use Littof’s Theorem to find an idempotent e in R such that
xi ∈ eRe for every i = 1, . . . , n.

(i) ⇔ (v). Suppose that R is locally left artinian. Take an idempotent e ∈ R and let f = f 2

be in R such that e ∈ fRf with fRf left artinian. Since fRf is a unital ring, we can apply
[19, Corollary (21.13)] to say that efRfe is a left artinian ring. But since e ∈ fRf we get
that ef = fe = e, that is, efRfe = eRe is indeed left artinian. The converse is a tautology.

(ii) ⇒ (vi) follows the same reasoning as (ii) ⇒ (iv) above except that we make sure that
the set of homogeneous components is at most countable: If this is not the case we may
then find an uncountable set {eα} of pairwise orthogonal minimal idempotents. Since R has
a countable set of local units {fi}∞i=1, there is n such that fnRfn contains infinitely many
pairwise orthogonal idempotents, which is impossible as fnRfn is unital and semisimple.

(vi) ⇒ (iv) is a tautology. �

Recall that an abelian monoid (M, +) is cancellative if x + z = y + z with x, y, z ∈ M
implies x = y. For a ring R, we denote by V (R) the monoid of finitely generated projective
left R-modules.

We now have all the necessary ingredients in hand to prove the main result of the section, in
which we characterize the semisimple Leavitt path algebras by describing them in categorical,
ring-theoretic, graph-theoretic, and explicit terms. In addition, we give a characterization of
these algebras in terms of their finitely generated projective modules.

Theorem 2.7. Let E be a row-finite graph. The following conditions are equivalent.

(i) L(E) is semisimple.
(ii) L(E) is categorically left artinian.
(ii)′ L(E) is categorically right artinian.
(iii) L(E) is locally left artinian.
(iii)′ L(E) is locally right artinian.
(iv) E is acyclic and every infinite path ends in a sink.
(v) L(E) ∼=

⊕
i∈Υ Mni

(K), where Υ is a countable set and ni ∈ N ∪ {∞}.
(vi) L(E) is von Neumann regular and V (L(E)) is cancellative and atomic.
(vii) L(E) is von Neumann regular and V (L(E)) ∼= (Z+)≤Υ, that is, V (L(E)) is either a

finite or a countable number of copies of Z+.

Proof. (i) ⇔ (iii) ⇔ (iii)′ have been proved in Theorem 2.6.

(i) ⇔ (v) follows by Theorem 2.6 together with Lemma 2.4.

(ii) ⇒ (iii) and (ii)′ ⇒ (iii)′ are established in Lemma 1.6.

(v) ⇒ (ii) and (v) ⇒ (ii)′ are consequences of Corollary 1.3.
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(iv) ⇒ (i). By Lemma 2.5 it is enough to see that Pl(E) = E0. Suppose on the contrary

that there exists v ∈ E0 with v 6∈ Pl(E). Then v is not a line point and clearly it cannot

be a sink, so that s−1(v) 6= ∅. Now, by the saturated condition, from v 6∈ Pl(E) we get that

r(s−1(v)) 6⊆ Pl(E) so that there exists e1 ∈ E1 with s(e1) = v and r(e1) = w 6∈ Pl(E). We

repeat this process with w and we obtain some e2 ∈ E1 with s(e2) = w, r(e2) = x 6∈ Pl(E).
Moreover, since E is acyclic by hypotheses, the vertices {v, w, x} are indeed different. In

other words, with this process we can build an infinite path γ = e1e2e3 . . . such that all their
vertices are different and neither none of them is a line point. But by hypotheses, γ ends in
sink, so that from a certain point forward, γ does not have bifurcations (nor cycles, because E
is acyclic). Equivalently, past a certain point, all vertices of γ live in Pl(E), a contradiction.

(vi) ⇒ (iv). Let c be a cycle. We distinguish two cases.
First, suppose that c has an exit e. We can assume that s(e) = v (otherwise we would

rearrange the edges of c and consider the cycle c′ with same edges as c but based at s(e)).
Given any positive integer n ∈ Z we claim that L(E)cn(c∗)n ) L(E)cn+1(c∗)n+1. The contain-
ment is clear because cn+1(c∗)n+1 = (cn+1(c∗)n+1)(cn(c∗)n). The sets are not equal because
cn(c∗)n 6∈ L(E)cn+1(c∗)n+1: If so, there would exist α ∈ L(E) with cn(c∗)n = αcn+1(c∗)n+1

and then, by multiplying by cne on the right hand side we would get cne = αcn+1c∗e = 0,
a contradiction since the element cne is an element of the path algebra and such is always
nonzero.

