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Abstract. A graph monoid is a commutative monoid for which there is a
particularly simple presentation, given in terms of a quiver. Such monoids are
known to satisfy various nonstable K-theoretical representability properties for
either von Neumann regular rings or C*-algebras. We give a characterization
of graph monoids within finitely generated antisymmetric refinement monoids.
This characterization is formulated in terms of the prime elements of the
monoid, and it says that each free prime has at most one free lower cover. We
also characterize antisymmetric graph monoids of finite quivers. In particular,
the monoid Z∞ = {0, 1, 2, . . .}∪{∞} is a graph monoid, but it is not the graph
monoid of any finite quiver.

1. Introduction

Many module-theoretical properties of a ring R can be expressed in terms of the
so-called nonstable K-theory of R, which can be encoded in the commutative mono-
id V(R) defined, in the unital case, as the monoid of all isomorphism types of finitely
generated projective right R-modules. Of particular interest is the case where the
ring R is von Neumann regular, in which case the fundamental, still unsolved, open
problem is the characterization problem of all monoids of the form V(R), published
for the first time in [11]. While the original guess—namely, “all conical refinement
monoids” (cf. Section 2 for the basic definitions)—got disproved in [16], with a
counterexample of size ℵ2, the following fundamental question is still open:

Is every countable, conical refinement monoid representable, that
is, isomorphic to V(R), for some von Neumann regular ring R?

An important positive partial solution was recently obtained by Ara and Brusten-
ga [2], where the authors prove that the representation problem above has a positive
solution for the so-called graph monoids—in fact, the regular ring solving the prob-
lem can be taken an algebra over any given field, see [2, Theorem 4.4]. Graph
monoids are a special class of refinement monoids for which there is a particularly
simple presentation, given in terms of a row-finite quiver (see Section 3). The graph
monoid of a row-finite quiver E is denoted by M(E). We refer the reader to [2] for
more information on the problem above and its relationship with the Separativity
Problem of [3].
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For any row-finite quiver E, there is a C∗-algebra C∗(E) associated to it, called
the Cuntz-Krieger graph C∗-algebra of E. These graph C∗-algebras provide a wide
generalization of the ubiquitous Cuntz algebras On, introduced by Cuntz in [8].
We refer the reader to [15] for the basic theory of graph C∗-algebras. For any
field K, the Leavitt path K-algebra of the row-finite quiver E, denoted by LK(E),
has been defined in [1] and [4], as a purely algebraic analogue of the C∗-algebra
C∗(E). Indeed, it turns out that LC(E) can be identified with a dense ∗-subalgebra
of C∗(E). It was proven in [4, Theorem 3.5] that V(LK(E)) ∼= M(E) for every
field K and every row-finite quiver E, and likewise the monoid M(E) is isomorphic
to V(C∗(E)) by [4, Theorem 7.1]. The algebras LK(E) are not in general von
Neumann regular, and the main goal of the paper [2] is to build an appropriate
von Neumann regular algebra of fractions QK(E) of LK(E) in such a way that the
corresponding monoid is not altered: V(QK(E)) ∼= M(E); see [2, Theorem 4.4].

Although graph monoids have a simple combinatorial characterization, it is a
priori difficult to determine whether a given finitely generated monoid (given, say,
by generators and relations) is a graph monoid. In this paper we solve that par-
ticular problem in the antisymmetric case, see Theorem 5.1. Our characterization
is formulated in terms of the so-called prime elements of our monoid, and it says,
for a given finitely generated antisymmetric refinement monoid (we say primitive
monoid), that each free prime has at most one free lower cover (among the primes).
Our main preliminary result is the discovery of a primitive monoid that is not even a
retract of any graph monoid, see Lemma 4.1. As another surprise, there are finitely
generated graph monoids that are not the graph monoid of any finite quiver, the
simplest of them being Z∞ = Z+ ∪ {∞}. A characterization of all antisymmetric
graph monoids of finite quivers is given in Theorem 6.1.

2. Basic concepts

For elements x and y in a commutative monoid M , we put

x ≤ y ⇔ (∃z)(x + z = y),

x < y ⇔ (x ≤ y and y � x),

x ≡ y ⇔ (x ≤ y and y ≤ x),
x C y ⇔ x + y = y,

x ¿ y ⇔ x + y ≤ y.

An element x of M is
• free, if (n + 1)x � nx for any n ∈ Z+;
• regular, if 2x ≤ x;
• idempotent, if 2x = x;
• an atom, if x � 0 and x = y + z implies that either y ≤ 0 or z ≤ 0, for all

y, z ∈ M .
• prime, if p � 0 and, further, p ≤ x + y implies that either p ≤ x or p ≤ y,

for all x, y ∈ M .
We denote by P(M) the set of all prime elements in M . We denote by Pfree(M)
(resp., Preg(M)) the set of all free primes (resp., regular primes) in M . We say
that M is

• conical, if x ≤ 0 implies that x = 0, for any x ∈ M ;
• antisymmetric, if its algebraic preordering ≤ is antisymmetric;



GRAPH MONOIDS 3

• separative, if 2x = x + y = 2y implies that x = y, for all x, y ∈ M ;
• strongly separative, if 2x = x + y implies that x = y, for all x, y ∈ M ;
• primely generated, if M is generated, as a monoid, by P(M). (This is not

equivalent to the definition given in [5], as primes may there be below zero,
however, for conical monoids the two definitions are equivalent.)

For a monoid N and a homomorphism f : M → N , the kernel of f , defined as

ker f = {(x, y) ∈ M ×M | f(x) = f(y)},
is a monoid congruence of M . A particular sort of congruence is obtained when we
start with an o-ideal of M , that is, a nonempty subset I of M such that x + y ∈ I
iff x ∈ I and y ∈ I, for all x, y ∈ M . Namely, the equivalence relation ≡I defined
on M by the rule

x ≡I y ⇐⇒ (∃u, v ∈ I)(x + u = y + v), for all x, y ∈ M

is a monoid congruence of M . We put M/I = M/≡I and we denote by x/I the
≡I -equivalence class of any element x of M . Observe that x/I ≤ y/I in M/I iff the
relation x ≤I y defined as

x ≤I y ⇐⇒ (∃h ∈ I)(x ≤ y + h)

holds, for any x, y ∈ M . We shall say that M/I is an ideal quotient of M . We
denote by

M | a = {x ∈ M | (∃n ∈ Z+)(x ≤ na)}
the o-ideal generated by an element a ∈ M .

