THE STRUCTURE OF COUNTABLY GENERATED
PROJECTIVE MODULES OVER REGULAR RINGS

P. ArRA, E. PARDO AND F. PERERA

ABsSTRACT. We prove that for every regular ring R there exists a monoid isomorphism be-
tween V(Endg (NgRp)) and V(M(FM(R))). We use this result to give a precise description
of the countably generated projective modules over simple regular rings and over regular rings
satisfying s-comparability.

INTRODUCTION.

One of the most relevant topics in the theory of von Neumann regular rings is the study
of the finitely generated projective modules. This study is usually done by using stable
and non-stable K-theory. The arbitrary projective modules over a regular ring have also
been object of interest, see for example [Kad, Kul, Ku2, Ku3]. A fundamental result for
this study is the fact that a projective module over a regular ring R satisfies the exchange
property, and so it is a direct sum of cyclic projective modules, see [Os] and [Sto]. It
follows that the ring End(Pr) is an exchange ring in the sense of Warfield [War]. If we
concentrate attention on the countably generated projective R-modules, then we must
consider the ring End(NgRpr), since the category of finitely generated projective modules
over it is equivalent to the category of countably generated projective R-modules. Recent
results on the structure and I -theory of exchange rings (e.g. [Aex, AGOP, Par|) can
then be applied.

On the other side/hand a detailed study of the structure of the multiplier rings of
o-unital (non-unital) regular rings has been done in [AP]. The multiplier ring of the
(non-unital) regular ring FM(R) of countably infinite matrices over R having only a
finite number of nonzero entries is the ring of row- and column-finite matrices over R
[AP, Proposition 1.1], which is related to the ring End(RXgRpr), being the latter the ring
of column-finite matrices over R. Although important differences are detected between
M(FM(R)) and End(XgRp), we are able to prove that their respective monoids of iso-
morphism classes of finitely generated projective modules are isomorphic (Theorem 1.3).
By using this, we apply the results in [AP] to obtain explicit information on the countably
generated projective R-modules.

More accurate results can be obtained for particular classes of regular rings. In par-
ticular, we consider simple regular rings and regular rings satisfying s-comparability for
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some positive integer s. We see that the structure of the countably generated projective
modules over a simple regular ring R depends heavily on the compact convex set of pseudo-
rank functions on R. Moreover, we study how the known theory of comparison of finitely
generated projective modules over a regular ring satisfying s-comparability extends to the
countably generated ones, with respect to the relations < and <. We also extend re-
sults of Kutami [Ku3] concerning the behaviour of directly finite projective modules over
regular rings satisfying s-comparability.

In outline the paper is as follows. In Section 1, we recall the necessary definitions,
and we prove that for any regular ring R there exists a monoid isomorphism between
V(Endr(NoRgr)) and V(M(FM(R))). Section 2 is devoted to the study of simple regular
rings and regular rings with s-comparability for some positive integer s. In particular,
we obtain our main result on the comparison theory for countably generated projective
modules over regular rings satisfying s-comparability. In Section 3 we study the relations
between the ideals of End(Ng Rr) and M(FM(R)) for a regular ring R, and we obtain finer
results in the case where R satisfies s-comparability. Finally, we deal in Section 4 with
property (DF), which was introduced by Kutami in [Ku3]. We show that every regular
ring with s-comparability satisfies property (DF), i.e., the class of directly finite projective
R-modules is closed under finite direct sums. This extends a result of Kutami, who proved
the same result under the additional hypothesis that R is unit-regular

1. COUNTABLY GENERATED PROJECTIVE MODULES AND INTERVALS.

We start by fixing some notation and terminology. Throughout, R will denote a unital
von Neumann regular ring (see [varr] for definitions and properties on this class of rings).
For aring T', let C1 denote the category of countably generated projective right T-modules,
and let FP(T) denote the category of finitely generated projective right T-modules. We
denote by V(T) the monoid of isomorphism classes of finitely generated projective right
R-modules. In the sequel, for A, B arbitrary T-modules, we use A < B to denote “A is
isomorphic to a submodule of B”, A <% B to denote “A is isomorphic to a direct summand
of B”, A < B to denote “A is isomorphic to a proper submodule of B”, and A <% B to
denote “A is isomorphic to a proper direct summand of B”. We will use the following
important fact on regular rings [varr, Theorem 1.11]: If A is a projective right module
over a regular ring R and B € FP(R), then B < A if and only if B <% A,

For a cardinal number x and a right T-module A, we will denote by kA the direct sum
of k copies of A.

Let E = FCM(R) be the ring of column-finite matrices over R (of countably infinite
size). It is well-known that £ = End(NoRpr). Let B = FRCM(R) be the subring of E
consisting of matrices in E with only finitely many nonzero entries in each row. There are
ideals of B and E which play an important role. These are defined as follows:

F=FM(R)={x € B|2(XoRg) CnRr for some n},

G=FR(R)={x € E|x(RoRr) CnRp for some n}.

Note that F' consists of the matrices in B with only finitely many nonzero entries, while G
consists of the matrices in E with only finitely many nonzero rows. Of course, FM(R) =
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li_n:}Mn(R), where the (non-unital) embeddings M, (R) — M,+1(R) are given by x

x 0
0 0/
We will use repeteadly the following well-known lemma:

Lemma 1.1. Let E, B, F and G be as defined above. Then F 1s an i1deal of B, G 1s an
wdeal of E, and G = FE and F = FEF. O

The ring B is the multiplier ring of the non-unital ring F', that is, B is the biggest unital
ring containing F' as an essential ideal [AP, Proposition 1.1]. Similarly, the ring E is the
multiplier ring of G. However there are remarkable differences between the pairs (F, B)
and (G, E). First of all, since all the matrix rings M, (R) over a regular ring R are regular
rings [varr, Theorem 1.7], we see that F is a (nonunital) regular ring. This is not the case
for G in general. For, let R be a regular ring which is not artinian. By [varr, Corollary
2.16], there exists a sequence (e,) of nonzero orthogonal idempotents in R. Let X be the
matrix in G such that all rows but the first are 0, and the first row of X is [e1,ea,...].
Then it is easy to see that X is not a von Neumann regular element. A second difference
comes from the notion of o-unital rings. A semiprime ring I is said to be g-unital in case
there is a sequence (x,) which converges strictly to 1 in the multiplier ring M(I), see
[AP] and [Lo, p.14]. The (nonunital) ring F' is o-unital, being (diag(1,...,1,0,0,...)) a
o-unit, but G is not o-unital. The theory developed in [AP] works for multiplier rings
of regular o-unital rings, hence that theory encompases the ring B but not the ring FE.
Another important difference between B and E will be pointed out in Section 3. In spite
of all these differences, the monoids V(B) and V(E) are isomorphic (Theorem 1.3).

If T is a ring and M7 a module, it is well-known that there is a categorical equivalence
between the category FP(End(Mr)) and the category Add(Mr) of T-modules which are
direct summands of nMy for some n. Since Cr = Add(RoTr), we obtain the following:

Proposition 1.2. Let T be a ring. Then there is a categorical equivalence between the
category Ct of countably generated projective right T-modules and the category of finitely
generated projective right modules over the ring End(NoTr).

Let V(Cr) be the set of isomorphism classes of objects from Cr. Then V(Cr) has a
natural structure of abelian monoid, induced by the direct sum of projective modules. By
Proposition 1.2, we have V(Cr) = V(End(RoTr)). For e = € € End(RoTr), the class
[eEnd(NoT1)] corresponds under this isomorphism to the class of the countably generated
projective T-module e(RoT7r).

