
A CLOSURE OPERATION IN RINGS
VERSION 1.7

Pere Ara, Gert K. Pedersen

and Francesc Perera

November 2000

Abstract. We study the operation E → cl(E) defined on subsets E of a unital ring

R, where x ∈ cl(E) if (x + Rb) ∩ E 6= ∅ for each b in R such that Rx + Rb = R.
This operation, which strongly resembles a closure, originates in algebraic K-theory.

For any left ideal L we show that cl(L) equals the intersection of the maximal left

ideals of R containing L. Moreover, cl(Re) = Re + rad(R) if e is an idempotent in
R, and cl(I) = I for a two-sided ideal I precisely when I is semi-primitive in R (i.e.

rad(R/I) = 0).

We then explore a special class of von Neumann regular elements in R, called
persistently regular and characterized by forming an “open” subset Rpr in R, i.e.

cl(R \ Rpr) = R \ Rpr . In fact, R \ Rpr = cl(R \ Rr), so that Rpr is the “algebraic
interior” of the set Rr of regular elements. We show that a regular element x with

partial inverse y is persistently regular, if and only if the skew corner (1−xy)R(1−yx)

is contained in Rr . If Ireg(R) denotes the maximal regular ideal in R and R−1
q the set

of quasi-invertible elements, defined and studied in [6], we prove that R−1
q +Ireg(R) ⊂

Rpr .

Specializing to C∗-algebras we prove that cl(E) coincides with the norm closure of

E, when E is one of the five interesting sets R−1, R−1
ℓ

, R−1
r , R−1

q and R−1
sa , and that

Rpr coincides with the topological interior of Rr . We also show that the operation
cl respects boundedness, self-adjointness and positivity.

1. Prerequisites

1.1. Recall from [6, §3] that for any subset E of a unital ring R we define cl(E) to
be the set of elements x in R such that, whenever ax + b = 1 for some a, b in R,
there is an element y in R such that x+yb ∈ E. Equivalently, if Rx+Rb = R then
(x+Rb) ∩E 6= ∅.

1.2. The following elementary properties of the operation cl were proved in [6,
Lemma 3.2] and we list them here again for easy reference:

(i) cl(∅) = ∅ and cl(R) = R.
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(ii) E ⊂ F implies cl(E) ⊂ cl(F ).
(iii) E ⊂ cl(E) = cl(cl(E)).
(iv) If E 6= ∅, then rad(R) ⊂ cl(E), where rad(R) is the Jacobson radical of R.
(v) rad(R) = cl(0).
(vi) cl(E) ∩R−1

ℓ = E ∩R−1
ℓ .

(vii) F cl(E) ⊂ cl(FE).
(viii) If F ⊂ R−1, then cl(E)F ⊂ cl(EF ).
(ix) cl(E) + F ⊂ cl(E +RF ).
(x) If RF ⊂ F and E + F ⊂ cl(E), then cl(E) + F ⊂ cl(E).
(xi) If π:R → S is a surjective morphism, then π(cl(E)) ⊂ cl(π(E)).

Here and in the following we use the symbols R−1
ℓ , R−1

r and R−1 to designate the
sets of left, right and two-sided invertible elements in R, respectively.

Since our work is focused on non-commutative rings, it is perhaps worth men-
tioning that condition (viii) can be strengthened to

(viii’) If F ⊂ R−1
r , then cl(E)F ⊂ cl(EF ).

To see this take x in cl(E) and y in F and consider an equation axy+ b = 1. If z is
a right inverse for y, then by multiplying left and right with y and z, respectively,
we get yax+ ybz = 1. Since x ∈ cl(E) this means that x+ tybz ∈ E for some t in
R, whence

xy + tybzy ∈ Ey ⊂ EF .

However,
tybzy = ty(1− axy)zy = ty − tyaxy = tyb ,

so that xy + tyb ∈ EF , proving that xy ∈ cl(EF ).

1.3. For non-commutative rings the equation cl(E ∪F ) = cl(E)∪ cl(F ) is not true
in general (cf. Example 1.10), so that cl is not a closure operation in the sense of
Kuratowski, even though the conditions (i)–(iii) strongly suggest that. However,
these conditions imply that sets of the form cl(E) have one property in common
with closed sets in a topology. We list it for handy reference and leave the easy
verification to the reader:

(xii) If {Fi | i ∈ I} is a family of subsets of R such that cl(Fi) = Fi for all i, then
cl(∩Fi) = ∩Fi.

1.4. It is evident from condition (vi) that cl(R−1
r )∩R−1

ℓ = R−1. Less evident, but
more useful, is the relation:

(∗) R−1
r ∩ cl(R−1

ℓ ) = R−1 .

To prove the non-trivial inclusion ⊂ , take an element x in R−1
r and choose a in R

with xa = 1. If now also x ∈ cl(R−1
ℓ ), then from the trivial equation ax+(1−ax) = 1

we obtain an element x0 = x + y(1 − ax) in R−1
ℓ for some y in R. However,

x0a = xa = 1, so x0 ∈ R−1
ℓ ∩ R−1

r = R−1. But then also a ∈ R−1, and thus
x ∈ R−1.