The antisymmetrisation of M is the quotient M/≡. We put

L(M,p) = {q ∈ P(M) | q < p and there is no r ∈ P(M) with q < r < p},
Lfree(M,p) = {q ∈ L(M,p) | q is free},
Lreg(M,p) = {q ∈ L(M,p) | q is regular},

for any p ∈ P(M). We say that M is a refinement monoid [9, 17], if for all elements
a0, a1, b0, b1 ∈ M such that a0+a1 = b0+b1, there are elements ci,j ∈ M , for i, j < 2,
such that ai = ci,0 +ci,1 and bi = c0,i +c1,i for all i < 2. It is well-known that every
o-ideal and every ideal quotient of a refinement monoid is a refinement monoid. It
is established in [5, Corollary 6.8] that every finitely generated refinement monoid is
primely generated. A monoid is primitive [14, Section 3.4], if it is an antisymmetric,
primely generated, refinement monoid. For example, Z∞ = Z+ ∪ {∞}, endowed
with its natural addition, is a primitive monoid. For any prime element p in a
refinement monoid M , the map

φp : M → Z∞, x 7→ sup
(
n ∈ Z+ | np ≤ x

)

is a monoid homomorphism from M to Z∞, see [5, Theorem 5.4]. Furthermore,
if M is primitive, then the map

φ : M → (Z∞)P(M), x 7→ (φp(x) | p ∈ P(M)) (2.1)

is a monoid embedding as well as an order-embedding, see [5, Theorem 5.11] or [17,
Corollary 6.14].

We shall need the following lemma.

Lemma 2.1. Let a, b, c be elements in a refinement monoid M , with c primely
generated. If a + c = b + c, then there are x, y C c such that a + x = b + y.
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Proof. By [5, Theorem 4.1], there are d, a′, b′, c′ ∈ M such that a = d+a′, b = d+b′,
c = a′ + c′ = b′ + c′, and c ≤ c′. Let h ∈ M such that c′ = c + h. The elements
x = b′ + h and y = a′ + h are as required. ¤

A partially ordered set P is lower finite, if the subset P ↓ p = {q ∈ P | q ≤ p} is
finite, for any p ∈ P . We say that P is a forest, if P ↓ p is a chain, for any p ∈ P .

3. Graph monoids

We first recall some definitions from [4]. A quiver (in some other references, a
graph) consists of a ‘vertex set’ E0, an ‘edge set’ E1, together with maps r and s
from E1 to E0 describing, respectively, the range and source of edges; so we write
e : s(e) → r(e), for any e ∈ E1. We say that u ∈ E0 emits edges, if s−1{u} is
nonempty. We say that E is row-finite, if any u ∈ E0 emits only finitely many
edges, that is, s−1{u} is finite. We say that E is finite, if both E0 and E1 are finite.

The graph monoid of a row-finite quiver E, denoted by M(E), is the commutative
monoid defined by generators u, for u ∈ E0, and relations

u =
∑ (

r(e) | e ∈ s−1{u}
)

, for any u ∈ E0. (3.1)

Conversely, with any set (alphabet) Σ, any doubly indexed family (ku,v | (u, v) ∈ Σ× Σ)
of natural numbers such that {v ∈ Σ | ku,v 6= 0} is finite for any u ∈ Σ, and any set
of (formal) relations of the form

u =
∑

(ku,v · v | v ∈ Σ) (for all u ∈ Σ), (3.2)

one can associate a row-finite quiver E such that (3.2) is a system of defining
relations for M(E): just take E0 = Σ and put ku,v edges with source u and range v,
for any u, v ∈ Σ. We will say that E is the quiver associated with the equation
system (3.2).

We shall denote by Fr(X) the free commutative monoid on X, for any set X;
we identify X with its canonical image in Fr(X). For a row-finite quiver E and
α, β ∈ Fr(E0), let α →1 β hold, if there are γ ∈ Fr(E0) and x ∈ E0 such that

α = γ + x and β = γ +
∑ (

r(e) | e ∈ s−1{x}) .

Furthermore, we put→n= (→1)◦· · ·◦(→1) (n times), for all n ∈ Z+, and we denote
by → the union of all the →n, for n ∈ Z+. We denote by πE : Fr(E0) → M(E) the
unique monoid homomorphism such that πE(x) = x for all x ∈ E0. Of course, πE is
surjective, and solving the word problem for M(E) amounts to finding a convenient
description of the kernel ∼E of πE , defined by

α ∼E β ⇐⇒ πE(α) = πE(β), for all α, β ∈ Fr(E0).

Such a description is Item (3) of the following lemma, established in [4, Section 4].

Lemma 3.1. Let E be a row-finite quiver.
(1) The relation → is right refining, that is, for all α0, α1, β ∈ Fr(E0), if

α0 + α1 → β, then there are β0, β1 ∈ Fr(E0) such that α0 → β0, α1 → β1,
and β = β0 + β1.

(2) The relation → is confluent, that is, for all α, β0, β1 ∈ Fr(E0), if α → β0

and α → β1, then there exists γ ∈ Fr(E0) such that β0 → γ and β1 → γ.
(3) For all α, β ∈ Fr(E0), πE(α) = πE(β) iff there exists γ ∈ Fr(E0) such that

α → γ and β → γ.
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The following result is established in [4, Proposition 4.4].

Proposition 3.2. The monoid M(E) is a conical refinement monoid, for any row-
finite quiver E.

In case E is finite, M(E) is finitely generated. As finitely generated refinement
monoids are primely generated [5, Corollary 6.8], it follows that M(E) is primely
generated.

The following few definitions about quivers can be found in [4]. For u, v ∈ E0,
let u >1 v hold, if v ∈ r(s−1{u}); denote by > the reflexive, transitive closure of
>1. A subset H of E0 is hereditary, if u ∈ H and u > v implies that v ∈ H, for all
u, v ∈ E0. Then we put H1 = s−1(H) and E ¹ H = (H, H1), the restriction of E
to H. As H is hereditary, H1 is contained in r−1(H). Then we define a quiver,
denoted by E \H, by (E \H)0 = E0 \H and (E \H)1 = {e ∈ E1 | r(e) /∈ H}. A
subset H of E0 is saturated, if s−1{v} 6= ∅ and r(s−1{v}) ⊆ H implies that v ∈ H,
for each v ∈ E0.

A subquiver of a quiver F is a pair E = (E0, E1) with E0 ⊆ F 0, E1 ⊆ F 1, and
sF (E1) ∪ rF (E1) ⊆ E0. Of course, then we denote by sE and rE the restrictions
of sF and rF from E1 to E0, respectively. We say that E is a complete subquiver
of F , if s−1

F {v} ∩ E1 6= ∅ implies that s−1
F {v} ⊆ E1, for all v ∈ E0.