Now, if we consider the idempotents en = cn(c∗)n, then we have that in the usual order of
idempotents, en ≥ en+1 for all n (meaning that en+1 = enen+1 = en+1en). This implies that
en+1 and en− en+1 are orthogonal idempotents, so that we can write en = en+1⊕ (en− en+1),
which, by taking classes in the monoid V (L(E)), gives [en] = [en+1] + [en − en+1].

Moreover all these idempotents are equivalent to v because v = (c∗)ncn ∼ cn(c∗)n = en. So
that we have [v] = [v] + [en − en+1]. Since by hypothesis the monoid is cancellative, we get
[0] = [en − en+1], or equivalently 0 ∼ en − en+1, implying that 0 = L(E)0 ∼= L(E)(en − en+1),
that is, en = en+1, a contradiction.

Suppose now that c does not have an exit. In this situation, and with a similar rea-
soning to that of [1, Proof of Theorem 3.11], it is not difficult to show that vL(E)v ={∑∞

i=−∞
finite

kic
i, for ki ∈ K

}
∼= K[x, x−1], where we understand ci = (c∗)−i for negative i.

Now we use the hypothesis that L(E) is regular von Neumann to conclude that the corner
vL(E)v ∼= K[x, x−1] is also regular, which is absurd. This means that this case cannot happen
so that E must be acyclic.

Suppose now that there exists an infinite path γ which does not end in a sink, and write
v = s(γ). Since E is acyclic, γ has infinitely many bifurcations so that we can decompose
it in an infinite product of paths γ = γ1γ2γ3 . . . in such a way that we have a bifurcation at
r(γi) for every i. We claim that the following is an infinite decreasing chain of left ideals of
vL(E)v:

vL(E)vγ1γ
∗
1v ) vL(E)vγ1γ2γ

∗
2γ

∗
1v ) vL(E)vγ1γ2γ3γ

∗
3γ

∗
2γ

∗
1v ) . . .

The containments are clear as for instance vγ1γ2γ
∗
2γ

∗
1v = (vγ1γ2γ

∗
2γ

∗
1v)(vγ1γ

∗
1v). To see that

they do not coincide, suppose we can write vγ1γ
∗
1v = vαvγ1γ2γ

∗
2γ

∗
1v, for some α ∈ L(E).

Then, as r(γ1) = s(γ2) has a bifurcation, there exists an edge e ∈ E1 with s(e) = s(γ2) but
different to the first edge of γ2, or equivalently, with γ∗2e = 0. Now, by multiplying on the
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right hand side by γ1e on the previous equation we get the following contradiction:

0 6= γ1e = (vγ1γ
∗
1v)γ1e = (vαvγ1γ2γ

∗
2γ

∗
1v)γ1e = vαvγ1γ2γ

∗
2e = 0,

Label en = γ1γ2 . . . γnγ
∗
n . . . γ∗2γ

∗
1v. One can check, as in the previous case of a cycle with an

exit, that for any arbitrarily large m we have the following equations in the monoid V (L(E)):

[e1] = [e2]+[e1−e2] = [e3]+[e2−e3]+[e1−e2] = · · · = [em]+[em−1−em]+· · ·+[e2−e3]+[e1−e2].

Use that V (L(E)) is atomic by hypothesis to find atoms pi ∈ V (L(E)) for i = 1, . . . , n
such that [e1] = p1 + · · · + pn. If we write ai = [ei − ei+1] for every i = 1, . . . ,m − 1 and
am = [em] then, by the previous displayed equation for the case m = n + 1 we have that
p1 + · · ·+ pn = a1 + · · ·+ an+1 holds in the monoid.

Now we use that V (L(E)) is a refinement monoid by [7, Proposition 4.4] to find a refinement
matrix of the form:

a1 · · · an+1

p1 z1,1 · · · z1,n+1
...

...
. . .

...
pn zn,1 · · · zn,n+1

Since p1 is an atom, there exists i such that p1 = z1,i and z1,j = 0 for every j 6= i. This
happens with every atom pk so that we end up with at least a column of zeros in the refinement
matrix. In other words, al = 0 for some l ∈ {1, . . . , n + 1}.