It is immediate from (∗) that if cl(R−1
ℓ ) = R, which is the formal definition of

having Bass stable rank one, then R−1
r = R−1

ℓ = R−1 (as already noticed in [22,
Theorem 2.6]). Of course, it is this “finiteness” property that makes Bass’ first
stable rank so much more important than the higher stable ranks.
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1.5. The reader will have noticed that the definition of cl is asymmetric and favours
the sinister multiplication. To balance this we defined in [6, §3] the dextrous version
cr, where x ∈ cr(E) if xR + bR = R implies that (x + bR) ∩ E 6= ∅. Evidently
there is a parallel theory for the operation cr, but, more importantly, for sufficiently
symmetric subsets E the two sets cl(E) and cr(E) are related. Thus cl(R−1) = R
if and only if cr(R−1) = R (which happens precisely when R is a Bass ring), and
cl(R−1

q ) = R if and only if cr(R−1
q ) = R (which is the defining property for a

QB−ring). Further examples occur in Theorem 3.2 and throughout §4.

1.6. For any subset E of a unital ring R we define

inl(E) = R \ cl(R \ E) .

Insofar as cl(E) resembles “the closure” of E, the set inl(E) resembles “the interior”
of E. Thus, inl will be a monotone decreasing and idempotent operation on subsets
of R, and the class of sets for which inl(E) = E will be stable under arbitrary
unions by condition (xii) above, cf. Lemma 1.8.

If x ∈ R and Rx + Rb = R for some b in R, we set Ux(b) = x + Rb, cf. [6,
Remark 3.3]. For a commutative ring, where cl is an honest closure operation, the
sets Ux(b) will be a neighbourhood basis for x in the ensuing topology. But also in
the general case these subsets strive to fulfill this task as the next result testifies.

1.7. Proposition. For each subset Ux(b) of a unital ring R we have inl(Ux(b)) =
Ux(b). Conversely, a non-empty subset E of R will satisfy inl(E) = E if and only
if

E =
⋃

x∈E

Ux(bx) .

Proof. Assume that ax+ b = 1 and consider an element z = x+ yb in Ux(b). Then
az + (1− ay)b = 1, so if z ∈ cl(R \ Ux(b)) we have z + s(1− ay)b ∈ R \ Ux(b) for
some s in R. However,

z + s(1− ay)b = x+ (y + s(1− ay))b ∈ Ux(b) ,

a contradiction. Thus z ∈ R \ cl(R \ Ux(b)) = inl(Ux(b)), as desired.
In the converse direction we have already noticed that each subset E which can

be written as a union of sets U for which inl(U) = U will satisfy inl(E) = E.
Assume now that inl(E) = E and take any x in E. Then x /∈ cl(R \E), so there

must exist some b = bx in R with Rx+Rb = R, such that (x+Rb) ∩ (R \E) = ∅.
But this means precisely that Ux(b) ⊂ E, as claimed. �

1.8. Lemma. The operation inl defined 1.6 has the following properties relative
to any subsets E and F of a unital ring R:

(i) inl(∅) = ∅ and inl(R) = R.
(ii) E ⊂ F implies inl(E) ⊂ inl(F ).
(iii) E ⊃ inl(E) = inl(inl(E)).
(iv) If E 6= R, then rad(R) ∩ inl(E) = ∅.
(v) R \ rad(R) = inl(R \ {0}).
(vi) E ∩R−1

ℓ ⊂ inl(E).
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(vii) If F ⊂ R−1, then F inl(E) ⊂ inl(FE).
(viii) If F ⊂ R−1

ℓ , then inl(E)F ⊂ inl(EF ).
(ix) inl(E) + F ⊂ inl(E +RF ).
(x) If RF ⊂ F and E + F ⊂ E, then inl(E) + F ⊂ inl(E).
(xi) If π:R → S is a surjective morphism and E ⊂ S, then π−1(inl(E)) =

inl(π−1(E)).
(xii) If {Ei | i ∈ I} is a family of subsets of R such that inl(Ei) = Ei for all i,

then inl(∪Ei) = ∪Ei.

Proof. Properties (i)–(v) and (xii) follow immediately from the corresponding prop-
erties of cl listed in 1.2 and 1.3 by taking complements. To verify (vi), note that if
x ∈ E ∩R−1

ℓ , then Rx+R0 = R, so Ux(0) = {x}; and x ∈ inl(E).
(vii) & (viii) If x ∈ inl(E), then ax + b = 1 and Ux(b) ⊂ E for some a, b in

R. If now y ∈ F ⊂ R−1, then ay−1(yx) + b = 1 and yx + Rb = yUx(b) ⊂ yE,
so yx ∈ inl(FE). If instead y ∈ R−1

ℓ and zy = 1, then zaxy + zby = 1 and
xy +Rzby ⊂ Ux(b)y ⊂ Ey, so xy ∈ inl(EF ).

(ix) Again, if x ∈ inl(E), so that ax + b = 1 and Ux(b) ⊂ E for some a, b in R,
then for each y in F we have a(x + y) + (b − ay) = 1 and x + y + R(b − ay) ⊂
Ux(b) + Ry ⊂ E + RF , whence x + y ∈ inl(E + RF ) by definition. From (ix) we
immediately get (x).