Let R be a regular ring. As before, set £ = FCM(R) = End(XgRpr) and B =
FRCM(R). Next, we will prove that V(B) and V(E) are isomorphic monoids. This
contrasts with the fact that the categories FP(E) and FP(B) are never equivalent. For,
it FP(E) and FP(B) were equivalent categories, then it is easy to check that E and B
would be Morita-equivalent, which would contradict [HRS, Theorem §].

Theorem 1.3. Let R be a reqular ring. Then the natural inclusion 1 : B — E induces a
monoid isomorphism V(i) : V(B) — V(E).

Proof. We shall use the idempotent picture of V(—), see [Ros], so that, for a ring T,
the monoid V(T') is identified with the monoid of equivalence classes of idempotents in
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FM(T). Since Ep 2 2Ep and Bp = 2Bp, we see that every element in V(E) (respectively,
V(B)) is represented by an idempotent of E (respectively, B). Now the map V(i) is
defined by V(i)([p|s) = [p]g for every idempotent p € B. We first prove that V(i) is
surjective. Let p be an idempotent in E, and consider P = p(XoRp). Then P is a
countably generated projective module over the regular ring R, and so P has the exchange
property. Consequently P = ©°2 e, R for some idempotents e,, € R. Now consider the
following idempotent in B

qg= diag(€1,€2,€3,...).

Since p(RoRRr) = ¢(NgRRr), we have p ~g ¢, and so V(i)([¢]B) = [p]E, proving the surjec-
tivity of V(7).

Now we will prove injectivity of V(i). Let p,q be two idempotents in B such that
p ~g q. We need to prove that p ~p ¢. Let F' be the ideal of B consisting of the matrices
with only a finite number of nonzero entries. Recall that B is the multiplier ring of F', and
F' is obviously a non-unital regular ring. Similarly, E is the multiplier ring of its ideal G,
the subring of E consisting in the matrices with just a finite number of nonzero rows. By
[AP, Lemma 2.1], there exist increasing sequences (€, )n>1, (fn)n>1 of idempotents in F,
with e, € pFp and f, € qFq, such that e, converges to p and f, converges to ¢ in the
strict topology. For n > 1, set g, = e, — e,—1 and h,, = f, — fn—1 (here g = fo = 0).
Since p and ¢ are equivalent in E. there exist + € pEq and y € gEp such that p = zy and
q=yz.

Put g1 = yg1 2, and note that g € G. Since f,, converges strictly to gandygy € EF = F
there exists n > 1 such that f,(yg1) = ¢(yg1) = yg1. Consequently, f,g1 = fn(ygi)z =
(yg1)x = ¢;. Changing notation, we can assume that n = 1, so that hig] = fig] = g1.
Write g{ = ¢{hy € EF = F. Then zy := giag{ € F and y; := gjyg1 € F, and we have

T1Y1 = g1791 1Y91 = 1Tg1yg1 = g1,

and yrr = glg! = gf. Moreover p—g1 = #,u} and g— g =y}, where 2} = (1—g1)o(1—
g1) and y; = (1—-¢7)y(1—g1). Sog1,9{ € F, g1 ~p g9{ and p—g1 ~g q¢—gi. Observe that
g7 < hy. Write by = aj(h1 —¢{)y; < p—¢1. Since e3 —g1,€3 — g1, €4 — g1,... converges in
the strict topology induced by F to p — g1, there exists n > 2 such that (e, — ¢g1)h] = h{.
Changing notation, we can assume that n = 2, so that g2h] = (e2 — ¢1)h] = h]. Set
h! = hig, € EF = F. By using the same argument as before, we have h{, hy — g € F,
hi ~p hi—g{ and p— (R 4+¢1) ~g ¢—h1. Observe that h} < g». Continuing this process,
we get sequences of idempotents in F'

gilghlv gggh?v ceey ggghnv
hlllgg% h/2/§g37 R hg§9n+1,

such that g1 ~p ¢7, and gny1 — hj, ~B gnyq and h, — g, ~p h} for all n > 1. Since
P = 1 o (Gat — B+ S0 B and = Y205 gl 350 (o — gl). we obtain from
[AP, Lemma 1.6] that p ~p ¢, as desired.

This proves that V(7) is injective and so we conclude that it is a monoid isomorphism

from V(B) onto V(E). O
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Recall that a ring R is said to be wunit-regular if for each * € R there is a unit v € R
such that © = zuz. The unit-regular rings are exactly the regular rings with stable rank
one [varr, Proposition 4.12]. Also, we infer from [varr, Theorem 4.5] that a regular ring
R is unit-regular if and only if V(R) is a cancellative monoid. By combining Theorem 1.3
with the results in [AP] we will obtain a description of V(Cgr) in terms of intervals in V(R)
for any unit-regular ring R. To this end we recall the definition of an interval in a monoid

M.

Definition. Let M be an abelian monoid. An interval in M 1s a nonempty, hereditary,
upward directed subset I of M. An wnterval I in a monoid M 1s said to be countably
generated provided that I has a countable cofinal subset.

Intervals have been extensively used in the theory of multiplier C*-algebras, e.g. [gKth],
[GH], [Per], and recently in the study of multiplier rings of regular rings [AP].

Given an abelian monoid M we denote by A, (M) the abelian monoid of countably
generated intervals in M, with the sum defined by

X+Y={zeM|z<z+yforsome z € X and some y € Y},

where X, Y € A (M).

Theorem 1.4. Let R be a unit-reqular ring and let Cr be the category of countably gen-
erated projective right R-modules. Then there is a monoid isomorphism ® : V(Cr) —
Ay (V(R)) such that ®([P]) is the interval in V(R) generated by the increasing sequence
{leaBex® - Bep)|n=1,2,...}, for any P € Cr and any decomposition P = &2 e; R
with e; = e? € R.

Proof. Set E = FCM(R) = End(XoRpg), and B = FRCM(R), and recall that B is
the multiplier ring of FM(R) [AP, Proposition 1.1]. By Proposition 1.2 and Theorem
1.3 we have a monoid isomorphism 7 : V(Cr) — V(B). This isomorphism sends [P]
to the class in V(B) of the idempotent e = diag(ey,e2,...) € B, where P = &2 ¢;R
and e¢; are idempotents in R. By [AP, Theorem 2.7], there is a monoid isomorphism
p:V(B) 2 Ay (V(R)) which sends [p] € V(B) to the interval in V(R) generated by {[p,]},
where (pn)n>1 is an approximate unit for pFM(R)p consisting of idempotents. Define
® = yyo7. Then ® is a monoid isomorphism from V(Cg) onto V(B). Now, let P € Cr
and let P =2 &2, ¢;R with ¢; idempotents in R, and write e = diag(ey,ez,...). Since
diag(e1,€2,...,€,,0,0...) is an approximate unit consisting of idempotents for e F M (R)e,
it follows from the above description that ®([P]) is the interval of A;(V(R)) generated by
the countable set {[e; &+ D e,] |n>1}F O

Proposition 1.5. Let R be a unit-reqular ring, and let ® : V(Cr) — As(V(R)) be the
natural 1somorphism. Let P and @) be countably generated projective R-modules. Then

(a) P < Q if and only if @([P]) C 2([Q]).