Note that en+1 = γ1 . . . γn+1γ
∗
n+1 . . . γ∗1v ∼ γ∗n+1 . . . γ∗1vγ1 . . . γn+1 = r(γn+1). This implies

that an+1 = [en+1] = [r(γn+1)] 6= 0, so that l 6= n + 1. Thus, al = 0 for some l ∈ {1, . . . , n} so
that [0] = [el − el+1] and we follow the reasoning of the case of a cycle with an exit to get a
contradiction.

(v) ⇒ (vii) and (vii) ⇒ (vi) are well-known. �

We conclude this section by giving a structure theorem for Leavitt path algebras with
essential socle. The key point is the fact that the Leavitt path algebra L(E) is an algebra of
right quotients of the path algebra KE [21]. That this class of Leavitt path algebras does not
coincide with the class of semisimple Leavitt path algebras is seen by analyzing the Toeplitz
algebra, i.e., the Leavitt path algebra whose graph is the following (see [21]):

•99 // •
By RCFM(K) we understand the algebra of infinite matrices with finite row and columns.

Theorem 2.8. For a graph E the following conditions are equivalent.

(i) The Leavitt path algebra L(E) has socle essential as an ideal.
(ii) Every vertex connects to a line point.
(iii) L(E) satisfies:(⊕

i∈Υ1

Mni
(K)

)
⊕

(⊕
j∈Υ2

Mmj
(K)

)
⊆ L(E) ⊆

(∏
i∈Υ1

Mni
(K)

)
⊕

(∏
j∈Υ2

RCFM(K)

)
,

where ni ∈ N and mj = ∞.
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Proof. (i) ⇔ (ii) is [21, Theorem 4.3].

(i)⇒ (iii). By [8, Theorem 4.2], Soc(L(E)) = I(H), for H = Pl(E), and by [6, Lemma
1.2], I(H) ∼= L(HE). Now apply Theorem 2.7 and [21, Corollary 4.6] to obtain the result.

(iii) ⇒ (i). Denote by R and Q the algebras in the statement such that R ⊆ L(E) ⊆ Q,
and observe that Q = Qr

max(R). Take a nonzero ideal I of L(E). Since L(E) is an algebra
of right quotients of R, I ∩ R 6= 0 ([17, Proposition 3.1 (i)]). For a nonzero u ∈ I ∩ R, by
[17, Proposition 3.2 (v)] we have that L(E)u is an algebra of right quotients of Ru, which is
a semisimple and artinian algebra, hence L(E)u = Ru and therefore u ∈ Soc(L(E)), by [17,
Proposition 2.1 (v)]. �

3. Noetherian Leavitt path algebras

Our investigation of the unital artinian Leavitt path algebras (Theorem 2.2) led us naturally
to the study of the not-necessarily-unital categorically artinian Leavitt path algebras, an effort
which was completed in Theorem 2.7. With this in mind, a natural next step in our study
is to investigate the structure of the categorically noetherian Leavitt path algebras. This is
the main goal of the current section. In symmetry with the artinian case, these Leavitt path
algebras turn out to be the locally noetherian Leavitt path algebras.

The noetherian counterpart to Theorem 2.2 was provided in [5]; we present it here for
completeness. We recall that there is a natural Z-grading on L(E), see e.g. [5, Section 1] or
[22, Section 3.3]. Additionally, a graph E is said to satisfy Condition (NE) if no cycle in E
has an exit.

Theorem 3.1. [([5, Theorem 3.8 and Theorem 3.10])] Let E be a finite graph (in other words,
let L(E) be unital). The following conditions are equivalent.

(i) L(E) is left noetherian.
(i)′ L(E) is right noetherian.

(ii) L(E) ∼=
(⊕l

i=1 Mmi
(K[x, x−1])

)
⊕
(⊕l′

j=1 Mnj
(K)

)
for some positive integers m1, ...,

ml, n1, ..., nl′.
(iii) E satisfies Condition (NE).
(iv) L(E) is locally finite, that is, the graded component (L(E))n is finite dimensional for

each n ∈ Z.

Remark 3.2. Unlike the situation in the artinian case described in Theorem 2.2, the con-
ditions on a graph E which yield noetherian path algebras KE are not identical to the
conditions which yield noetherian Leavitt path algebras L(E). Indeed, in the path algebra
setting the noetherian condition is not left/right symmetric, for it can be shown that the path
algebra KE is left (resp. right) noetherian if and only if no cycle in E has an exit (resp. no
cycle in E has an entrance). (See e.g. [13, p. 5].) Thus by Theorem 3.1(iii) we have that
if L(E) is left or right (equivalently, left and right) noetherian, then KE is left noetherian.
The converse is not true, as evidenced by the aforementioned Toeplitz algebra. Furthermore,
L(E) may be left and right noetherian with L(E) not right noetherian, for example, when E
is the graph

• // • yy

With Theorem 3.1 in mind, we can cast the main goal of this section as the natural
destination of a journey consisting of two different routes: extending the categorically artinian
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condition to categorically noetherian, and/or extending the unital noetherian condition to the
appropriate analog of the noetherian condition for non-unital rings.