A quiver homomorphism from a quiver E to a quiver F consists of a pair f =
(f0, f1) of maps f0 : E0 → F 0 and f1 : E1 → F 1 such that rF ◦ f1 = f0 ◦ rE and
sF ◦ f1 = f0 ◦ sE . We say that f is complete, if both f0 and f1 are injective and
(f0(E0), f1(E1)) is a complete subquiver of F . If F is row-finite and f : E → F is
a complete quiver embedding, then there exists a unique monoid homomorphism
M(f) : M(E) → M(F ) such that M(f)(v) = f0(v) for all v ∈ E0. The assignment
E 7→ M(E), f 7→ M(f) is a functor.

An easy application of Lemma 3.1 yields the following.

Lemma 3.3. Let E be a row-finite quiver. Then the following statements hold:
(i) For every hereditary subset H of E0, the restriction E ¹ H is a complete

subquiver of E, and the canonical homomorphism M(E ¹ H) → M(E) is
an embedding, whose image is an o-ideal of M(E).

(ii) Conversely, for every o-ideal J of M(E), the set H = {u ∈ E0 | u ∈ J} is
a hereditary subset of E0, and J ∼= M(E ¹ H).

In the context of Lemma 3.3, we shall identify M(E ¹ H) with its canonical image
in M(E). Although the hereditary set H obtained in Lemma 3.3(ii) is saturated,
saturation is not required in the proof of Lemma 3.3(i). Further, we observe the
following result, established in [4, Lemma 3.1].

Lemma 3.4. Let E be a row-finite quiver. Then every finite subquiver of E is a
subquiver of some finite complete subquiver of E. Consequently, E is a direct limit
of finite quivers with complete embeddings.

As the functor E 7→ M(E), f 7→ M(f) preserves direct limits [4, Lemma 3.4],
it follows that the graph monoid of any row-finite quiver is a direct limit of graph
monoids of finite quivers. Denote by G the category of all graph monoids of finite
quivers with monoid homomorphisms, and by G the category of all commutative
monoids that are direct limits of members of G with monoid homomorphisms. In
particular, the graph monoid of any row-finite quiver is an object of G.
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Observe now that G is closed under finite direct products (take the disjoint union
of the corresponding quivers). Hence, it follows from Corollary 4.2, Remark 4.3,
and Lemma 4.4 in [12] that G is closed under direct limits and retracts. The finitely
generated monoids from G can be characterized as follows.

Lemma 3.5. A finitely generated commutative monoid M belongs to G iff it is a
retract of some member of G.

Proof. As G is closed under retracts, it suffices to prove that if M belongs to G,
then M is a retract of some member of G. So let M = lim−→i∈I

Mi, with a directed

partially ordered set I, monoids Mi in G, transition morphisms f j
i : Mi → Mj for

i ≤ j in I, and limiting morphisms fi : Mi → M for i ∈ I. As M is finitely
generated, there exists i ∈ I such that fi is surjective. As M ∼= Mi/ker fi is finitely
generated, it is, by Redei’s Theorem, finitely presented, thus ker fi is a finitely
generated monoid congruence of Mi. As ker fi =

⋃
j≥i ker f j

i (directed union),
there exists j ≥ i such that ker fi = ker f j

i . For all y ∈ M , there exists x ∈ Mi

such that y = fi(x), and then f j
i (x) does not depend of the choice of x ∈ f−1

i {y};
denote it by e(y). Then e is a homomorphism from M to Mj , and fj ◦ e = idM .
Therefore, M is a retract of Mj . ¤

We shall also need the following simple observation.

Lemma 3.6. Both classes G and G are closed under o-ideals and ideal quotients.

Proof. Closure of G under o-ideals follows from Lemma 3.3, while closure of G under
ideal quotients follows from Theorem 5.3 and Lemma 6.6 in [4].

Now we deal with G. Any member M of G can be written as a direct limit

(M, fi | i ∈ I) = lim−→
(
Mi, f

j
i | i ≤ j in I

)
,

for some directed partially ordered set I, monoids Mi ∈ G, and monoid homo-
morphisms f j

i : Mi → Mj , fi : Mi → M . Let N be an o-ideal of M . The subset
Ni = f−1

i (N) is an o-ideal of Mi, for all i ∈ I. We can define gj
i (resp., gi) as the

restriction of f j
i from Ni to Nj (resp., from Ni to N), and then it is straightforward

to verify that
(N, gi | i ∈ I) = lim−→

(
Ni, g

j
i | i ≤ j in I

)
,

and so N belongs to G. Furthermore, for all i ≤ j in I, there exists a unique
monoid homomorphism hj

i : Mi/Ni → Mj/Nj (resp., hi : Mi/Ni → M/N) such
that hi(x/Ni

) = fi(x)/N for any x ∈ Mi, and it is straightforward to verify that

(M/N, hi | i ∈ I) = lim−→
(
Mi/Ni, h

j
i | i ≤ j in I

)
,

and so M/N belongs to G. ¤

4. A strongly separative primitive monoid not in G

In this section, we denote by M0 the commutative monoid defined by generators
p, a, b and relations p = p + a = p + b. So M0 is a strongly separative, finitely
generated, primitive monoid. It can be described as

M0 = (Z+ × Z+) ∪ {p, 2p, 3p, . . .},
where a = (1, 0), b = (0, 1), and p + x = p for all x ∈ Z+ × Z+.
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Lemma 4.1. The monoid M0 does not belong to G. That is, M0 is not a direct
limit of graph monoids.

Proof. Suppose that M0 belongs to G. By Lemma 3.5, M0 is a submonoid of some
monoid N in G with a retraction ρ : N ³ M0. Let E be a finite quiver such that
N ∼= M(E), with E0 of minimal cardinality.

As M0 is conical, ρ−1{0} is an o-ideal of N . By Theorem 5.3 and Lemma 6.6
in [4], the monoid N ′ = N/ρ−1{0} belongs to G, via a subquiver E′ of E, with
(E′)0 = E0 \H, where H = {u ∈ E0 | ρ(u) = 0}. As M0 is also a retract of N ′ and
by the minimality assumption on E, we obtain that H = ∅, and so ρ−1{0} = {0}.
In particular, as both a and b are atoms of M0, they are also atoms of N .

Denote by I the o-ideal of M0 generated by {a, b}. Hence J = ρ−1(I) is an
o-ideal of N . We also denote by ρ the unique monoid homomorphism from Fr(E0)
to M0 that sends u to ρ(u), for all u ∈ E0.