(b) P <% Q if and only if there 1s Z € Ay(V(R)) such that ®([P]) + Z = ®([Q]).
Proof. (a) Write P =2 ¢, P, and Q = 62,0, for P;,Q; € FP(R). By [varr, Proposition
4.8], we have P < Q if and only if P, & --- & P, < @ for all n > 1. Since each P; is
finitely generated, this holds if and only if for each n > 1 there exists m > 1 such that
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Pi@--®P, <@ - DQy. By the description of @ in Theorem 1.4, the latter statement
holds if and only if ®([P]) C ®([Q]).
(b) This is clear from Theorem 1.4. O

Remark 1.6. If M s any abelian monoid, the algebraic pre-order on M 1s defined by
the rule @ < y uff there 1s z € M such that * + z = y. Note that Proposition 1.5(b)
says that the algebraic pre-order on A, (V(R)) corresponds to the pre-order relation <% on
Cr. Similarly, Proposition 1.5(a) says that the order induced by the inclusion of intervals
corresponds to the relation < on Cg.

Say that an abelian pre-ordered monoid (M, <) is unperforated in case naz < ny implies
x<yforalln >1andall z,y € M. The following lemma is well-known. Although stated
for Riesz groups in [gKth], the translation to cancellative Riesz monoids is immediate.

Lemma 1.7. [gKth, Lemma 2.3] Let M be a cancellative Riesz monoid.

(a) If M 1is unperforated, then Ay(M) is unperforated for the algebraic pre-order, and
also for the order given by set inclusion.

(b) If ne = ny wmplies v =y for alln > 1 and all x,y € M, then nX = nY implies
X =Y foralln>1and X,Y € Ay(M).

As an immediate consequence of Proposition 1.5 and Lemma 1.7 we obtain

Proposition 1.8. Let R be a unit-reqular ring.
(a) If V(R) is unperforated, then (V(Cr),[<]) and (V(Cgr),[<®]) are also unperforated.
(b) Assume that nP = nQ implies P = Q for alln > 1 and P,QQ € FP(R). Then the
same property holds for all P,Q € Cr. O

An immediate consequence of Proposition 1.8 is that, in case R is a regular ring satisfying
hypothesis (b), both E and B satisfies a weak cancellation property, called separativity,
which has been proved to be very useful in the study of some questions on exchange rings
(see [AGOP)).

Recall that a ring T is separative provided the following cancellation property holds for
finitely generated projective right (equivalently, left) T-modules A and B:

A A=ZA4B=ZB&B = A=B.

See [AGOP] for the origin of this terminology and for a number of equivalent conditions.

Corollary 1.9. Let R be a unit-regular ring. If nP = n@) implies P = @Q for alln > 1
and P,Q € FP(R), then both E and B are separative rings. O

Proof. The result follows from Proposition 1.8(b), Proposition 1.2 and Theorem 1.3. O

2. SIMPLE RINGS AND RINGS WITH $-COMPARABILITY.

In this section we will give a precise description of the structure of the countably gen-
erated projective modules over some special types of regular rings. Our approach is based
on the reduction to the simple case.

Let s be a positive integer. A regular ring is said to satisfy s-comparability in case
for every =,y € R, either R < s(yR) or yR < s(zR). Directly finite regular rings with
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s-comparability are not always unit-regular [AOT, Example 3.2], but so are in the simple
case, by a result of O’Meara [OM, Corollary 2.

The following facts will be used repeteadly, see [AOT]. Let R be a nonzero regular
ring satisfying s-comparability. Then the lattice L(R) of two-sided ideals of R is totally
ordered. In particular there exists a unique maximal ideal M. If, in addition, R is directly
finite, then R/M is a simple directly finite regular ring satisfying s-comparability, and so
it is unit-regular by O’Meara’s result, see [AOT, Corollary 2.7].

Say that R is strictly unperforated in case nP < n@) implies P < () for all n > 1 and
P,Q) € FP(R).

Let P(R) be the compact convex set of pseudo-rank functions defined on R [vnrr,
Chapter 16]. As for pseudo-rank functions on non-unital regular rings, we will follow the
conventions used in [AP].

Let I be a compact convex set. We denote by LAff(K) the monoid of all affine and
lower semicontinuous functions on K with values on RU {+oc}. Let LAfl,(K) denote the
submonoid of LAff(/') whose elements are pointwise suprema of increasing sequences of
affine real-valued continuous functions on K. The semigroup of strictly positive elements

in LAff,(K) will be denoted by LAff,(K)*T.

Theorem 2.1. Let R be a simple, nonartinian, strictly unperforated, unit-regular ring.
Then there exists a monoid isomorphism p : V(Cr) — V(R) U LAff,(P(R))*t. This
isomorphism is the identity on V(R) and it 1s given by the formula

p([PD(N) = sup{N(e1) +---+ N(en) | n > 1},

where [Pl € V(Cr)\ V(R), N € P(R) and P = &2 ,e;R with e; = 612 € R.

Proof. By Theorem 1.4, there is a monoid isomorphism @ : V(Cr) — As(V(R)). Write
M =V(FM(R)) = V(R), and note that M is a conical simple refinement monoid. Since
R is simple and nonartinian, M has no atoms. Furthermore, M is cancellative and strictly
unperforated because R is strictly unperforated and unit-regular. So, it follows from [Per,
Theorem 3.9] that there is a monoid isomorphism ¢ : Ay (M) — M ULAff,(S,)T", where
Sy is the state space St(M,u) for a given nonzero element u € M. Here, the semigroup
operation in M ULAff,(S,)"™ is the one obtained by extending the given ones in M and
LAff,(S,)*T, and, for + € M and f € LAff,(S,)™ T, by putting « + f = ¢, (x) + f, where
¢y M — Afl(S,) is the natural representation homomorphism.

Now fix u = [Rr| € M, and note that u is the class of the idempotent e := diag(1,0,...)
in FM(R).

Notice that, by [vnrr, Proposition 16.8], every N € P(R) can be uniquely extended
to an unnormalized pseudo-rank function on FM(R), also denoted by N, such that
N(diag(x1,...,2,,0,0,...)) = N(a1)+---+N(xy). Asin [AP], we denote by P(FM(R)).
the compact convex set of all the pseudo-rank functions N on FM(R) such that N(e) = 1.
By the previous observation, we can identify P(FM(R)). with P(R). Hence, by [AP,
Proposition 3.4], there is an affine homeomorphism « : P(R) — S, such that a(N)([f]) =
N(f) for every N € P(FM(R)). and every idempotent f € FM(R). This affine home-
omorphism induces a monoid isomorphism M U LAff,(S,)* — M U LAff,(P(R))*T.
Composing ® with this isomorphism we get a monoid isomorphism p : V(Cr) — M U
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LAff,(P(R))*". From the description of ® given in Theorem 1.4 and the description of
the above maps we get the desired properties of the map p. O

Note that if R is a simple artinian ring then V(Cr) = V(R) U{oc} =Z U {c0}.

Corollary 2.2. Let R be a simple reqular ring satisfying s-comparability for some s > 1.
(a) If R is either artinian or directly infinite then V(Cr) = V(R) U {oc}, that is, there
is a unique P € Cp \ FP(R) up to isomorphism, namely P = RoRp.
(b) If R is nonartinian and directly finite, then V(Cg) = V(R) URTT U {co}.