The following result is a generalization of [5, Theorem 3.8]. The proof consists of splitting
the problem into several pieces, some of which rely on previously studied situations (as the
semisimple case of Theorem 2.7), or on careful generalizations to the non unital setting of
known results (as the locally finite just infinite case stated in [5, Theorem 3.3]). This approach
has been chosen to avoid as much as possible the multiple technicalities of dealing with bases.

Lemma 3.3. Let H be a hereditary subset of E0, for a graph E. Then

I(H) =
{∑

kαβ∗, with k ∈ K, α, β paths such that r(α) = r(β) ∈ H
}

.

Proof. Denote by J the set {
∑

kαβ∗ | k ∈ K, α, β are paths and r(α) = r(β) ∈ H} . The con-
tainment J ⊆ I(H) is clear. For the converse, consider µ, ν, α, β paths in L(E), and u ∈ H
such that µν∗uαβ∗ 6= 0. By [22, Lemma 3.1], µν∗uαβ∗ is µα′β∗ if α = να′ or µν ′∗β∗ if
ν = αν ′. Note that α = να′, u = s(α) and H hereditary imply r(α′) ∈ H, hence µα′β∗ ∈ J .
In the second case, ν = αν ′, u = s(α) and H hereditary imply s(ν ′∗) = r(ν ′) ∈ H, hence
µr(ν ′)ν ′∗β∗ ∈ J , therefore I(H) ⊆ J . �

The notion of Cn-comet was introduced in [5] to describe the locally finite Leavitt path
algebras. The role of the cycle Cn within a Cn-comet is similar to that played by sinks in
more general graphs. If a graph E is a Cn-comet, then its associated Leavitt path algebra is
isomorphic to Mn(K[x, x−1]). Since Cn-comets have a finite number of vertices, it is natural
to generalize this concept to the case of an infinite (numerable) set of vertices.

Definition 3.4. We say that a graph E is a comet if it has exactly one cycle c, T (v)∩ c0 6= ∅
for every vertex v ∈ E0, and every infinite path ends in the cycle c.

Remark 3.5. As stated before, when we had a finite Cn-comet graph E, [5, Theorem 3.3]
gave that L(E) ∼= Mn(K[x, x−1]), where n was the number of paths in E which ended in
the cycle c but did not contain it completely. Our aim is to generalize this result to infinite
(comet) graphs F so that we can obtain the isomorphism L(F ) ∼= M∞(K[x, x−1]). In order
to achieve this we have to add the extra condition “every infinite path ends in the cycle c”,
as the following example shows

•v1
e1 //

""EEEEEEEE •v2
e2 //

��

•v3
e3 //

||yyyyyyyy
•v4

vvlllllllllllllllll

•

c

YY

This graph F verifies that c is its only cycle and T (v) ∩ c0 6= ∅ for every vertex v ∈ F 0.
However, as it will be proved later, if we had L(F ) ∼= M∞(K[x, x−1]), then Theorem 3.9
would yield that every infinite path in F ends either in a sink or in a cycle. But the infinite
path γ = e1e2e3 . . . does not end either in a sink or in a cycle.

In any case, when E is finite, Definition 3.4 agrees with that of Cn-comet given in [5].

Proposition 3.6. Let E be a graph which is a comet. Then the Leavitt path algebra L(E) is
isomorphic to Mn(K[x, x−1]), where n ∈ N if E is finite, or n = ∞ otherwise.
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Proof. We can adapt [5, Theorem 3.3] to our situation. Concretely, let c be the cycle in E,
v a vertex at which the cycle c is based and consider {pi} the (perhaps infinite) family of all
paths in E which end in v but do not contain the cycle c. Let n ∈ N ∪ {∞} be the number
of all such paths. Denote by N the set {1, . . . , n} when n is finite and N = N when n = ∞.
Consider the family B := {pic

kp∗j}i,j∈N,k∈N of monomials in L(E) where we understand c0 = v
and cn = (c∗)−n for negative n.