(xi) Suppose that x ∈ R such that π(x) ∈ inl(E). Since π is surjective, this means
that for some a, b in R we have π(ax+ b) = 1S and π(x) + Sπ(b) ⊂ E. Perturbing
if necessary b with an element from ker π we may assume that ax + b = 1R, and
evidently π(Ux(b)) ⊂ E, whence Ux(b) ⊂ π−1(E), and x ∈ inl(π−1(E)).

Conversely, if x ∈ inl(π−1(E)) we have ax + b = 1R and Ux(b) ⊂ π−1(E). But
then π(ax+ b) = 1S and π(x) + Sπ(b) ⊂ E, so that π(x) ∈ inl(E). �

1.9. Remarks. a. In connection with condition (vi), note that if E is “bounded”
in the primitive sense that it contains no “rays” of the form x+Nb, for b 6= 0, then
inl(E) = E ∩ R−1

ℓ . Because then ax + b = 1 and Ux(b) ⊂ E only if b = 0, which

implies that x ∈ E ∩R−1
ℓ .

b. If L is a left ideal in R, then cl(L) is an interesting object of study, as we shall
see in §2. By contrast, inl(L) = ∅ whenever L 6= R. Indeed, if x ∈ inl(L), then
x+Rb ⊂ L for some b in R with Rx+Rb = R. Since x ∈ L this implies that also
b ∈ L, whence L = R.
c. By conditions (vii) and (viii) we see that for any subset E of R such that
R−1E = ER−1 = E we also have R−1 inl(E) = inl(E)R−1 = inl(E).
d. Condition (ix) shows that for every left ideal L in a unital ring R and any subset
E such that E = inl(E) we also have E + L = inl(E + L)
e. We finally note that condition (xi) implies that if E = inl(E) in S, then π−1(E) =
inl(π−1(E)) in R, so that π is “continuous”. Since evidently π(Ux(b)) = Uπ(x)(π(b))
we also have π(inl(E)) ⊂ inl(π(E)). It follows that inl(E) = E in R implies that
inl(π(E)) = π(E) in S, so that π is an “open” map as well.

1.10. Example. In the ring R = M2(R) we consider the three proper idempotents

e =

(

1 0
0 0

)

, p = 1
2

(

1 1
1 1

)

, q = 1
2

(

1 −1
−1 1

)

.
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Since both e+ p and e+ q are invertible we may consider the two subsets

Ue(p) = e+Rp and Ue(q) = e+Rq .

However, Ue(p) ∩ Ue(q) = {e}, which contains no subsets of the form Ue(b). Thus,
if we put E = R \ Ue(p) and F = R \ Ue(q), then cl(E) = E and cl(F ) = F ; but

cl(E ∪ F ) = R \ inl(Ue(p) ∩ Ue(q)) = R \ inl({e})

= R 6= R \ {e} = E ∪ F = cl(E) ∪ cl(F ) .

These sets therefore provide a concrete counterexample for cl to satisfy Kuratowski’s
fourth closure axiom.

2. Closures of Left Ideals and Idempotents

2.1. For a left ideal L in a unital ring R we define ker hull (L) to be the intersection
of all maximal left ideals of R containing L. If π:R → R/L denotes the quotient
map, regarded as a module morphism between the left R−modules R and R/L,
then π induces a bijection between the maximal left ideals Lm of R containing
L and the maximal left submodules of R/L, these having the form ker ρ, where
ρ:R/L → R/Lm is the quotient map into the simple R−module R/Lm. The
intersection of all maximal submodules of a given left R−module M is the radical
of M , denoted by rad(M), cf. [12, §5]. It follows that we have the equation

(∗) ker hull (L) = π−1(rad(R/L)) .

In particular, ker hull {0} is the Jacobson radical of R, and ker hull (L) = L if and
only if rad(R/L) = 0.

2.2. Theorem. For each left ideal L in a unital ring R we have

ker hull (L) = cl(L) .

Proof. We first observe that if x ∈ ker hull (L), then c(1 − x) + y = 1 for some c
in R and y in L. Indeed, if 1 /∈ R(1 − x) + L, then this set is a proper left ideal
(containing both 1 − x and L), hence contained in a maximal left ideal Lm of R.
However, L ⊂ Lm so ker hull (L) ⊂ Lm. Consequently,

1 = 1− x+ x ∈ Lm + ker hull (L) ⊂ Lm ,

a contradiction.
To prove that this implies that x ∈ cl(L) consider an equation ax+ b = 1 with

a, b in R. Since ker hull (L) is a left ideal this means that 1− b ∈ ker hull (L), so by
our first observation we have cb+ y = 1 for some c in R and y in L. Therefore

x− (xc)b = x− x(cb+ y − y) = xy ∈ L ,
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whence x ∈ cl(L).
To prove the reverse inclusion cl(L) ⊂ ker hull (L), assume first that L is a

maximal left ideal of R. We claim that this means that cl(L) = L. Evidently
L ⊂ cl(L), and if x /∈ L, then Rx+ L = R by the maximality of L, so ax+ b = 1
for some a in R and b in L. If now x ∈ cl(L), this would imply that x+ yb ∈ L for
some y in R, whence x ∈ L, a contradiction. Therefore x /∈ cl(L), so cl(L) ⊂ L, as
desired.