Claim 1. Every element of J is cancelable in N .

Proof of Claim. Let x + z = y + z hold, where x, y ∈ N and z ∈ J . By Lemma 2.1,
there are u, v C z such that x + u = y + v. As ρ(u), ρ(v) C ρ(z) and ρ(z) ∈ I, it
follows that ρ(u) = ρ(v) = 0, thus u = v = 0, and thus x = y. ¤ Claim 1.

As N is a finitely generated graph monoid, it is primely generated. So there
are n ∈ N and primes q0, . . . , qn in N such that p =

∑n
i=0 qi. Applying ρ gives

p =
∑n

i=0 ρ(qi), thus, up to permutation of the indices and putting h =
∑n

i=1 qi,
we get ρ(h) ∈ I and ρ(q0) = p. As p + a = p, we get q0 + a + h = q0 + h, hence,
by Claim 1, q0 + a = q0. Similarly, q0 + b = q0. Therefore, by keeping the same ρ
and by replacing the inclusion map from M0 into N by the unique homomorphism
fixing both a and b and sending p to q0, we reduce the problem to the case where
p = q0, that is, p is prime in N . Hence there exists q ∈ E0 such that q ≡ p. As
both a and b are atoms of N , there are x, y ∈ E0 such that x = a and y = b.

Claim 2. The inequality ρ(u) ≤ p holds, for all u ∈ E0.

Proof of Claim. The set H = {u ∈ E0 | ρ(u) ≤ p} is a hereditary subset of E0, thus,
by Lemma 3.3, the canonical map j : M(E ¹ H) → M(E) is a monoid embedding.
As p, a, and b are finite sums of elements of H, M0 is a submonoid of M(E ¹ H), and
so the restriction of ρ to M(E ¹ H) defines a retraction from M(E ¹ H) onto M0.
By the minimality assumption on E, we obtain that H = E0. ¤ Claim 2.

Now we put P = {u ∈ E0 | u = u + a = u + b}. As q ≡ p and p = p + a = p + b,
we obtain that q belongs to P , thus P is nonempty. For u ∈ P , if ρ(u) < p, then,
by Claim 1, u is cancelable, a contradiction as u = u + a; hence ρ(u) = p.

Claim 3. Every element u ∈ P emits exactly one edge e(u) such that r(e(u)) ∈ P .
Every edge e ∈ s−1{u} \ {e(u)} satisfies r(e) ∈ J .

Proof of Claim. As u = u+a and by Lemma 3.1, there exists α ∈ Fr(E0) such that
u → α and u + x → α. If u emits no edges, then α = u, thus u + x → u, a contra-
diction by Lemma 3.1(1); hence u emits edges. From u =

∑(
r(e) | e ∈ s−1{u}

)

it follows that p =
∑ (

ρ(r(e)) | e ∈ s−1{u}
)
. Hence there exists exactly one

e(u) ∈ s−1{u} such that ρ(r(e(u))) = p, and ρ(r(e)) ∈ I for all other e ∈ s−1{u}.
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If X denotes the set of all those other edges, then t =
∑(

r(e) | e ∈ X
)

is can-

celable in N and u = r(e(u)) + t. As u = u + a = u + b, we obtain that
r(e(u)) = r(e(u)) + a = r(e(u)) + b, so r(e(u)) ∈ P . ¤ Claim 3.

Now we fix q0 ∈ P , and we put en = e(qn) and qn+1 = r(e(qn)), for every natural
number n. So all elements qn belong to P . As P is finite, there are natural numbers
k < m such that qk = qm. By taking the pair (m,m− k) minimal with respect to
the lexicographical ordering, we may assume without loss of generality that k = 0,
so q0, . . . , qm−1 are pairwise distinct, qm+n = qn, and em+n = en, for all n ∈ Z+.
We put En = s−1{qn} \ {en} and cn =

∑(
ρ(r(e)) | e ∈ En

)
, an element of I, for

all n ∈ Z+. Furthermore, we put c =
∑

i<m ci.

Claim 4. Let i ∈ Z+ and α ∈ Fr(E0) such that qi → α. Then there are an integer
j ≥ i and β ∈ Fr(E0) such that α = qj + β with ρ(β) =

∑
i≤k<j ck.

Proof of Claim. By induction on l such that qi →l α. For l = 0 it is trivial,
so suppose the claim established at stage l, and let qi →l+1 α. So there exists
α′ ∈ Fr(E0) such that qi →l α′ →1 α. By the induction hypothesis, there are j ≥ i
and β′ ∈ Fr(E0) such that ρ(β′) =

∑
i≤k<j ck and α′ = qj + β′. By the definition

of →1, either there exists γ ∈ Fr(E0) such that β′ →1 γ and then either

α = qj + γ

or
α = qj+1 +

∑
(r(e) | e ∈ Ej) + β′.

In the first case, ρ(γ) = ρ(β′) =
∑

i≤k<j ck, so the result holds. In the second case,
put β =

∑
(r(e) | e ∈ Ej) + β′. Then

ρ(β) = cj + ρ(β′) =
∑

i≤k<j+1

ck,

so j + 1 and β are as required. ¤ Claim 4.

Now we can conclude the proof. As q0 = q0+a, there exists α ∈ Fr(E0) such that
q0 → α and q0 +x → α. The second relation implies the existence of α′, γ ∈ Fr(E0)
such that q0 → α′, x → γ, and α = α′ + γ. By Claim 4, there are natural numbers
i, j and elements β, β′ ∈ Fr(E0) such that

α = qi + β, α′ = qj + β′, ρ(β) =
∑

k<i

ck, and ρ(β′) =
∑

k<j

ck. (4.1)

From α = α′ + γ it follows that qi + β = qj + β′ + γ. As ρ(β), ρ(β′), and ρ(γ)
belong to I, the elements β, β′, and γ have no component in P , thus qi = qj , so

i ≡ j (mod m) and β = β′ + γ. (4.2)

From x → γ it follows that ρ(γ) = a, thus, applying ρ to the equation in (4.2) and
using (4.1), we obtain ∑

k<i

ck = a +
∑

k<j

ck.