As in [5, Theorem 3.3], we can show that B is a linearly independent set. We will prove
that B generates L(E) as a K-vector space. First, note that since E is a comet, then T (v) is
a finite set for every v ∈ c0. Not only is this true for any vertex on the cycle c but also for any
vertex in E as follows: Suppose on the contrary that there exists w ∈ E with |T (w)| = ∞.
In particular, w does not lie on the cycle. As E is row-finite, we are able to find and edge
e1 in E with s(e1) = w and v1 := r(e1) such that |T (v1)| = ∞. Again v1 does not lie on the
cycle. Repeating this process, we find an infinite path such that none of its vertices lie on c,
which contradicts the fact that every infinite path in E ends in the cycle c.

Take an arbitrary element
∑

i kiαiβ
∗
i of L(E), where αi, βi are paths in E and ki ∈ K.

Consider the set {r(αi)}. Some of these vertices could lie on the cycle c, in which case we
leave the corresponding monomial as is. For those monomials αkβ

∗
k whose {r(αk)} is not on

c, we proceed as in [4, Proof of Proposition 3.5] by using relation (4) to expand it as

αkβ
∗
k =

∑
{e∈E1:s(e)=r(αk)}

αkee
∗β∗k =

∑
{e∈E1:s(e)=r(αk)}

(αke)(βke)
∗.

As we have just proved that the tree of any vertex is finite, so will be this process of expanding
these monomials until reaching vertices of c.

Consider now a monomial αkβ
∗
k with r(αk) ∈ c0. Let t be the subpath of c with s(t) = r(αk)

and r(t) = v. Since c does not have exits then αkβ
∗
k = αktt

∗β∗k = (αkt)(βkt)
∗ = αβ∗, where

α and β are paths in E that end in v. Finally, since E is a comet, we can always factor
some powers of c out of α and β so that there exist integers m, n such that α = pic

m and
β = pjc

n for some paths pi, pj which do not contain the path c. Hence, we obtain that
αkβ

∗
k = pic

m−np∗j ∈ B. This proves that B is a K-generator of L(E).

Now, by defining φ : L(E) → Mn(K[x, x−1]) on the basis by setting φ(pic
kp∗j) = xkeij for

eij the (i, j)-matrix unit, then again one easily checks that φ is a K-algebra isomorphism. �

For a graph E, denote by Pc(E) the set of vertices in the cycles without exits of E.

Proposition 3.7. Let E be a graph. Then:

(i) I(Pl(E))I(Pc(E)) = 0.
(ii) I(Pc(E)) =

⊕
j∈Υ I(Pcj

(E)), where Υ is a countable set and {cj}j∈Υ is the set of all

different cycles without exits of E (and by abuse of notation we identify two cycles that
have the same vertices).

(iii) Pc(E) is hereditary and if H denotes the saturated closure of Pc(E), we have that

I(Pc(E)) = I(H) ∼= L(HE) ∼=
⊕
i∈Υ1

Mni
(K[x, x−1])⊕

⊕
j∈Υ2

Mmj
(K[x, x−1]),

where Υ1 and Υ2 are countable sets, ni ∈ N and mj = ∞.

Proof. We will use Lemma 3.3 implicitly. This can be done because Pc(E) is, clearly, a
hereditary set.
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(i). Suppose that we have nonzero monomials αβ∗ and γδ∗ with r(α) ∈ Pl(E) and such that
there exits a cycle without exits based at r(γ). If αβ∗γδ∗ 6= 0, two possibilities can occur: If
γ = βp for some path p, then this implies that there is a cycle based at r(p) = r(γ) ∈ T (r(β)),
that is: r(β) = r(α) 6∈ Pl(E). So this possibility cannot happen. Thus, β = γq for some path
q. Now, since r(γ) lies on a cycle which has no exists, r(q) = r(β) = r(α) lies on this same
cycle, contradicting again the hypothesis.

(ii). To shorten the notation, write: J = I(Pc(E)) and Jj = I(Pcj
(E)).

Consider monomials γδ∗ with r(δ) ∈ (cj)
0 and στ ∗ ∈ J . Since the cycles cj have no exits,

they are disjoint and then, similar arguments to that of the previous paragraph show that
γδ∗στ ∗, στ ∗γδ∗ ∈ Jcj

. Moreover, these arguments also yield that if στ ∗ ∈ Jck
with j 6= k,

then γδ∗στ ∗ = στ ∗γδ∗ = 0. Thus, {Jcj
} is indeed a family of orthogonal ideals of J .