¿From condition (xii) for cl mentioned in 1.2 it now follows that ker hull (L),
being an intersection of maximal left ideals of R, is closed for any left ideal L.
Using that L ⊂ ker hull (L), this implies that

cl(L) ⊂ cl(ker hull (L)) = ker hull (L) .

�

2.3. Corollary. Let I be a two-sided ideal in a unital ring R, and let prim (R)
denote the primitive ideal space of R equipped with the Jacobson topology. Then

cl(I) = π−1(rad(R/I)) = ker hull (I) ,

where π:R → R/I is the quotient morphism, and where the operations ker and hull
are now the ones associated with the topology on prim (R).

Proof. From Theorem 2.2 and the formula (∗) in 2.1 we obtain the equality

cl(I) = π−1(rad(R/I)) .

That the ideal on the left equals ker hull (I), computed in prim (R), is well known.
Just recall that if L is a maximal left ideal containing I, and if

J = {x ∈ R | xR ⊂ L}

is the primitive ideal associated with L, then cl(I) ⊂ J , since J is the largest ideal
contained in L. �

2.4. Remark. It follows from Corollary 2.3 that for a two-sided ideal I of R we
have cl(I) = I if and only if rad(R/I) = 0, i.e. when I is a semi-primitive ideal of
R. Since π(rad(R)) ⊂ rad(R/I) by [12, Proposition 5.1], this can only happen if
rad(R) ⊂ I.

The fact that the operation hull ker defines the closure in the topological space
prim (R) has an immediate consequence for cl, applied to two-sided ideals. In a
slightly generalized form this gives the following result:

2.5. Proposition. If L is a left and I a two-sided ideal in a unital ring R, then

cl(L ∩ I) = cl(L) ∩ cl(I) .

Proof. The inclusion ⊂ is obvious. Consider therefore an element x not in cl(L∩I).
By Theorem 2.2 there is then a maximal left ideal Lm ⊃ L ∩ I, such that x /∈ Lm.
Either L ⊂ Lm, whence cl(L) ⊂ Lm, so x /∈ cl(L); or else L 6⊂ Lm. But in that case
R = L+ Lm by maximality, whence

I ⊂ IL+ ILm ⊂ I ∩ L+ Lm ⊂ Lm ,

so cl(I) ⊂ Lm and x /∈ cl(I). In both cases we see that x /∈ cl(L) ∩ cl(I), and
therefore cl(L) ∩ cl(I) ⊂ cl(L ∩ I). �
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2.6. Proposition. Let E be a subset of a two-sided ideal I in a unital ring R.
Then x ∈ cl(E) ∩ I if and only if for every a in I we have

{x+ I(1− ax)} ∩ E 6= ∅ .

Proof. By definition x ∈ cl(E) if Ux(b) ∩ E 6= ∅, whenever ax+ b = 1 for some a, b
in R. Note now that if x ∈ I then 1 − b ∈ I. Therefore, if x + yb ∈ E (⊂ I) for
some y in R, then necessarily y ∈ I. Thus,

Ux(b) ∩E = {x+ I(1− ax)} ∩ E .

It follows that x ∈ cl(E) ∩ I if and only if for every a in R we have

(∗) {x+ I(1− ax)} ∩ E 6= ∅ .

Denote by cl0(E) the set of elements x in I that satisfy the condition in Propo-
sition 2.6. Since I ⊂ R this is evidently weaker than the condition in (∗), so

cl(E) ∩ I ⊂ cl0(E) .

On the other hand,
cl0(E) ⊂ cl(cl0(E)) ∩ I ,

so we have the desired equality if we can show that cl(cl0(E)) ∩ I ⊂ cl(E) ∩ I.
Toward this end consider x in cl(cl0(E)) ∩ I and take any a in R. By (∗) there

is a y in I such that
x0 = x+ y(1− ax) ∈ cl0(E) .

Let a0 = axa in I. Since x0 ∈ cl0(E) there is a z in I such that x0+z(1−a0x0) ∈ E.
However, with w = y + z(1 + ax− axay) we get

x+ w(1− ax) = x+ (y + z(1 + ax− axay))(1− ax)

= x+ y(1− ax) + z(1− axax− axay(1− ax)) = x0 + z(1− a0x0) ∈ E .

This proves that x ∈ cl(E), as desired. �

2.7. Remark. Proposition 2.6 shows that if R is a non-unital ring contained as
an ideal in a unital ring R1, then the set cl(E) ∩R does not depend on R1 for any
subset E of R. Moreover, if R is a semi-primitive ideal in R1, e.g. R1 = R ⊕ Z,
then cl(E) ⊂ R by Remark 2.4, so that the operation cl does not involve R1 at all.

2.8. Proposition. If e is an idempotent in a unital ring R with Jacobson radical
rad(R), then

cl(Re) = Re+ rad(R) .

Proof. By conditions (iii) and (iv) for cl in 1.2 we have

L+ rad(R) ⊂ cl(L) + cl(L) = cl(L)

for any left ideal L of R, in particular for L = Re.
To prove the other inclusion we denote by π:R → R/Re the quotient morphism

between the left R−modules R and R/Re, but now we identify R/Re with the
submodule R(1−e) of R. Since the embedding R(1−e) ⊂ R is a module morphism
we have rad(R(1− e)) ⊂ rad(R) by [12, Proposition 5.1], and thus by (∗) in 2.1

ker hull (Re) = π−1(rad(R(1− e))) ⊂ π−1(rad(R)) = Re+ rad(R) .