Hence, as I ∼= Z+ × Z+ is cancellative, i > j and
∑

j≤k<i ck = a. Furthermore, as
i−j = `m for some ` > 0 and the sequence (cl | l ∈ Z+) is periodical with period m,
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we get a = `c. A similar argument gives b = `′c, for some positive integer `′, which
forces c = 0, a contradiction as a = `c. ¤

Observe that the monoid M0 is the antisymmetrisation of the commutative mo-
noid M ′

0 defined by generators p, a, b and relation p = p + a + b. As M ′
0 = M(E)

for the quiver E represented by Figure 1, this implies that the antisymmetrisation
of a finitely generated graph monoid is not necessarily a graph monoid.

p
¦¦

¡¡¡¡
¡¡

¡¡
¡¡

ÁÁ=
==

==
==

a b

Figure 1. The quiver E corresponding to p = p + a + b.

By Lemmas 3.6 and 4.1, no commutative monoid M such that M0 is an ideal
quotient of an o-ideal of M can belong to G. In particular, we obtain the following
result.

Theorem 4.2. Let M be a primely generated refinement monoid with free prime
elements p, a, b such that a and b are incomparable in L(M, p). Then M does not
belong to G. That is, M is not a direct limit of graph monoids.

Proof. Observe that the assumptions imply that M0 is isomorphic to the submonoid
of M generated by {p, a, b}, so we may identify those two monoids. The o-ideal N =
M | p obviously contains M0. As both a and b are prime elements in M , the subset

I = {x ∈ N | a � x and b � x}
is an o-ideal of N . We shall prove that M0

∼= N/I.

Claim. For any x ∈ N , there exists y ∈ M0 such that x ≡I y.

Proof of Claim. The subset N1 = {x ∈ N | (∃y ∈ M0)(x ≡I y)} is a submonoid
of N . We must prove that x ∈ N1, for any x ∈ N . As M is primely generated,
it suffices to consider the case where x is prime, and thus, by the definition of N ,
x ≤ p. Obviously we can assume that either a ≤ x or b ≤ x. Now assume, say, that
a ≤ x. If x < p, then, as a ∈ L(M,p), we get a ≡ x, so, as a is free, x = a + y for
some y < a; by the previous case, y ∈ N1, so x ∈ N1. The remaining case is where
x ≡ p. As p is free, there exists y < p such that x = p + y. By the previous case,
y ∈ N1, and so x ∈ N1. ¤ Claim.

It follows from the claim above that the monoid homomorphism ε : M0 → N/I,
x 7→ x/I is surjective. To prove that it is one-to-one, it suffices to prove the following
statements:

The element p/I is free in N/I. Suppose, to the contrary, that (n+1)p/I ≤ np/I ,
for some n ∈ N. This means that there exists x ∈ I such that (n+1)p ≤ np+x. By
applying the homomorphism φp : N → Z∞ and using the freeness of p, we obtain
that n + 1 ≤ n + φp(x), thus p ≤ x, a contradiction as x ∈ I.

By using φa and φb instead of φp, we obtain in a similar manner that both
elements a/I and b/I are free in N/I.
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The elements a/I and b/I are incomparable in N/I. Suppose, say, that a/I ≤ b/I ,
that is, there exists x ∈ I such that a ≤ b+x. As a is prime and a � b, we get that
a ≤ x, a contradiction as x ∈ I.

Therefore, ε is an isomorphism, and so M0
∼= N/I. By Lemma 4.1, M0 does not

belong to G. Therefore, by Lemma 3.6, neither does M . ¤

5. A characterization of graph monoids among primitive monoids
with lower finite set of primes

The main goal of the present section is to characterize graph monoids within
finitely generated primitive monoids. As every finitely generated primitive monoid
has a finite set of primes (which is the smallest generating subset), the following
result is slightly more general.

Theorem 5.1. Let M be a primitive monoid such that P(M) is lower finite. Then
the following statements are equivalent:

(i) M is a graph monoid.
(ii) M is a direct limit of graph monoids.
(iii) |Lfree(M, p)| ≤ 1 for each p ∈ Pfree(M).

Proof. (i)⇒(ii) is trivial, while (ii)⇒(iii) follows immediately from Theorem 4.2. It
remains to prove the direction (iii)⇒(i).

So assume that |Lfree(M, p)| ≤ 1 for each p ∈ Pfree(M). We shall construct a
row-finite quiver E with vertex set

E0 = P(M) t {bp
i,j | 0 ≤ i < mp, 0 ≤ j, p ∈ Preg(M)} ,

where mp = |Lfree(M, p)|.
For p ∈ P(M) we define elements zp and wp in Fr(E0) by

zp =
∑

(q | q ∈ Preg(M), q < p) ,

wp =
∑

(q | q ∈ P(M), q < p) ,

and we consider the following relations:
Case 1 : If p is free, put the relation

p = p + wp. (5.1)

Case 2 : If p is regular and all the elements of L(M,p) are regular, put the relation

p = 2p +
∑

(q | q ∈ L(M, p)) . (5.2)

Case 3 : If p is regular and p0, . . . , pm−1 are the elements of Lfree(M, p), with
m > 0, put the relations

bp
0,0 = p, (5.3)

bp
i,0 = 2bp

i,0 + bp
i,1 + bp

i,2 + pi, (5.4)

bp
i,1 = bp

i,0 + 2bp
i,1 + bp

i,2. (5.5)

Furthermore, define α : Z+ → Z+ as α(n) = 2nm + 2. For k ∈ Z set ε(k) = 1
if k is even and ε(k) = 2 if k is odd, and put β(k) = dk−1

2 e, where dxe denotes the
largest integer below x, for any real number x.
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For n ≥ 0 and 0 ≤ k ≤ 2m− 1, put the relation

bp
i,α(n)+k = bp

i,α(n)+k + ε(k)bp
i,nm+β(k)+1 + bp

[β(k),m−1]×[α(n)+1,α(n+1)] + zp, (5.6)

where we set

bp
X =

∑

(i,j)∈X

bp
i,j , for any subset X ⊆ [0,m− 1]× Z+.

For example, for n = 0, this yields the relations

bp
i,2 = bp

i,2 + bp
i,1 + bp

[0,m−1]×[3,2m+2] + zp (5.7)

bp
i,3 = bp

i,3 + 2bp
i,1 + bp

[0,m−1]×[3,2m+2] + zp (5.8)

. . . . . .

bp
i,2m = bp

i,2m + bp
i,m + bp

[m−1,m−1]×[3,2m+2] + zp

bp
i,2m+1 = bp

i,2m+1 + 2bp
i,m + bp

[m−1,m−1]×[3,2m+2] + zp

Let E be the quiver associated with the relations (5.1)–(5.6) above (cf. Section 3),
so that M(E) is the commutative monoid defined by generators E0 and defining
relations (5.1)–(5.6). We shall prove that M(E) and M are isomorphic. There is a
surjective monoid homomorphism

ϕ : M(E) → M

such that ϕ(p) = p for all p ∈ P(M) and ϕ(bp
i,j) = p for all p ∈ Preg(M). To prove

that ϕ is well-defined we need to check that the relations (5.1)–(5.6) are satisfied
by the images of E0 under ϕ, which is obvious.