To show that J =
∑

j Jj apply Lemma 3.3 to H = ∪jc
0
j , which is a hereditary set since

the considered cycles have no exits.

(iii). I(Pc(E)) = I(H) follows by [9, Lemma 2.1] and I(H) ∼= L(HE) by [6, Lemma 1.2].
The same results applied to cj instead of c imply I(Pcj

(E)) = I(Hj) ∼= L(Hj
E), for Hj the

saturated closure of Pcj
. By the definition of Hj, and since cj has no exits, every vertex in Hj

connects to cj. The same can be said about Hj
E, where cj can be seen as its only cycle. Now

suppose that γ is an infinite path in Hj
E. Again, by the way this graph is constructed, there

must exist a finite path p and an infinite path β such that γ = pβ, with β being completely
contained in EHj

. Suppose that β does not end in the cycle cj. This, together with the fact
that cj does not have exits, yield that β0 ∩ c0

j = ∅. On the other hand, because β0 ⊆ Hj we

can consider m to be the minimum n such that Λn(c0
j) ∩ β0 6= ∅. Now, β0 ∩ c0

j = ∅ implies

that m > 0 so that there exists w ∈ {v ∈ (EHj
)0 | ∅ 6= r(s−1(v)) ⊆ Λm−1(c

0
j)} ∩ β0. As β

is infinite, there is an edge e in β such that s(e) = w and r(e) ∈ β0. This contradicts the
minimality of m. Therefore β ends in the cycle c, and consequently γ. Hence, Hj

E is a comet.
Apply Proposition 3.6 and (ii) to obtain the result. �

Proposition 3.8. Let E be a graph satisfying Condition (NE) and such that every infinite
path ends either in a sink or in a cycle. Then L(E) ∼=

⊕
i∈Υ1

Mni
(K)⊕

⊕
j∈Υ2

Mmj
(K[x, x−1]),

where Υ1 and Υ2 are countable sets and ni, mj ∈ N ∪ {∞}.

Proof. Denote by I and J the ideals generated by Pl(E) and Pc(E), respectively. We will
apply in what follows Lemma 3.3 whenever we need to consider an element in I or in J .

We show first that L(E) = I + J . Suppose that there exists x ∈ L(E) \ (I + J ). If
we write x =

∑
i kipiq

∗
i , then we can find j such that pjq

∗
j ∈ L(E) \ (I + J ). In particular

v1 := r(pj) 6∈ Pl(E) (and therefore it is not a sink) as pjv1q
∗
j 6∈ I. Furthermore, v1 cannot lie

on a cycle as pjv1q
∗
j 6∈ J .

Now, if r(s−1(v1)) ⊆ I + J , then by relation (4) we would have that

pjq
∗
j =

∑
{e:s(e)=v}

pjee
∗q∗j =

∑
{e:s(e)=v}

(pje)r(e)(qje)
∗ ∈ I + J ,

which is impossible. This shows that there exists e1 ∈ E1 with s(e1) = v1 and v2 := r(e1) 6∈
I + J . From v2 6∈ I we deduce that v2 6∈ Pl(E) and from v2 6∈ J we get that v2 does not lie
on a cycle.
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We repeat this process and then we are able to find an infinite path e1e2 . . . such that none
of its vertices are line points nor lie on a cycle, a contradiction to our hypothesis. Now, since
L(E) has local units, the sum is direct by Proposition 3.7 (i). Hence, we have L(E) = I ⊕J .

Note that I = I(Pl(E)) ∼= L(E)/I(Pc(E)) ∼= L(E/H), for H the saturated closure of
Pc(E), and that this last isomorphism is given by [9, Lemma 2.3 (i)]. This means that I,
which is the ideal generated by the line points in E0, that is, the socle of L(E), is a Leavitt
path algebra which coincides with its socle. By Theorem 2.7 we have

I ∼=
⊕
i∈Υ1

Mni
(K),

where Υ1 is a countable set and ni ∈ N ∪ {∞}.
On the other hand, by Proposition 3.7 (iii) we have that

J ∼=
⊕
j∈Υ2

Mmj
(K[x, x−1]),

where Υ2 is a countable set and mj ∈ N∪{∞}. We now put together these two pieces to get
the result. �

Finally we are in position to prove our main result of this section, in which we present
the categorically noetherian Leavitt path algebras by describing them in categorical, ring-
theoretic, graph-theoretic, and explicit terms.