By Theorem 2.2 we have the desired inclusion. �
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2.9. Corollary. If e is idempotent in a semi-primitive ring R, then the left ideal
Re is the intersection of the maximal left ideals that contains it. �

2.10. Proposition. If e and f are idempotents in a semi-primitive ring R, then

cl(eRf) = eRf .

Proof. Evidently cl(eRf) ⊂ cl(Rf) = Rf by Proposition 2.8. On the other hand,
using condition (vii) for cl in 1.2 we get

(1− e) cl(eRf) ⊂ cl((1− e)eRf) = cl(0) = 0 ,

since R is semi-primitive; so cl(eRf) ⊂ eR. As Rf ∩eR = eRf , the desired equality
follows. �

2.11. Proposition. Let e be an idempotent in a unital, semi-primitive ring R, and
let E be a subset of eRe. Then cl(E), computed in R, is equal to cl(E), computed
in eRe.

Proof. Denote by cle(E) the closure of E in eRe, and take x in cle(E). If now
ax + b = 1 for some a, b in R, then eaex + ebe = e, and therefore x + yebe ∈ E
for some y in eRe. However, b = 1 − ax, so eb(1 − e) = 0, i.e. ebe = eb, and thus
x+ yeb ∈ E, proving that a ∈ cl(E).

Conversely, if x ∈ cl(E) and ax+b = e for some a, b in eRe, then ax+(b+1−e) =
1, so x+ y(b + 1− e) ∈ E for some y in R. Since x ∈ eRe by Proposition 2.10, it
follows that x+ eyeb ∈ E, whence x ∈ cle(E), as desired. �

2.12. Theorem. If e is an idempotent in a unital, semi-primitive ring R, then
cl(e) consists of all central idempotents in eRe.

Proof. In view of Proposition 2.11 we may replace R by eRe (which is again semi-
primitive) and therefore assume that e = 1.

If now p is a central idempotent in R and ap + b = 1 for some a, b in R, then
1− p = b(1− p) = (1− p)b, so

p+ (1− p)b = p+ 1− p = 1 ,

proving that p ∈ cl(1).
Conversely, if p is an element in cl(1) consider a maximal left ideal L of R. If

p /∈ L, then Rp+ L = R, so ap+ b = 1 for some a in R and b in L. Since p ∈ cl(1)
we have p + yb = 1 for some y in R, whence 1 − p ∈ L. Thus, either p ∈ L or
1− p ∈ L for any maximal left ideal L of R. In particular, p(1 − p) ∈ L for all L,
whence p = p2, since R is semi-primitive.

If x ∈ pR(1− p) then q = p + x is an idempotent in R, and setting u = 1 + x
we have an invertible element in R (with u−1 = 1− x) such that u−1pu = q. Since
y → u−1yu is an automorphism of R it follows from condition (xi) for cl in 1.2 that
q ∈ cl(1), so either q ∈ L or 1− q ∈ L for any maximal left ideal L. Fixing L this
leads to the following four possibilities:

(i) p ∈ L and p+ x ∈ L.
(ii) p ∈ L and 1− p− x ∈ L.
(iii) 1− p ∈ L and p+ x ∈ L.
(iv) 1− p ∈ L and 1− p− x ∈ L.
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Of these, (ii) and (iii) are clearly impossible, since by addition they imply that
u−1 ∈ L or u ∈ L, respectively. On the other hand, both (i) and (iv) imply by
subtraction that x ∈ L, which is therefore always the case. Since R is semi-primitive
it follows that x = 0, and since x was arbitrary, pR(1− p) = 0, so p is central, as
desired. �

2.13. Examples. The last three results have deliberately been stated for semi-
primitive rings, since the presence of a radical seems to complicate the results
beyond recognition. To see what may happen, take any vector space N over a
field F and put A = F ⊕ N . Writing 1 for the vector (1, 0) we obtain a trivial
algebra structure on A by defining 1 · 1 = 1, 1 · n = n and n · m = 0 for all n,m
in N . Evidently N is the radical of A. Now put R = M2(A), which is a unital
algebra with rad(R) = M2(N), and denote by eij the usual matrix units. Then
for the right principal ideal e11R in R we have that cl(e11R) is a proper subset of
e11R + rad(R) containing e11R ∪ rad(R). In fact, for n in N computation shows
that e12 + ne22 ∈ cl(e11R) if and only if n = 0. In particular, cl(e11R) is not a
linear subspace. Similarly we find that

cl(e11) = rad(R) ∪ {e11 + (rad(R))(1− e11)} .

In the same vein, consider the ring R of upper triangular 2× 2−matrices over a
field F. Then e11 is in cl(1), but not in cr(1) (with cr as in 1.5). Analogously, e22 is
in cr(1), but not in cl(1). Note that e11 and e22 are not central idempotents in R.
The radical of R is Fe12, so that R/ rad(R) = F⊕ F. By computation we find that

cl(1) = { e11 + rad(R) } ∪ { 1 + rad(R) } ∪ rad(R) .