It remains to prove that ϕ is one-to-one. As M is a primitive monoid, the
relations p = p + q, for p, q ∈ P(M) such that p = p + q holds in M , are defining
relations of M (see [14, Section 3.5]). As the subset P(M) ∪ {bp

i,j | p ∈ Preg(M)}
generates M(E), it suffices to prove that the following relations hold in M(E):

p = p + q, for all p, q ∈ P(M) with q < p, (5.9)

p = bp
i,j = 2p, for all i < m, all j ∈ Z+,

and all p ∈ Preg(M), with m = |Lfree(p,M)|. (5.10)

Strictly speaking, we should write p = p + q, and so on, but we shall drop the bars
for clarity of notation, choosing instead to specify the monoid where the relations
should be verified—in particular, M(E) in the case of (5.9), (5.10). We first prove
that bp

i,j ³ bp
i′,j′ in M(E), for any pair of indices (i, j) and (i′, j′). We argue by

induction. Note that (5.4) gives bp
i,1 ≤ bp

i,0 and that (5.5) gives bp
i,0 ≤ bp

i,1, so that
we get bp

i,0 ³ bp
i,1. Also bp

i,2 ∝ bp
i,0 ³ bp

i,1, and (5.7) implies bp
i,1 ≤ bp

i,2, hence

bp
i,2 ³ bp

i,1 ³ bp
i,0, for all i < m.

Now (5.8) gives bp
0,3 ≤ bp

i,3 ≤ bp
0,3, whence bp

i,3 ³ bp
0,3, for all i < m. Using again

(5.7), (5.8), we get bp
i,3 ≤ bp

i,2 and bp
i,1 ≤ bp

i,3, so we obtain bp
i,3 ³ bp

i,1 ³ bp
i,2, for all

i < m. It follows that bp
0,1 ³ bp

i,j , for all i < m and for all j < 4.
Now assume that bp

i,j ³ bp
0,1 for all i < m and all j < `, with ` ≥ 4. We shall

check that bp
i,` ³ bp

0,1 for all i < m. Write ` = α(n) + k for some n ≥ 0 and
0 ≤ k ≤ 2m − 1. Since nm + β(k) + 1 < α(n) + k = `, we get by induction that
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bp
0,1 ³ bp

i,nm+β(k)+1. Observe also that bp
i,nm+β(k)+1 ≤ bp

i,α(n)+k by (5.6). Now
assume that k > 0. Then we get from the relation

bp
i,α(n) = bp

i,α(n) + bp
i,nm+1 + bp

[0,m−1]×[α(n)+1,α(n+1)] + zp

that bp
i,α(n)+k ≤ bp

i,α(n) so that

bp
0,1 ³ bp

i,nm+β(k)+1 ≤ bp
i,α(n)+k ≤ bp

i,α(n) ³ bp
0,1.

We conclude that bp
i,α(n)+k ³ bp

0,1.
Assume finally that k = 0. Then ` = α(n) with n ≥ 1, and we get from the

relation

bp
i,α(n−1) = bp

i,α(n−1) + bp
i,nm−m+1 + bp

[0,m−1]×[α(n−1)+1,α(n)] + zp

that bp
i,α(n) ≤ bp

i,α(n−1) ³ bp
0,1 and so

bp
0,1 ³ bp

i,nm+1 ≤ bp
i,α(n) ≤ bp

i,α(n−1) ³ bp
0,1,

which proves that bp
i,α(n) ³ bp

0,1.
As M is separative, it embeds into a product of monoids of the from G∪{∞}, for

abelian groups G (this follows immediately from Hewitt and Zuckermann’s result
[7, Theorem 5.59]). Hence, to prove that ϕ is one-to-one, it is sufficient to establish
the following claim.

Claim. For any abelian group G and any set of elements

{p̃ | p ∈ P(M)} ∪ {b̃p
i,j | p ∈ Preg(M), i < |Lfree(M,p)|, j ∈ Z+}

in G ∪ {∞} satisfying the relations (5.1)–(5.6), the relations (5.9) and (5.10) are
also satisfied.

Proof of Claim. We prove the claim by induction on the height of p in P(M). If p is
a minimal prime then (5.9) holds vacuously and (5.10) follows from (5.2). Assume
now that p is a prime of height h + 1 and the result holds for all primes of height
at most h. Assume first that p is a free prime. Note that the induction hypothesis
together with (5.1) gives us p̃ = p̃+ũp, where ũp =

∑
q∈L(M,p) q̃. If Lfree(M, p) = ∅,

then all the elements of L(M, p) are regular and so ũp + q̃ = ũp for all q ∈ L(M,p)
by induction hypothesis. We get that

p̃ + q̃ = p̃ + ũp + q̃ = p̃ + ũp = p̃.

This proves (5.9) for all q ∈ L(M, p), and thus for all prime q < p by induction
hypothesis. Assume now that Lfree(M, p) 6= ∅. By assumption, Lfree(M,p) = {p∗}
for some p∗. Since p̃ = p̃+ p̃∗+

∑
q∈Lreg(M,p) q̃, the induction hypothesis gives again

that p̃ = p̃ + q̃ for all q ∈ Lreg(M,p), so that p̃ = p̃ +
∑

q∈Lreg(M,p) q̃. From this we
get p̃ + p̃∗ = p̃ +

∑
q∈Lreg(M,p) q̃ + p̃∗ = p̃. As before, this gives (5.9) at p.

Assume now that p is a regular prime. The case where Lfree(M, p) = ∅ is similar
to the case above. So assume that |Lfree(M, p)| = m > 0. As b̃p

i,j ³ b̃p
0,0 = p̃, some

b̃p
i,j = ∞ if and only if all b̃p

i,j = ∞. In this case, (5.10) holds trivially. So we can
assume that all b̃p

i,j belong to G. Now (5.4) and (5.5) give

0 =b̃p
i,0 + b̃p

i,1 + b̃p
i,2 + p̃i

0 =b̃p
i,0 + b̃p

i,1 + b̃p
i,2 (5.11)
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and so p̃i = 0 for all i < m. Furthermore, (5.6) gives that z̃p ∈ G, and thus q̃ ∈ G
for all q ∈ Lreg(M,p); from q̃ = 2q̃ for all such q, together with all p̃i = 0, we finally
get that q̃ = 0 for any q ∈ L(M, p), and thus, by the induction hypothesis, q̃ = 0
for any q < p in P(M).