Theorem 3.9. Let E be a graph. The following conditions are equivalent.

(i) L(E) is categorically left noetherian.
(i)′ L(E) is categorically right noetherian.
(ii) L(E) is locally left noetherian.
(ii)′ L(E) is locally right noetherian.
(iii) E satisfies Condition (NE) and every infinite path ends either in a sink or in a cycle.
(iv) L(E) ∼=

⊕
i∈Υ1

Mni
(K) ⊕

⊕
j∈Υ2

Mmj
(K[x, x−1]), where Υ1 and Υ2 are countable sets

and ni, mj ∈ N ∪ {∞}.

Proof. (i) ⇒ (ii) and (i)′ ⇒ (ii)′ were established in Lemma 1.5.

(iv) ⇒ (i) and (iv) ⇒ (i)′ follow from Corollary 1.3.

(ii) ⇒ (iii). Suppose that c is a cycle in E with an exit. Let v be the vertex in which the
cycle is based at. With similar computations to that of [5, Proof of (ii) ⇒ (iii) in Theorem
3.10] we can check that the following

vL(E)v(v − cc∗) ( vL(E)v(v − c2(c∗)2) ( . . .

is an infinite ascending chain of left ideals of vL(E)v, which is a contradiction to the locally
left noetherian hypothesis.

This shows that E satisfies Condition (NE). Suppose now that γ is an infinite path which
does not end either in a sink or in a cycle. In this situation γ cannot contain any closed
path as follows: If γ = γ1pγ2 with p being a closed path, then, as we have just shown that
E satisfies (NE), p must be in fact a cycle and γ2 = ppp . . . , so that γ does end in a cycle,
contrary to hypothesis. Now, since γ does not end in a sink either (and does not contain
cycles), γ has infinitely many bifurcations so that we can write γ = γ1γ2γ3 . . . for γi paths
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such that r(γi) is a bifurcation for all i. Then we have the chain of left ideals of vL(E)v given
by

vL(E)v(v − γ1γ
∗
1) ( vL(E)v(v − γ1γ2γ

∗
2γ

∗
1) ( . . .

Indeed, the containments follow from the easily checked equation

v − γ1 . . . γnγ
∗
n . . . γ∗1 = (v − γ1 . . . γnγ

∗
n . . . γ∗1)(v − γ1 . . . γn+1γ

∗
n+1 . . . γ∗1).

They are proper because if not, we would be able to write

v − γ1 . . . γn+1γ
∗
n+1 . . . γ∗1 = (vαv)(v − γ1 . . . γnγ

∗
n . . . γ∗1)

for some α ∈ L(E), which after multiplying on the right by γ1 . . . γn gives

γ1 . . . γn − γ1 . . . γnγn+1γ
∗
n+1 = (vαv)(γ1 . . . γn − γ1 . . . γn) = 0,

or equivalently, γ1 . . . γn = γ1 . . . γnγn+1γ
∗
n+1. Find e an exit at r(γn) and multiply by e on

the right of the previous equation to reach a contradiction.

(ii)′ ⇒ (iii) is proved analogously.

(iii) ⇒ (iv) is Proposition 3.8. �

Remark 3.10. Recently, the notion of Leavitt path algebra for not necessarily row-finite
graphs has been introduced in [3]. The only difference when we consider a graph with infinite
emitters is that the corresponding Leavitt path algebra lacks, by definition, the relation (4)
at them. In [3] the authors showed that with this broader definition, the family of Leavitt
path algebras is properly enlarged.

Throughout this paper we have focused our attention on the row-finite case only because
for the row-infinite case we never obtain either a locally (left) artinian or a locally (left)
noetherian Leavitt path algebra, as is proved in what follows:

Suppose that there exists a vertex v in E which emits infinitely many edges {ei}∞i=1 (in
other words, v is an infinite emitter). Consider the infinite ascending chain of left ideals of
vL(E)v given by:

vL(E)ve1e
∗
1v (

2⊕
i=1

vL(E)veie
∗
i v (

3⊕
i=1

vL(E)veie
∗
i v ( ...

The containments are proper: suppose that veje
∗
jveje

∗
jv = eje

∗
j ∈

⊕j−1
i=1 vL(E)veie

∗
i v. Write

eje
∗
j =

∑j−1
i=1 vαiveie

∗
i v, for some αi ∈ L(E). Then, by multiplying on the right hand side by

eje
∗
j , we get a contradiction. Thus, L(E) is not locally left noetherian.
Analogously, the following is an infinite descending chain of left ideals inside vL(E)v:

∞⊕
i=1

vL(E)veie
∗
i v )

∞⊕
i=2

vL(E)veie
∗
i v )

∞⊕
i=3

vL(E)veie
∗
i v ) ...

and therefore L(E) is not locally left artinian.