As noted in Remark 1.9.e any surjective ring homomorphism π:R → S be-
tween unital rings R and S is “continuous” and “open” with respect to cl. On
the other hand, for our ring above the quotient morphism π:R → R/ rad(R) is
not a “closed” map, because π(cl(1)) is not “closed” in F ⊕ F. Indeed, π(cl(1)) =
{ (1, 0), (1, 1), (0, 0) }, missing the central idempotent (0, 1) in F⊕ F.

3. Persistent Regularity

3.1. Definitions. An element x in a (unital) ring R is von Neumann regular if
x = xyx for some y in R. We shall refer to y as a partial inverse for x and note
that, replacing if necessary y with yxy, we may assume that also y is regular, with
x as its partial inverse. The set of von Neumann regular elements will be denoted
by Rr.

An element x such that p = 1 − xy and q = 1 − yx satisfy pRq = qRp = 0
(in symbols p⊥q) for some y in R is said to be quasi-invertible with y as its quasi-
inverse. Necessarily x ∈ Rr and one may choose y to be a partial inverse for x.
The set of quasi-invertible elements in R is denoted by R−1

q . These elements are
maximal in the partial ordering on Rr in [6, Proposition 2.5]; and in good cases,
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notably if R is an exchange ring or a QB-ring, R−1
q are precisely the maximal

elements in Rr, cf. Corollary 5.11 and Proposition 8.2 in [6].
Following the spirit if not precisely the letter of [10, §7] we say that an element x

in R is persistently regular, if x ∈ U ⊂ Rr for some subset U in R with inl(U) = U .
Thus, by Proposition 1.7 there must exist some b in R with Rx + Rb = R, such
that Ux(b) ⊂ Rr. We denote by Rpr the set of persistently regular elements, and
note from Proposition 1.7 that

Rpr = inl(Rr).

It is clear that by choosing inl, depending on cl, for the definition of persistent
regularity we have an asymmetric concept favouring left multiplication over right.
The next result shows that the definition is in fact symmetric, and that persistent
regularity has important structural properties. In particular, if we define inr in
analogy with inl, i.e. inr(E) = R\(cr(R\E)), with cr as in 1.5, then Rpr = inr(Rr) .

3.2. Theorem. Let x be a von Neumann regular element in a unital ring R and
choose any partial inverse y for x. The following conditions are then equivalent:

(i) x ∈ Rpr.
(ii) x+ (1− xy)R(1− yx) ⊂ Rr.
(iii) (1− xy)R(1− yx) ⊂ Rr.
(iv) x+R(1− yx) ⊂ Rr.
(v) x+ (1− xy)R ⊂ Rr.

Proof. For ease of notation set p = 1− xy and q = 1− yx.
(i) =⇒ (ii) By assumption we can find a, b in R such that ax + b = 1 and
Ux(b) ⊂ Rr. Since (1− b)q = axq = 0 we have for each t in R that

x+ ptq = x+ ptbq = x+ ptb− ptbyx = (1− ptby)x+ ptb .

Set u = 1 − ptby and note that u ∈ R−1 with u−1 = 1 + ptby. Moreover, up = p.
Thus,

x+ ptq = u(x+ ptb) ∈ uRr ⊂ Rr .

(ii) =⇒ (iii) For each t in R there is by assumption a partial inverse w for the
element x+ ptq. Consequently ptq ∈ Rr, since

ptqwptq = p(x+ ptq)w(x+ ptq)q = p(x+ ptq)q = ptq .

(iii) =⇒ (ii) For each t in R there is by assumption a partial inverse w for the
element ptq. Consequently x+ ptq ∈ Rr, since

(x+ ptq)(y + qwp)(x+ ptq) = xyx+ ptqwptq = x+ ptq .

(ii) ⇐⇒ (iv) For each t in R we have

x+ tq = x+ xytq + ptq .

Setting v = 1 + ytq we see that v ∈ R−1 with qv = q. Thus

x+ tq = (x+ ptq)v ,

which shows that x+Rq and x+ pRq are simultaneously in Rr.
(ii) ⇐⇒ (v) By an argument symmetric to (ii) ⇐⇒ (iv).
(iv) =⇒ (i) By assumption x + Rq = Ux(q) ⊂ Rr, where yx + q = 1, whence
x ∈ Rpr by definition. �
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3.3. Corollary. R−1
q ⊂ Rpr .

Proof. Immediate from condition (ii), since R−1
q ⊂ Rr. �

3.4. Corollary. If R is semi-prime, every maximal element in Rpr (with respect
to the ordering ≺ in Rr) lies in R−1

q .

Proof. We already know from [6, Proposition 2.8] that each element in R−1
q is

maximal. But by [6, Lemma 2.7] we have x ≺ z in Rr if and only if there exist
idempotents p and q in R, such that

z − x ∈ pRq and (1− p)z = x = z(1− q).

If now x ∈ Rpr, we see from condition (iii) in Theorem 3.2 that x can be extended
to a strictly larger element in Rr (actually in Rpr), unless (1 − xy)R(1 − yx) =
0 for some partial inverse y for x. Since R is semi-prime this implies that also
(1− yx)R(1− xy) = 0, so 1− yx ⊥ 1− xy and x ∈ R−1

q . �

3.5. Remarks. It is worth mentioning that three of the conditions in Theorem
3.2 can be formally strengthened to:

(ii’) x+ (1− xy)R(1− yx) ⊂ Rpr .
(iv’) x+R(1− yx) ⊂ Rpr .
(v’) x+ (1− xy)R ⊂ Rpr .