Proof. (a) The simple artinian case is clear, so assume that R is a simple directly infinite
regular ring with s-comparability. By [Par, Proposition 1.7(3)], R is purely infinite, that
i1s, P < @ for every two nonzero finitely generated projective R-modules. Therefore, we
conclude from Proposition 1.2, Theorem 1.3 and [AP, Proposition 2.12] that V(Cr) =
V(R) U{oc}.

(b) Assume now that R is a nonartinian, directly finite, simple regular ring satisfying s-
comparability. By [OM, Corollary 2], R is unit-regular. By [AGPT, Corollary 4.5], R has
a unique pseudo-rank function and is strictly unperforated. Since P(R) is a singleton, we

have LAff,(P(R))™* = RTTU{oo}. So, Theorem 2.1 gives V(Cg) = V(R)URTTU{oc}. O

Remark 2.3. Note that in Corollary 2.2(b) the unique (up to isomorphism) directly infi-
nite module that appears is that corresponding to NgRp.

For a right R-module X define tr(X) = ZfeX* f(X), where X* = Hom(Xg, Rr).
The set tr(X) is always a two-sided ideal of R, called the trace ideal of X, and it is a
principal two-sided ideal in case X € FP(R) and R is a regular ring. If R is a regular
ring with s-comparability, then it is not true in general that R satisfies full comparability,
see for example [varr, Example 18.19]. However, by [AOT, Proposition 2.3(b)], two
finitely generated projectives P and () are always comparable provided their trace ideals
are different.

In order to proof our main result on comparison for countably generated projective
modules, we need some preliminaries.

Definition. Let R be a regular ring satisfying s-comparability. Let M be the unique maz-
imal ideal of R. For A,B € FP(R), write A < B in case AJAM < B/BM.

Lemma 2.4. Let R be a regular ring satisfying s-comparability for some s > 1. Let M be
the unique mazimal two-sided ideal of R.

(1) If A,B € FP(R) and A <y B, then there 1s C € FP(R) such that C # CM and
B=AgC.

(2) Set P = &2, P; and Q = &2,Q,, for P;,Q; € FP(R). Assume that Py <y Q1 <um
P& Py, <y Q1B Q2 < -+ and that Py # P,M and Q; # Q;M for all « > 1. Then
P=qQ.

Proof. (1) The proof is the same as that of [AOT, Proposition 2.3(¢)].

(2) Notice first that the condition P # PM for P € FP(R) means that P is a generator
for the category Mod — R.

Since Py <31 Q1 there exists by (1) a decomposition @1 = Q) & @Y such that P, = Q]
and QY # QM. Further, Q)1 < Py & P2 and so we have an isomorphism Q| & QY &1y =
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P& P, 2 Q) & P, for some Ty such that T # Ty M. Since both QY & Ty and P, are
generators, and R is separative by [Par, Theorem 2.2], we conclude that QY & 177 = Ps.
So we can write P, = Py @& Py with Py = Q) and Py’ # Py’ M. Since Py & Py <1 Q1 D @2,
we can find by (1) a decomposition Q1 & Q2 = Py & Py & Ty with Ty # Ty M. Now note
that

(QIPR) Q=21 DQ =P O P, O P &1, =(Q) ®QY)D P ©T.

By using again that R is separative, we get Q2 = Py & T,. So we obtain a decomposition
Q2 = Q) D QF such that Q) = P) and Q) # QM. Continuing in this way we obtain
decompositions P, = P’ & P and Q, = @, & Q! for all n > 1 such that P = 0 and
Q, = P} and Q) = P, for all n > 1. Finally we get

P = @20:1]311 = @20:1(]37/1 D Pg) = @20:1(62;1 D Q;;) = Qv

as desired. O

For an ideal I of a ring T, let FP(I) (respectively, C;) denote the full subcategory of
FP(T) (respectively, Cr) whose objects are the finitely generated (respectively, countably
generated) projective modules A such that A = Al

Lemma 2.5. Let R be a reqular ring and let e be an idempotent in R. Set I = ReR,
and let M be an ideal of R such that M C I. Then there are equivalences of categories
Cr = Cere and Crjpr — CeRejente such that the following diagram commutes

CI E— CeRe

l l

CI/M EE— CeRe/eMe-

Proof. Write S = eRe/eMe. It is well-known that there is a categorical equivalence be-
tween FP(eRe) and FP(I), see for example [AGOP, Lemma 1.5(c)]. Indeed, the equiv-
alence is given by the functors (—) ®.ge eR from FP(eRe) to FP(I) and (—) @gr Re
from FP(I) to FP(eRe). Since every projective R-module (respectively, projective eRe-
module) is a direct sum of modules in FP(R) (respectively, FP(eRe)), the above equiv-
alence extends to an equivalence between the category of countably generated projec-
tive R-modules A such that Al = A and the category C.r.. For P € (Cj, we have
(P ®r Re)/(P @r Re)(eMe) = P/PM QR/M (R/M)(e + M), so that the stated diagram

1s commutative. O

Theorem 2.6. Let R be a reqular ring satisfying s-comparability for some s > 1, and let
P and Q) be countably generated projective right R-modules.

(a) If tr(P) C tr(Q) then P < Q.

(b) If tr(P) = tr(Q) and tr( ) is not a principal two-sided ideal, then P = Q.

(c¢) Assume that tr(P) = tr(Q) s a principal two-sided ideal, and let M be the unique
mazimal ideal of tr(P). Then we have:
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(cl) If either P/PM or Q/QM s not finitely generated, then P and Q are comparable
with respect to <.

(c2) If both P/PM and Q/QM are not finitely generated and P/PM = Q/QM, then
P=~0Q.

(¢3) If P/PM and Q/QM are both finitely generated and P/PM < Q/QM, then
P =<Q.

Proof. Write P = @2, P; and Q = 6&°,Q;, where P;,Q; € FP(R).

(a) If tr(Q;) C tr(P) for all 4, then tr(Q) = > tr(Q;) C tr(P), a contradiction. So there
is ¢ > 1 such that tr(P) C tr(Q;). Now by using the technique in [AOT, Proposition
2.5(1)(2)] we get B2, P < @y, so that P < Q.

(b) By using repeteadly the hypothesis that tr(P) is not principal, we can arrange the
decompositions of P and () in such a way that

() tr(PL@- @ Py) Ctr(Qr @D Qn) Ctr(Py @D Pryr)

for all n > 1. Now we will define inductively a sequence of homomorphisms ¢, : Py &--- &
P, PQpand v, : Q1 P---5Q, = P F--- & Pyyq such that ¢, 0 p,, = ¢y
and @41 0%y =Gy, where v, : PP &SP, > P1B-- - FPpprands, Q1P Qp, —
Q1P - B Qny1 are the natural inclusion maps. Set Py = QQg = 0 and g = g = 0. Let
n > 0, and assume we have constructed ¢ and g for 0 < k < n. Write P, G-+ Pry1 =
P (Qo B Q1 F - Qn) & P;z—i—l' Taking into account (*), we get tr(P,fH_l) Ctr(PL&---
Poy1) Ctr(Q1 P -+ B Quy1) = tr(Qny1). (The latter equality follows from the relation
tr(Q16---BQy,) Ctr(Q18- - B Quy1) and comparability of ideals.) Therefore there exists
an injective homomorphism 6 : P/H_l = Qnt1- Let opp1 : P1B---BPpy1 > Q1B - BQ g1
be defined as @pp1(Yn(zr + - 4+ 20) + 25, 4) =21+ + 2, + (2], ), for z; € Q; and
:L';H_l € P,fl_i_l. Clearly ¢n4+1 0%y, = . The map 1,41 is defined similarly.