The following result is the analog to Theorem 2.8 by changing “connects to a line point” to
“connects to a cycle without exits”. Again the key tool is the use of the fact that the Leavitt
path algebra L(E) is an algebra of right quotients of the path algebra KE (see [21]).

Theorem 3.11. For a graph E the following conditions are equivalent:

(i) Every vertex of E0 connects to a cycle without exits.
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(ii) I(Pc(E)) is an essential (graded) ideal.
(iii) There exist countable sets Υ1 and Υ2 such that⊕

i∈Υ1

Mni
(K[x, x−1])⊕

⊕
j∈Υ2

Mmj
(K[x, x−1]) ⊆

L(E) ⊆∏
i∈Υ1

Mni
(K[x, x−1])⊕

∏
j∈Υ2

RCFM(K[x, x−1]),

where ni ∈ N and mj = ∞.

Proof. (i) ⇒ (ii). Let y be a nonzero element of L(E). By [8, Proposition 3.1] there exist
v ∈ E0 and γ, µ ∈ L(E) such that 0 6= γyµ = kv ∈ Kv, or there exists a cycle c without
exits, and w ∈ c0, such that 0 6= γyµ ∈ wL(E)w ⊆ I(Pc(E)). In the first case, since every
vertex connects to a cycle without exits, there exist u ∈ Pc(E) and a path α ∈ E∗ satisfying
s(α) = v and r(α) = u. Then u = α∗α = α∗vα = k−1α∗γyµα ∈ I(Pc(E)). This shows that
I(Pc(E)) is an essential ideal of L(E).

(ii) ⇒(i). Take a vertex v ∈ E0. Since I(Pc(E)) is essential as an ideal and L(E) is
semiprime, I(Pc(E)) is a semiprime essential left ideal. Use this fact and Lemma 3.3 to find
α ∈ L(E), αi, βi ∈ E∗, ki ∈ K and wi ∈ Pc(E), for i = 1, . . . , n and n ∈ N, such that
0 6= αv =

∑n
i=1 kiαiwiβ

∗
i . This means that for some i, 0 6= wiβ

∗
i v, that is, βi is a path that

joins v to wi.

(ii) ⇒(iii). By [21, Proposition 4.1], L(E) is nonsingular, hence I(Pc(E)) is a graded-dense
ideal of L(E). Therefore, Ql

gr−max(I(Pc(E))) = Ql
gr−max(L(E)), where Ql

gr−max(R) denotes
the graded-maximal algebra of left quotients of an algebra R (see [11] for the definition and
the development of the notion of graded algebra of left-quotients). Apply this and Proposition
3.7 (iii) to reach (iii).

(iii) ⇒(ii). Denote by R and Q the algebras in the statement such that R ⊆ L(E) ⊆ Q,
and observe that Q = Ql

gr−max(R). Use Proposition 3.7 (iii) to get I(Pc(E)) ∼= R ⊆ L(E).
Thus, we have that L(E) is a graded algebra of left quotients of I(Pc(E)). This, and the fact
that L(E) is semiprime, show that I(Pc(E)) is an essential ideal of L(E). �

Finally, adapting the arguments in Theorems 2.8 and 3.11, we can prove the following.

Theorem 3.12. For a graph E the following conditions are equivalent:

(i) Every vertex of E0 connects to a line point or to a cycle without exits.
(ii) Soc(L(E))⊕ I(Pc(E)) is an essential (graded) ideal.
(iii) There exist countable sets Υi for i = 1, . . . , 4 such that⊕

i∈Υ1

Mni
(K)⊕

⊕
j∈Υ2

Mmj
(K)⊕

⊕
i′∈Υ3

Mn′
i′
(K[x, x−1])⊕

⊕
j′∈Υ4

Mm′
j′ (K[x, x−1]) ⊆

L(E) ⊆∏
i∈Υ1

Mni
(K)⊕

∏
j∈Υ2

RCFM(K)⊕
∏

i′∈Υ3

Mn′
i′
(K[x, x−1])⊕

∏
j′∈Υ4

RCFM(K[x, x−1]),

where ni, n
′
i′ ∈ N and mj, m

′
j′ = ∞.
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