To see this, note that Remark 1.9.c, applied with E = Rr, shows that

(∗) R−1Rpr = RprR−1 = Rpr .

Now observe that condition (iv) is equivalent to condition (iv’) by Proposition 1.7,
since x + R(1 − yx) has the form Ux(1 − yx). However, in the arguments for
(ii) ⇐⇒ (iv) and (ii) ⇐⇒ (v) we showed that for each t in R there are invertible
elements v and u (depending on t) such that

x+ tq = (x+ ptq)v and x+ pt = u(x+ ptq) ,

(again with p = 1−xy and q = 1−yx). Since x+ tq ∈ Rpr, it follows from (∗) that
also x+ ptq and x+ pt belong to Rpr, as desired.

Upon writing an element z in the form zyx + zq it follows that we have the
equation x + Rq = {z ∈ R | zy = xy}. Consequently we can combine conditions
(iv’) and (v’) to the seemingly stronger condition:

(vi) {z ∈ R | zy = xy} ∪ {z ∈ R | yz = yx} ⊂ Rpr .

The results in Theorem 3.2 concern an unspecified partial inverse for a von
Neumann regular element. The next result determines what freedom we actually
have.



12 PERE ARA, GERT K. PEDERSEN AND FRANCESC PERERA

3.6. Proposition. If x and y are regular elements in a unital ring R with xyx = x
and yxy = y, then also xy′x = x, provided that

(∗) y′ = y + s(1− xy) + (1− yx)t

for some s, t in R. Conversely, if xy′x = x, then necessarily y′ has the form in (∗).
Moreover, the element y′ in (∗) will satisfy y′xy′ = y′, if and only if

(∗∗) (1− yx)(s+ t− txs)(1− xy) = 0 ,

a condition satisfied e.g. for s = 0 and t = t′xy .

Proof. Evidently every element y′ of the form (∗) will satisfy xy′x = x. Assume
now that xy′x = x and rewrite

y′ = yxy′ + (1− yx)y′ = yxy′xy + yxy′(1− xy) + (1− yx)y′

= y + (yxy′)(1− xy) + (1− yx)y′ ,

which shows that y′ satisfies (∗). The formula in (∗∗) is a simple computation. �

3.7. Remark. If p = 1− xy and p′ = 1− xy′ denote the defect idempotents for x
corresponding to the two partial inverses y and y′ mentioned above, then

p′ = 1− x(y + s(1− xy) + (1− yx)t) = (1− xsp)p = up .

Here u = 1− xsp ∈ R−1 (with u−1 = 1+ xsp) and ux = x. Similarly, if q = 1− yx
and q′ = 1− y′x, then q′ = qv for some v in R−1 with xv = x. Consequently,

x+ p′Rq′ = x+ upRqv = u(x+ pRq)v .

This means that although the conditions (ii)-(v) in Theorem 3.2 are formulated for
a partial inverse y for x that satisfies yxy = y (and this is used in the arguments),
they are, in fact, valid for any choice of a partial inverse y′.

For the convenience of the reader we include the following well-known result.

3.8. Lemma. Let I be a two-sided ideal of a ring R contained in Rr and denote
by π:R → R/I the quotient morphism. If u ∈ R such that π(u) = (R/I)r, then
u+ I ⊂ Rr.

Proof. By [8, Lemma 1] each element y i R, such that y − yvy is regular for some
v in R, is itself regular. Indeed, if (y − yvy)a(y− yvy) = y − yvy, then

(∗) y = yvy + (y − yvy)a(y − yvy) = y(v + (1− vy)a(1− yv))y .

In our case there is by assumption an element v such that π(u) = π(u)π(v)π(u).
This means that u − uvu ∈ I. Thus, if y = u + x for some x in I, we still have
y − yvy ∈ I. Since I ⊂ Rr it follows that y ∈ Rr. �
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3.9. Theorem (cf. [8]). For each ring R there is a largest ideal Ireg(R) contained
in Rr, and the quotient R/Ireg(R) has no non-zero ideals contained in (R/Ireg(R))r.
We always have Ireg(R)+Rr ⊂ Rr, and if R is additively generated by its invertibles
(R = R−1 +R−1 + · · · ), then

Ireg(R) = {x ∈ R | x+Rr ⊂ Rr} .

Proof. It follows from Lemma 3.8 that the sum of two ideals contained in Rr is
again in Rr, so that we can define Ireg(R) as the sum of all ideals of R contained
in Rr. Applying Lemma 3.8 with I = Ireg(R) we see that R/Ireg(R) can have no
non-zero ideals contained in its regular part, since the counter-images in R would
again be contained in Rr, contradicting the maximality of Ireg(R). The lemma also
shows that Ireg(R) +Rr ⊂ Rr.