Note that we have @,41 0t = @pt1 0y 0@y = Sy 0 ¢, and similarly ¥,41 0 ¢, =
Vpt10@nt10Wy = tpt1 0y, We conclude that we can define homomorphisms ¢ : P — Q)
and ¥ : ) — P such that ¢y o p =1idp and g 0y =1dg. So P = (), as desired.

(c¢) Assume that [ := tr(P) = tr(Q) is a principal two-sided ideal of R, and let M be
the unique maximal ideal of I. Let ¢ = ¢? € I\ M, and note that I = ReR. By using
Lemma 2.5, we can reduce to the case where I = R and M is the unique maximal ideal of
R. Set S = R/M, and note that S is a simple regular ring satisfying s-comparability.

(c1) Assume that either P/PM or Q/QM is not finitely generated. Since S is a simple
regular ring with s-comparability, we get from Corollary 2.2 that P/PM and Q/QM are
comparable. Without loss of generality, we can assume P/PM < Q/QM.

There are now two cases to be considered. Assume first that P/PM is not finitely
generated. Clearly Py & --- @ P, <y @ for all n > 1, and we can assume that P; # P;,M
for all ©. By Lemma 2.4(1), there is a decomposition ¢ = A; & B; such that A4; =
Py and By # Bi1M. Since Py & P» <y @, there is by Lemma 2.4(1) an isomorphism
P& P Xy 2 Q, where Xo # XoM. So we obtain A1 & (P, & X2) =2 Ay @ By. Since
both P, @ X3 and Bj are generators, we can apply separative cancellation [Par, Theorem
2.2], to get Py & X5 = By. Therefore, we obtain a decomposition By = Ay @ By such that
Ay = Py and By = X,. Note that in particular By # By M. Continuing in this way, we
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obtain submodules A, and B, of () such that Q = A, ®--- D A, & B, for all n > 1. So
we get P = @2, P; = @52, A; < Q. This shows that P < @, as desired.

Now, assume that P/PM is finitely generated and that /QM is infinitely generated.
Then there is some n > 1 such that P/PM = P /PPM &---& P,/ P, M, and, since Q/QM
is not finitely generated, there is m > 1 such that Py & --- & P, <p Q1 B - P Q- By
Lemma 2.4(1), we have Q1 & --- & Qm = P & --- & P, & C for some C with C # CM.
Since tr(Pp41®---) € M C tr(C) we conclude from (a) that @52, P; < C, and therefore
P=(Pid - 3P)d(@E, 1 P)<(PLd - DP)d0 =21 @ @ Qn S Q, showing
P < Q.

(c¢2) Since P/PM and Q/QM are both infinitely generated and P/PM = Q/QM,
for each n > 1 there exist positive integers t(n) and s(n) such that P, & --- @& P, <m
Q1D D Qt(n) and Q1B - DQn <y PLd---D Ps(n). Therefore, changing notation we
can assume that Py <3 Q1 <ym P1r & P2 <ay Q1 B Q2 <p7 ---. and that P; # P;M and
Q; # Q; M for all « > 1. By Lemma 2.4(2), we get P = Q).

(¢3) The proof is similar to the last case in (c1). O

Corollary 2.7.

(a) Let R be a regular ring satisfying s-comparability for some s > 1, and let P and @
be countably generated projective modules. Then either P < 2Q) or () < 2P.

(b) Let R be a regular ring satisfying comparability, and let P and @ be countably
generated projective modules. Then either P < Q or @@ < P.

Proof. (a) If tr(P) # tr(@), then the result follows from Theorem 2.6(a) (by using com-
parability of ideals). So, assume that tr(P) = tr(Q). If tr(P) is not a principal ideal,
then the result follows from Theorem 2.6(b). So, we have reduced the problem to the case
where tr(P) = tr(Q) and tr(P) is a principal two-sided ideal of R. Let M be the unique
maximal ideal of tr(P), let e = ¢ € tr(P) \ M, and set S = eRe/(eMe), a simple regular
ring satisfying s-comparability.

If either P/PM or QQ/QM is not finitely generated, then P and () are comparable by
Theorem 2.6(cl), so clearly either P < 2@ or @ < 2P.

If P/PM and Q/QM are both finitely generated, then P/PM and QQ/QM are compa-
rable in case S is either artinian or purely infinite, and P/PM and Q/QM are almost-
comparable in case S is directly finite and non-artinian, see [AGPT, Corollary 4.5]. In
either case we obtain that either P/PM < (2Q)/(2Q)M or Q/QM < (2P)/(2P)M. By
Theorem 2.6(c3), we get that either P < 2Q) or ) < 2P.

(b) We give a direct proof, which is a slight modification of the proof for the directly
finite case, given in [Ku2, Theorem 2.1(a)]. Assume that P and ) are countably generated
projective modules over a regular ring with comparability. First consider the case where
P is finitely generated and @) is infinitely generated. We can assume P € ). Proceeding
by induction, assume we have for some n > 1 submodules Py,...,P, of P such that
P=P & ---®&P,®dP, with P, =2Q; fori=1,...,n. If P < Qny1, then P < Q, a
contradiction, so that Q.41 S P),. Write P = Pnq1 @ P}, with P11 = @Q,y1 and note
that P=P, & - - B Py & P;z—i—l' This completes the induction argument.

Assume now that both P and ) are infinitely generated, and assume that @ £ P.
Write P = 2, A; with A; € FP(R) for all i. We have seen before that A; and @ are
comparable, but we cannot have @) < Ay, so 41 < Q. Write Q = By & C; with Ay = B,.
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We cannot have Cy < A,, so that we have Ay < (4. Continuing in this way, we obtain

~

submodules {B,,} of ) such that Q = B, @& --- & B, ® C,, for some C,,, and A,, = B,, for
all n > 1. We conclude that P < @), as desired. O

3. THE LATTICES OF IDEALS.

Let R be aregular ring. Recall from Section 1 that we denote by E the ring End(RXgRr)
= FCM(R) and by B the ring FRCM(R). For a ring T, we denote by L(T) the lattice
of (two-sided) ideals of T'. In this Section we will obtain some general information on the
lattices L(B) and L(E), and then we will carefully study the special situation in which R
is a regular ring satisfying s-comparability.

The ring B is the multiplier ring of the o-unital regular ring F' = FM(R), and so every
ideal in B is generated by idempotents [AP, Theorem 2.5]. Moreover, the ideals of B
correspond to certain subsets of V(B), called order-ideals. To define them, let us consider
an abelian monoid M, endowed with the algebraic pre-order (see Remark 1.6). An order-
ideal of M is a submonoid S of M such that S is hereditary with respect to the algebraic
pre-ordering, ie., y < x for y € M and @ € S implies y € S. We denote by L(M) the
lattice of order-ideals of a monoid M. By [AP, Theorem 2.7] we have a lattice isomorphism
L(B) =2 L(V(B)). The situation with the ring E is somewhat different, since the ideals
of E need not be generated by idempotents. For example, let R be a commutative non-
artinian regular ring, so that R has a sequence (e,) of nonzero orthogonal idempotents.
Consider the matrix X having all rows but the first one 0, and with first row [ey, e2,...].
Then the ideal generated by X in E cannot be generated by idempotents. However we
can explote the fact that E is an exchange ring to obtain some useful information on the

ideals of E.