Now let j be a positive integer. There exists a unique natural number n such
that nm < j ≤ (n+1)m. The integer k = 2j−2nm−2 lies in the interval [0, 2m−2],
and j = nm + β(k) + 1. Therefore, by applying (5.6) with the consecutive values k

and k + 1, we obtain that b̃p
i,j = 0. In particular, b̃p

i,1 = b̃p
i,2 = 0, whence, by (5.11),

b̃p
i,0 = 0, and therefore b̃p

i,j = 0 for all i < m and all j ∈ Z+. This concludes the
proof of the claim. ¤ Claim.

This concludes the proof of Theorem 5.1. ¤
From Theorem 5.1 we can deduce immediately the following closure result for

the class of graph monoids.

Corollary 5.2. Let M be a primitive monoid with P(M) lower finite. Then M is
a retract of some graph monoid iff M is a graph monoid.

Observe that even in case M is finitely generated, the quiver constructed in the
proof of Theorem 5.1 may not be finite. That in some cases that quiver cannot be
made finite will be established in Theorem 6.1.

The analogue of Corollary 5.2 for graph monoids of finite quivers does not hold,
see Example 6.5.

Not all antisymmetric graph monoids have lower finite set of primes. For exam-
ple, letting E be the row-finite quiver represented by Figure 2, the monoid M(E)
is defined by the generators pn and the relations pn = pn + pn+1, for n ∈ Z+. As
all the pns are prime in M(E) and p0 > p1 > p2 > · · · , the subset P(M(E)) is not
lower finite.

p0

¦¦
// p1

¦¦
// p2

¦¦
// · · ·

Figure 2. A quiver whose graph monoid has no lower finite set of primes.

6. A characterization of antisymmetric graph monoids of finite
quivers

We characterize in this section those antisymmetric finitely generated refinement
monoids M which are isomorphic to a graph monoid M(E) for a finite quiver E.

Theorem 6.1. Let M be a finitely generated primitive monoid. Then there exists
a finite quiver E such that M ∼= M(E) if and only if the set Preg(M) of regular
primes is a lower subset of P(M) and |Lfree(M,p)| ≤ 1 for each p ∈ Pfree(M).
Equivalently, the set R of regular elements of M is an o-ideal of M and P(M/R)
is a forest.

One implication follows easily from Theorem 5.1. Indeed, assume that the
set Preg(M) of regular primes is a lower subset of P(M) and that |Lfree(M, p)| ≤ 1
for each p ∈ Pfree(M). Then the quiver E built in the proof of Theorem 5.1 is finite
because the case 3 of the proof of Theorem 5.1 does not occur. Thus M ∼= M(E)
for the finite quiver E.
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The other implication will be proved at the end of this section. We start with a
crucial observation.

Proposition 6.2. Let E be a finite quiver. Assume that M(E) is an antisymmetric
monoid. Then Preg(M(E)) is a lower subset of P(M(E)).

Proof. By [5, Corollary 5.9], each element in M = M(E) is either free or regular.
Observe that if q is a regular prime then φq′(q) ∈ {0,∞} for all q′ ∈ P(M),

according to whether q′ � q or q′ ≤ q respectively. We proceed by way of con-
tradiction. Let p be a minimal element in Preg(M) (with respect to ≤) with the
property that q ≤ p for some free prime q. Since p is prime, p = v for some v ∈ E0.
Let H be the hereditary saturated subset of E0 generated by v. Then M(H) is the
o-ideal generated by p, so that

M(H) = M(E) | p = {x ∈ M(E) | x ≤ p},
where the latter equality follows from the regularity of p. Replacing E by H, we
can assume that φq(p′) = 0 for every free prime q and for every regular prime p′

such that p′ 6= p. Put

U = {z ∈ E0 | z 6= p} = {xi | 1 ≤ i ≤ m},
V = {z ∈ E0 | z = p} = {yj | 1 ≤ j ≤ n}.

For 1 ≤ i, i′ ≤ m and 1 ≤ j, j′ ≤ n, set

αi,i′ = |{e ∈ E1 | e : xi → xi′}|,
βj,j′ = |{e ∈ E1 | e : yj → yj′}|,
γi,j = |{e ∈ E1 | e : yj → xi}|.

A presentation of M(E) is obtained in matricial form as follows:

X = AX, Y = BY + CX , (6.1)

where X = (x1, . . . , xm)t, Y = (y1, . . . , yn)t, A = (αi,i′)1≤i,i′≤m, B = (βj,j′)1≤j,j′≤n,
and C = (γi,j)1≤i≤m, 1≤j≤n.

Claim. For any abelian group G, the only X ∈ Mm×1(G) and Y ∈ Mn×1(G) that
satisfy (6.1) are X = 0 and Y = 0.

Proof of Claim. Let M be the submonoid of G generated by {x1, . . . , xm, y1, . . . , yn}.
There is a unique monoid homomorphism ψ : M(E) → M such that ψ(xi) = xi and
ψ(yj) = yj for all i, j. But since xi + yj = yj = 2yj in M(E), we get that
xi + yj = yj = 2yj in G so that xi = yj = 0 for all i, j. ¤ Claim.

We can assume that Pfree(M) = {x1, . . . , xk}, so that x1, . . . , xk are the different
free primes in the collection x1, . . . , xm. Consider the “free part” of the homomor-
phism φ of (2.1):

φfree : M(E) → (Z∞)k, x 7→ (φx1(x), . . . , φxk
(x)).

We can suppose that x1 is a maximal element in Pfree(M) (with respect to ≤).
Then φx1(xi) < ∞ for every free prime xi, and φx1(xj) = 0 for every regular prime
xj , because xj 6= p and φq(p′) = 0 for every q ∈ Pfree(M) and every regular prime p′

with p′ 6= p. It follows that φx1(xi) < ∞ for i = 1, . . . ,m and so we obtain that the
column matrix

X0 = (φx1(x1), . . . , φx1(xm))t ∈ Mm×1(Z+)
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satisfies X0 = AX0. Observe that φx1(x1) = 1, so that X0 6= 0. Take G = Q
and any Y ∈ Mn×1(Q) such that Y = BY . Then X = 0 and Y give a solution
to (6.1), and so Y = 0 by the Claim. Thus (I − B)Y = 0 implies Y = 0, and so
I − B is an invertible matrix in Mn(Q). Consider now the above column matrix
0 6= X0 ∈ Mm×1(Z+), and set Y0 = (I − B)−1CX0 ∈ Mn×1(Q). Then we get a
solution (X0, Y0) over Q of the equation (6.1) with X0 6= 0, a contradiction. ¤

Lemma 6.3. Let N be an o-ideal in a primitive monoid M . Then the following
properties hold:

(1) P(N) = P(M) ∩N .
(2) M/N is a primitive monoid and the canonical map π : M ³ M/N induces

an C-isomorphism from P(M) \ P(N) onto P(M/N). Moreover,

φ
M/N
π(p) (π(a)) = φM

p (a),

for every p ∈ P(M) \ P(N) and every a ∈ M .

Proof. (1) Straightforward.
(2) Let us prove that M/N is antisymmetric. The rest is easy. It suffices to

prove that a + x ≤I a implies that a + x ≡I a, for all a, x ∈ M . Let h ∈ I such
that a + x ≤ a + h. It follows from [5, Corollary 4.2] that there exists u ¿ a such
that x ≤ h + u, and hence there are h′ ≤ h and u′ ≤ u such that x = h′ + u′. From
h′ ≤ h it follows that h′ ∈ I, while from u′ ≤ u it follows that u′ ¿ a. As M is
antisymmetric, u′ + a = a, and thus

a + x = (a + u′) + h′ = a + h′ ≡I a. ¤

Corollary 6.4. Let E be a finite quiver. Assume that M = M(E) is an antisym-
metric monoid. Let N be the submonoid of M generated by Preg(M(E)). Then:

(1) N is an o-ideal of M .
(2) N is the set of regular elements of M .
(3) Let H = {v ∈ E0 | v ∈ N}. Then H is a hereditary saturated subset of E0

and the quiver E \H satisfies that M(E \H) = M/N is an antisymmetric
graph monoid such that all elements are free, and P(M/N) = Pfree(M).

Proof. (1) Take p1, . . . , pr ∈ Preg(M) and a ∈ M such that a ≤ p1 + · · ·+ pr. Then
a = q1 + · · ·+ q`, where qi ∈ P so that qi ≤ p1 + · · ·+ pr and, by primeness of qi, we
get qi ≤ pj for some j. By Proposition 6.2 we get that all qi are regular, hence a is
regular.

(2) If a ∈ M then, by the decomposition result given in [14, Proposition 3.4.4]
or [5, Theorem 5.8], we can write

a = p1 + · · ·+ pr + n1q1 + · · ·+ n`q`,

where p1, . . . , pr are regular primes, q1, . . . , q` are free primes, p1, . . . , pr, q1,. . . , q`

are pairwise incomparable, and this expression is unique. If a is a regular element,
then 2a = a and it follows from the equality

2a = p1 + · · ·+ pr + 2n1q1 + · · ·+ 2n`q`,

that all ni = 0, so a ∈ N .
(3) Clear from (1), (2), and Lemma 6.3. By [4, Lemma 6.6] we obtain that

M/N = M(E \H) is a graph monoid. ¤



16 PERE ARA, FRANCESC PERERA, AND FRIEDRICH WEHRUNG

We are now ready to complete the proof of Theorem 6.1. Assume that E is a finite
quiver such that M(E) is an antisymmetric monoid. Then we get from Corollary 6.4
that the set R of regular elements of M(E) is an o-ideal and the monoid M(E)/R
is an antisymmetric graph monoid with no regular primes. Theorem 5.1 gives that
P(M(E)/R) is a forest, as desired.

Example 6.5. It follows from Theorem 5.1 that the monoid Z∞ is a graph monoid.
On the other hand, by Theorem 6.1, Z∞ is not the graph monoid of any finite quiver.

Nevertheless, Z∞ is a retract of the graph monoid of a finite quiver. Indeed,
consider the quiver E represented by Figure 3.

a
$$

²²

boo {{¢¢

1

Figure 3. A quiver whose graph monoid retracts to Z∞.

1 b0
oo

¦¦ ÄÄ
//

??b1
oo

¦¦ ÄÄ
// b2

oo
¦¦

//
??b3

¦¦ ÄÄ
//

__YY b4

¦¦
//

__ ??b5

¦¦ ÄÄ
//

^^ZZ b6

¦¦
//

^^ · · ·

Figure 4. A quiver that represents Z∞.

A presentation of M(E) is given by the two equations

a = a + 1, b = 2b + a.

As a + b is idempotent and absorbs 1 in M(E), there are unique monoid homomor-
phisms ε : Z∞ → M(E) and ρ : M(E) → Z∞ such that

ε(1) = 1, ε(∞) = a + b,

ρ(1) = 1, ρ(a) = ρ(b) = ∞.

In particular, ρ ◦ ε = idZ∞ , so Z∞ is a retract of M(E).
The proof of Theorem 5.1 gives the following infinite presentation for the monoid Z∞:

b0 = 2b0 + b1 + b2 + 1;
b1 = b0 + 2b1 + b2;
b2 = b2 + b1 + b3 + b4;
b3 = 2b3 + 2b1 + b4;
b4 = b4 + b2 + b5 + b6;
b5 = 2b5 + 2b2 + b6;
b6 = b6 + b3 + b7 + b8;
. . . . . .

The corresponding quiver is represented by Figure 4.
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7. Open problems

Problem 1. Is it decidable whether a given finitely generated monoid is isomorphic
to the graph monoid of some row-finite (resp., finite) quiver?

As every finitely generated commutative monoid is finitely presented, Problem 1
is well-posed. The two main results of the present paper, Theorems 5.1 and 6.1,
solve the analogue of Problem 1 for antisymmetric monoids.

Problem 2. Is the retract of a graph monoid always a graph monoid?

By Corollary 5.2, the answer to Problem 2 for primitive monoids with lower finite
set of primes is positive. On the other hand, by Example 6.5, its analogue for graph
monoids of finite quivers fails. Also, observe that the class of graph monoids is not
closed under direct limits (with respect to monoid homomorphisms). Indeed, the
results of [16, 18] show that there exists a distributive bounded semilattice S that
is not representable (i.e., isomorphic to V(R) for any von Neumann regular ring R).
As, by [2, Theorem 4.4], all graph monoids are representable , we see that S cannot
be a graph monoid. On the other hand, S, as every distributive semilattice, is a
direct limit of finite Boolean semilattices [6, 13], and by Theorem 6.1, every finite
distributive semilattice is the graph monoid of a finite quiver, thus representable.
This shows that S is a direct limit of graph monoids, without being itself a graph
monoid.
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