Theorem 3.1. Let R be a regular ring. Consider the maps o : L(B) — L(E) and
B :L(E) — L(B) defined by o(I) = EIE and 3(I')=1I'NB for I € L(B) and I' € L(E).
Then 3o« = Idpp), so that o is injective and 3 is surjective. Moreover, for I € L(B),
we have 37Y(I) = [a([),W;(lj)(J(E/oz(I)))], being wo(ry + E — E/a(l) the canonical

projection.

Proof. Let 1 : B — FE be the canonical inclusion. By Theorem 1.3, the induced map
V(i) : V(B) — V(E) is a monoid isomorphism. Hence, we get a lattice isomorphism
L(V(i)): L(V(B)) = L(V(E)). On the one hand, by [AP, Theorem 2.7] we have a lattice
isomorphism L(B) — L(V(B)) which sends an ideal I of B to the order-ideal V(I) of
V(B). On the other hand, since E is an exchange ring, we obtain from [tePa, Teorema
4.1.7(1)] a surjective lattice homomorphism L(E) — L(V(E)) sending I' € L(E) to the
order ideal V(I') of V(E). The composition L(E) — L(V(E)) — L(V(B)) — L(B)
gives a surjective lattice homomorphism from L(E) onto L(B), which is easily seen to
agree with 3. Now, we infer from [tePa, Theorem 4.1.7(ii)] that, for I € L(B), we have
p~HI) = [Oz([),F;(lj)(J(E/Oé(I)))]. In particular we get oo =Idyy. O

Following [Par], we define s-comparability for a general ring T in terms of its monoid
V(T), as follows. First, say that the monoid M satisfies s-comparability if for any p,q € M
either p is a summand of sq or ¢ is a summand of sp. If T is any ring, say that T satisfies
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s-comparability provided V(T') satisfies s-comparability. Of course, comparability stands
for 1-comparability.

Let R be a regular ring satisfying s-comparability. In view of Corollary 2.7, it seems
reasonable to ask whether the rings F and B satisfy s-comparability. However this is not
true, as can be seen from easy examples. (Note that the relation appearing in Corollary
2.7 is < while to get comparability in E we need the relation <%.) Similarly the lattices
L(B) and L(FE) need not be totally ordered. We will prove that things become better when
we consider the rings B/F and E/G.

Theorem 3.2. Let R be a regular ring satisfying s-comparability for some s > 1. Then
B/F and E/G satisfy comparability.

Proof. Since E is an exchange ring we have V(E/G) = V(E)/V(G) by [AGOP, Propo-
sition 1.4]. Since F is a regular ideal we can lift idempotents from B/F to B [Men,
Lemma 3]. Thus the natural map V(B)/V(F) — V(B/F) is surjective. By using
[Aex, Lemma 2.1], we see that the above map is injective as well (cf. [AGOP, proof
of 1.4]). It follows from the above observations and Proposition 1.2 and Theorem 1.3 that
V(E/G) =2 V(B/F) =2 V(Cr)/V(R). Therefore in order to prove that B/F and E/G
satisfy comparability, it is enough to prove that, given two countably generated projective
R-modules P and @), there are finitely generated projective R-modules A and B such that
either P& A 5@ QoBor(QadB 5@ P @ A. Obviously, we can assume that both P and
Q) are not finitely generated.

Instead of working in the monoid V(Cr)/V(R) we will work with countably generated
projective modules “modulo FP(R)”.

It is easy to see that P (respectively, @), falls modulo FP(R) into exactly one the
following classes:

(a) The class of those A € Cr such that tr(A) is not a principal two-sided ideal.

(b) The class of those A € Cr which admit a decomposition A = §52, A;, where tr(A;) =
tr(A;) for all 7, j.

(¢) The class of those A € Cr admitting a decomposition A = 2, A; with tr(4,) D
tr(A,41) for all n > 1.

Assume first that P and @ fall in class (a). We can assume tr(P) C tr(Q). Then
there are decompositions P = 2, P; and Q = $2,Q; such that tr(P,) C tr(Pn4+1) and
tr(Qn) C tr(Qpyq1) for all n > 1, and tr(P,) C tr(Q,) for all n. By [AOT, Proposition
2.5(b)], we have P, <% @, for all n, and so P <% Q.

Assume that P falls in class (a) and @ falls in class (b). Then tr(P) # tr(Q). By
the same trick as in the above paragraph one obtains that either P <% Q or Q@ <% P,
depending on whether tr(P) C tr(Q) or tr(Q) C tr(P).

The case where P falls in class (b) and @ falls in class (c) is similar to the above case.

Assume now that P falls in class (a) and @ falls in class (¢). Write P = §22, P; and
Q = B2,Qy, with tr(P,) C tr(Py41) and tr(Qy) D tr(Qn41) for all n. If tr(P,) D tr(Qr)
for some n, then @ <% P modulo FP(R). So we can assume that tr(P,) C tr(Q,) for all
n and so P, <% @, for all n, which gives P <% Q.

Consider now the case where P and @ fall both in class (b). Clearly we can assume
that tr(P) = tr(Q). Let M be the unique maximal ideal of tr(P). Since both P/PM
and QQ/QM are both infinitely generated, it follows from Corollary 2.2 that P/PM and
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Q/QM are comparable with repect to <¥. Assume that P/PM <% Q/QM. Then there
is T € Cr such that (P& T)/(PHT)M = Q/QM. By Theorem 2.6(c2), we get PG T = Q)
and so P <% Q.

Finally consider the case where both P and @ fall in class (¢). Write P = &2, P; and
Q = B2,Qy, with tr(Py) D tr(Ppy1) and tr(Qn) D tr(Qpy1) for all n > 1. We can assume
that N2, tr(FP;) C N2, tr(Q;). If tr(Q1) C tr(F;) for all ¢, then tr(@Qr) C N2, tr(F;) C
N2, tr(Q;), a contradiction. So there is 77 such that tr(FP;,) C tr(Q1). Now by the same
argument, there is 13 > 77 such that tr(P;,) C tr(Q2). In this way we obtain a strictly
increasing sequence i3 < i3 < --- such that tr(P;,) C tr(Q,) for all n. Now note that
since tr(P;, @ -+ @ Py, 1) C tr(Qn) we get Py, & - @ P, <% @, and so we get
P, ®Pi1®- <PQ1PQ2& -, showing that P <% @ modulo FP(R). O

For a ring T, denote by Lo(T') (respectively, L1(T')) the subset of L(T') consisting in the
ideals of T which are generated by idempotents (respectively, the semiprimitive ideals of

T).

Corollary 3.3. Let R be a regular ring satisfying s-comparability for some s > 1. Then
L(B/F) is a totally ordered lattice, and Lo(E/G) and L1(E/G) are totally ordered.

Proof. By Theorem 3.2, B/F satisfies comparability, so by [Par, Lemma 1.5] the lattice
L(V(B/F)) is totally ordered by inclusion. Now we have observed in the proof of Theorem
3.2 that V(B/F) = V(B)/V(F). Therefore, by using [AP, Theorem 2.7], we obtain a
lattice isomorphism L(B/F) — L(V(B/F)) which sends I /F to V(I)/V(F). We conclude
that L(B/F) is totally ordered by inclusion.

By Theorem 3.2, E/G satisfies comparability, so by [Par, Lemma 1.5] the lattice
L(V(E/G)) is totally ordered. Since E is an exchange ring we have V(E/G) 2 V(E)/V(G)
[AGOP, Proposition 1.4]. So we obtain an order-preserving bijection from Lo(E/G) —
L(V(E/G)) given by the rule I/G — V(I)/V(G). It follows that Lo(E/G) is totally
ordered by inclusion.

Since E/G is an exchange ring, there is an order-preserving bijection from Lo(E/G)
onto L1(E/G), see [tePa, Theorem 4.1.7]. Therefore Li(E/G) is also totally ordered by

inclusion. O

4. PROPERTY (DF).

Following Kutami [Ku3], we say that a ring S satisfies property (DF) provided P & @
is directly finite for every directly finite projective right S-modules P and (). Kaplansky’s
classical result [Kap], stating that every projective module is a direct sum of countably
generated ones, suggests that property (DF) could be equivalent to the statement that finite
direct sums of countably generated directly finite projectives are again directly finite. This
is indeed the case, as we prove below.

Lemma 4.1. Let S be any ring and let P be a projective S-module. If P is directly infinite,
then there 1s a countably generated direct summand of P which 1s also directly infinite.

Proof. Let P be a directly infinite projective module. By Kaplansky’s Theorem, there
exist nonzero submodules X and P; of P such that P = X & P, X is countably generated,
and there is an injective homomorphism ¢ : P — P; such that ¢(P) is a direct summand

OfPl.
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By Kaplansky’s Theorem, we have P; = &;¢;C;, where C; are countably generated
submodules of P;. For any subset L C I, put Cp = $;crC;. Since X is countably
generated, there is a countable subset Iy of I such that o(X) C Cp,. Since X ¢ Cy, is
countably generated, there is a countable subset I; of I such that Iy C I; and o(X $Cp,) C
Cr,. Continuing in this way, we obtain a sequence (I,,) of countable subsets of I such that
I, CInpi and (X @ Cr,) C Cr,,, for all n > 0. Set J = U2 (I, a countable subset
of I. Set P' = X & Cj, and note that P’ is a countably generated direct summand of
P. It remains to prove that P’ is directly infinite. Clearly (X & C) C Cj. Since ¢ is
an injective homomorphism from P onto a direct summand of P; and X & C'; is a direct
summand of P, we conclude that o(X & Cy) is a direct summand of P;. Therefore, we
see from the modular law that o(X & C) is a direct summand of C';. This proves that
X & (' is directly infinite, as desired. [

Proposition 4.2. Let S be any ring. Then S satisfies property (DF) if and only if, for
every directly finite countably generated projective modules P and @, the direct sum P @ Q
18 also directly finite.

Proof. Assume that the class of directly finite countably generated projectives is closed
under finite direct sums. Let P and @ be projective right R-modules such that P & @) is
directly infinite. By Lemma 4.1, there is a countably generated direct summand A of PH Q)
such that A is directly infinite. By Kaplansky’s Theorem, there are countably generated
direct summands Py and 7 of P and () respectively, such that P, & (1 = A® B for some
B. Since A is directly infinite, A & B is directly infinite and so, either P; or )y is directly
infinite by hypothesis. Therefore, either P or ) is directly infinite, and S satisfies property
(DF). O

Our next goal in this Section is to characterize the simple, strictly unperforated, regular
rings which satisfy property (DF). We remark that there are no known examples of simple
regular rings which do not satisfy strict unperforation. We need a technical lemma.

Lemma 4.3. Let K be a Choquet simplex and let s and t be two distinct extreme points

of K. Then there exist fi, fo € LAff,(K)t such that fi(s) = fo(t) =1 and fi + fo = oo.

Proof. Consider the discrete compact subset {s,t} of J.(L'), the extreme boundary of K.
Define a continous function ¢o : {s,t} — R by go(s) = 0 and go(t) = 1. By [poag,
Theorem 11.14] there exists g € Aff(K) such that 0 < g < 1 and ¢(s) = go(s) = 0 and
g(t) = go(?) = 1.

Write F; = ¢~ !({0}). By [poag, Lemma 5.16], F; is a closed face of K. Note that
s € Fy and t ¢ Fy. Set F, = {t}. Then F| and F; are disjoint closed faces of K. Define
gi € Aff(F;) for i = 1,2 by setting g1 = 1 and ¢g» = 0. By [poag, Theorem 11.22] there
exists h € Aff(K) such that 0 < h <1 and Ay, = g; for i = 1,2. Note that h(t) = 0 and
h(s) = 1.

Now define § = suppng and h = sup,nh. Since § and h are pointwise suprema of
sequences of continuous affine functions on K, we have g,h € LAffgigma (). Note that
g and h only take the values 0 and oo, and g(x) = 0 (respectively, h(z) = 0) if and only
if g(z) = 0 (respectively, h(z) = 0). Let us see that g+ h = oco. Take first 2 € F.
Then h(z) = 1 and so h(z) = co. Take now z ¢ Fi(= ¢~'({0}). Then g(z) > 0 and so
G(x) = oo. This shows that g+ h = co.
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Finally, set fi = g+1and fo = h+1. Then fi, f» € LAff,(K)TT and fi(s) = fo(t) = 1
and fi + f2 = oo, as required. O

Theorem 4.4. Let R be a simple, strictly unperforated, reqular ring. Then R satisfies
property (DF) if and only if R satisfies s-comparability for some s > 1.

Proof. Assume first that R is directly infinite. Then R satisfies comparability. In fact, R
satisfies the following property, which clearly implies comparability: Given two nonzero
elements =,y € R then R < yR. To see this, let * and y be two nonzero elements of R.
By simplicity, there is n > 1 such that Rp < n(yRRr), so that n(yRpg) is directly infinite.
Hence, there is a nonzero z € R such that m(zRgr) < n(yRg) for all m > 1, and again by
simplicity of R, we obtain that A < n(zRpg) for every A € FP(R). In particular, we have
n(zRpr) < n(yRpr) and so, since R is strictly unperforated, we get R < yR. By Corollary
2.2(a), V(Cr) 2 V(R) U {oc}. So the only directly finite countably generated projective
module is 0, hence R satisfies property (DF).

If R is artinian, then V(Cr) = V(R) U {oc} by Corollary 2.2(a), so property (DF) is
clear in this case, as is comparability.

Finally, assume that R is nonartinian and directly finite. By [AGPT, Theorem 4.3] and
[OM, Theorem 1], R is unit-regular. By Theorem 2.1, there exists a monoid isomorphism
p:V(Cr) — V(R) ULAff,(P(R))™ . By [AGPT, Corollary 4.5] and Proposition 4.2, it
suffices to see that the directly finite elements of the monoid M := V(R)ULAff,(P(R))**
form a submonoid if and only if P(R) is a singleton. If P(R) is a singleton, then M =
V(R)URTTU{oo}, so the set of directly finite elements is V/(R)UR T, which is a submonoid
of M. Assume now that P(R) is not a singleton, and note that the only directly infinite
element of M is the constant function co on P(R). By the Krein-Milman Theorem there
are two different extreme points in P(R), say N; and N3. Now P(R) is a Choquet simple
by [varr, Theorem 17.5], and so we get from Lemma 4.3 functions f1, fo € LAff,(P(R))*T
such that f1(N1) = f2(Nz) =1 and f1 + f2 = .

Therefore f; and fs are directly finite elements of M, but f; + fo = oo, which is directly
infinite. [

In [Ku3], Kutami showed that a unit-regular ring with s-comparability satisfies property
(DF). By using this, he was able to completely characterize the directly finite projective
modules over them. We will extend Kutami’s results to the general case of regular rings
with s-comparability. Note that directly finite regular rings with 2-comparability are not
necessarily unit-regular by [AOT, Example 3.2], and therefore our extension is proper
even in the directly finite case.

Although we will use some of the ideas of Kutami [Ku3], we will proceed in a self-
contained manner, characterizing in the first place the directly finite projective modules
over a regular ring with s-comparability.

Lemma 4.5. Let R be a regular ring satisfying s-comparability for some s > 1. Let P
and @ be finitely generated projective right R-modules.

(a) If P and @ are directly finite, then so is P & Q.

(b) If I is a two-sided ideal of R, and P is directly finite, then so is P/PI.

(c) Assume that R has a minimal ideal Iy. Assume that P is directly finite, and let X
be a directly finite countably generated projective module such that X = X1y, Then P®H X
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Proof. (a) Consider the ideal J = tr(P & @). Then, the arguments used in the proof of
Theorem 2.6(c¢) allow us to assume that R = .J. Note that either R = tr(P) or R = tr(Q)
by comparability of ideals. We can assume R = tr(P). Then End(Pr) is directly finite
and R is Morita equivalent to it. By [AOT, Corollary 4.7] R is stably finite. So P @& @Q is
directly finite.

(b) By using the same argument as in (a), we can assume that R is directly finite. By
[AOT, Corollary 4.7], R and all its factor rings are stably finite. Consequently, P/PI is
directly finite.

(c) Let ep be a nonzero idempotent in Iy, and note that egRep is a simple regular
ring satisfying s-comparability. If egReg is directly infinite, then the only directly finite
projective R-module is 0. If eg Reg is artinian, then X must be finitely generated, so P$ X
is directly finite by (a). So we can assume that egReg is directly finite and nonartinian.
Assume that P @ X is directly infinite. Then there is a nonzero cyclic ideal Y such that
YIh =Y with P& X &Y < PgX. Write X = &2, X, for X; € FP(R). Let D be the
unique dimension function on Iy such that D(eg R) = 1. Since X is directly finite, we must
have D(X) = > D(X;) < o0, so thereis ng > 1 such that D(X,,,4+15---®X,,) < DY) for
all n > ng. By [AGPT, Corollary 4.5], we obtain X,,,+1®- - -®X,, < Y forall n > ng. Since
P X@Y < PBX, there exists m > ng such that P&@Y @ X, @ -0 X,y S POX 1D --BX,,.
Therefore

PX @3 Xpn <POX1®- 08X Y SPOX1 D& X,

showing that P & X1 & -+ § X, is directly infinite, in contradiction with (a). O

Now we are ready to describe all the directly finite countably generated projective
modules over a regular ring with s-comparability.

Theorem 4.6. Let R be a reqular ring satisfying s-comparability for some s > 1.

(a) Assume that R has a minimal ideal Iy. Then the directly finite countably generated
projective modules are the modules of the form P @ (), where P is a directly finite finitely
generated projective module and Q) 1s a countably generated directly finite projective module
such that QQ = Q1.

(b) Assume that R does not have a minimal ideal. Then the directly finite count-
ably generated projective modules which are not finitely generated are the modules of the
form P = @2, P;, where P; are directly finite finitely generated projective modules and
tr(Piy1) C tr(F;) for all i, and N2, tr(P;) = 0.

Proof. Let P be a directly finite countably generated projective module, and let P =
®2, P;, where P; € FP(R). We assume that P is not finitely generated and P; # 0 for all
i. Let 'y = { e N | tr(Py) C tr(P;)}. By Theorem 2.6(a), Py < P; for alli € I'y. If T'y is
infinite, then Ro Py <% P, and so P is directly infinite, a contradiction. So Ty is finite, and
collecting in the first position all P;’s with ¢ € I';, we can assume that tr(P;) C tr(P;) for
all j. Applying the same argument to P, and the indexes > 2, we can assume as well that
tr(Py) 2 tr(P;) 2 tr(P;) for all 7 > 2. Continuing in this way, we see that, without loss of
generality, we can assume that the decomposition P = &2, P; satisfies tr(P;) 2D tr(Piy1)
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for all i. Assume first that the sequence tr(Py) D tr(FP2) O - - stabilizes. Then there is ng
such that tr(P,,) = tr(P,) for all n > ng. Write Iy = tr(P,, ), and note that Iy is a nonzero
principal ideal of R. If Ij is not a minimal ideal there exists a € Iy such that RaR C Iy. By
Theorem 2.6(a) we then have aR < P; for all 7, and so P is directly infinite. So Iy must be
a minimal ideal of R. Write Q = ©;Z,,  P,. Then @Q is a directly finite countably generated
projective module such that Q = QIy, and P = P' & @, where P’ =P, @ -+ @ P, -1 is a
directly finite finitely generated projective module. So we showed that P is as in (a) if the
chain tr(Py) D tr(Py) O - -+ stabilizes. Assume now that that sequence does not stabilize.
By a new arrangement of terms we can then assume that tr(P;) D tr(Piyq) for all . Write
I =N, tr(P;). If I # 0, then we get a contradiction as before. So I =0 and P is as in
(b) in this case.

It remains to prove that the modules in (a) and (b) are directly finite. Assume first that
R has a minimal ideal Iy, and let P & @ be a module as in (a). Then the result follows
from Lemma 4.5(c).

Finally assume that R does not have a minimal ideal, and let P = @72, P;, where P;
are directly finite finitely generated projective modules with tr(FP;) D tr(P;yq1) for all ¢,
and N2, tr(P;) = 0. Assume that P & X 5@ P for some nonzero X € FP(R). Write
J = tr(X). By comparability of ideals, there is ng such that tr(P,) C J for all n > ng
(otherwise, 0 #= J C N2, tr(P;) = 0). Let M be the unique maximal ideal of the principal
ideal J. Then we get

(*) P/PM&X/XM S¥ P/PM.

Now P/PM = P,/PPM & --- & P, /P,,M is directly finite by Lemma 4.5(a)(b), and
X/XM # 0, so (*) gives a contradiction. Therefore, all the modules in (b) are directly
finite, as desired. [

Corollary 4.7. Let R be a reqular ring satisfying s-comparability for some s > 1. Then
R satisfies property (DF).

Proof. Note that cases (a) and (b) in Theorem 4.6 are exclusive. In either case, taking into
account Lemma 4.5(a) and Theorem 4.4, it is clear that the finite direct sums of directly
finite countably generated projective modules are again directly finite. So the result follows
from Proposition 4.2. 0O

Remark 4.8.

(a) Let R be a regular ring with s-comparability for some s > 1. Since R satisfies
property (DF) by Corollary 4.7, the proof of [Ku3, Proposition 4] applies to show that
every non-countably generated projective R-module is directly infinite. So Theorem 4.6
describes in fact all the directly finite projective R-modules.

(b) Kutami gives in [Ku3] a classification of unit-regular rings satisfying s-comparability
in three classes (A),(B),(C), according with the possible types of directly finite projective
modules. As in Theorem 4.6, these types are reflected in the ideal structure of the ring, see
[Ku3, Section 4]. A similar classification could be established by using Theorem 4.6 for
a general regular ring satisfying s-comparability. So, for example, the regular rings with
s-comparability such that every countably generated directly finite projective is finitely
generated are those such that either Soc(Rg) # 0, or there are no nonzero directly finite
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cyclic projectives, or there are neither minimal ideals nor sequences {I,}72, of ideals of
R such that N2, I,, = 0.
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