For the last assertion, put J = {x ∈ R | x+Rr ⊂ Rr}. Evidently Ireg(R) ⊂ J ⊂
Rr, J = −J and J + J ⊂ J . If u ∈ R−1, then

uJ +Rr = u(J + u−1Rr) = u(J +Rr) ⊂ uRr = Rr ,

so R−1J = J . Similarly, JR−1 = J . By assumption each element a in R has a
representation a =

∑

ai, with ai in R−1, whence aJ ⊂ J and Ja ⊂ J . Consequently
J is an ideal of R contained in Rr. By maximality, J = Ireg(R). �

3.10. Corollary. For each ring R we have

Rpr + Ireg(R) ⊂ Rpr .

Proof. Combine Theorem 3.9 and condition (x) from Lemma 1.8. �

3.11. Proposition. If L is a left ideal in a unital ring R, then inl(X) = X, when
X is one of the four subsets R−1 + L , R−1

ℓ + L , R−1
r + L and R−1

q + L.

Proof. By Remark 1.9.d it suffices to prove the result when L = 0.
For X = R−1 and X = R−1

ℓ the result follows from condition (vi) in Lemma 1.8.
If x ∈ R−1

r and xy = 1, then (x + a(1 − yx)y = 1 for every a in R. Thus,
Ux(1− yx) ⊂ R−1

r , so x ∈ inl(R−1
r ).

If x ∈ R−1
q with quasi-inverse y, then x + R(1− yx) ⊂ R−1

q by by [6, Theorem

2.3]. Thus, Ux(1− yx) ⊂ R−1
q , so R−1

q = inl(R−1
q ). �

3.12. Remark. It follows from Corollaries 3.3 and 3.10 and Proposition 3.11 that
if R is a unital ring, then

inl(R−1
q + Ireg(R)) = R−1

q + Ireg(R) ⊂ Rpr .

It is tempting to conjecture that the inclusion in the last statement is actually
an equality. At least this will be the case for many of the accessible examples,
like C∗−algebras, cf. [10, Theorem 7.7], and also the algebra B(F) of countably
infinite, but row- and column-finite matrices over a field F, cf. [6, Example 8.8.A].
However, the ring R of upper triangular 2× 2−matrices over a field F, considered
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in Example 2.13, provides a counterexample (albeit not a semi-primitive example),
since Rpr 6= R−1

q + Ireg(R). In fact, Ireg(R) = 0 here, and R−1
q (= R−1) equals the

set of matrices where both diagonal terms are non-zero. However, Rr is the set of
matrices where just one of the diagonal terms is non-zero, together with the zero
element. It follows that Rr \Rpr = {0}.

Returning to a general unital ring R we observe that if x + t ∈ R−1
q + Ireg(R)

and y is a quasi-inverse for x, then x+ t− (x+ t)y(x+ t) ∈ Ireg(R). From formula
(∗) in the proof of Lemma 3.7 it follows that we can find a partial inverse for x+ t
of the form y + s for some s in Ireg(R).

If z is any other partial inverse for x+ t, then by Proposition 3.6

z = y + s+ ap+ bq ,

for some a, b in R, where p = 1 − (x + t)(y + s) and q = 1 − (y + s)(x + t). By
computation this shows that for some r in Ireg(R) we have

z = y + a(1− xy) + (1− yx)b+ r ,

and this element belongs to R−1
q + Ireg(R) by [6, Theorem 2.3].

The conclusion is that any partial inverse for an element in R−1
q + Ireg(R) again

belongs to R−1
q + Ireg(R).

4. C*-Algebras

The category of C∗−algebras, i.e. norm closed ∗−subalgebras of B(H), where
H is a Hilbert space, is one of the most important sources of examples of non-
commutative rings. On the surface these are very well-behaved rings, and the
spectral theorem makes many of the ordinary matrix algebra techniques available;
yet when H is infinite-dimensional the variety of C∗−subalgebras of B(H) is tremen-
dous, providing us with a wide range of phenomena. The fact that the operation
cl has so many pleasant properties in the category of C∗−algebras should therefore
be taken as a sign of important future developments.

Note that by Remark 2.7 any property of cl that does not specifically mention a
unit is valid also for non-unital C∗−algebras.

4.1. Theorem. Let G denote the set of invertible elements in the positive part A1
+

of the unit ball of a unital C∗−algebra A. If E is a subset of A such that EG ⊂ E=

(where E= denotes the norm closure of E), then also EA1
+ ⊂ E=, and in that case

cl(E) ⊂ E=.

Proof. If EG ⊂ E= and a ∈ A1
+, then δ1 + (1 − δ)a ∈ G for every δ > 0. Since

E(δ1 + (1− δ)a) ⊂ E= by assumption, we see that Ea ⊂ E= by continuity.
Next, consider a subset E such that EA1

+ ⊂ E= and take x in cl(E). For each
ε > 0 define a continuous function gε on R by

gε(t) =











0 for t ≤ ε,

ε−1 − t−1 for ε ≤ t ≤ 2ε,

t−1 for t ≥ 2ε.
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Set fε(t) = tgε(t), and note that fεf2ε = f2ε, since fε(t) = 1 for t ≥ 2ε. Now define
a = gε(x

∗x)x∗ and b = 1− fε(x
∗x). Then ax+ b = 1, so by assumption x+ yb ∈ E

for some y in A. But then

xf2ε(x
∗x) = (x+ yb)f2ε(x

∗x) ∈ E= .

By spectral theory

‖x− xf2ε(x
∗x)‖2 = ‖(1− f2ε(x

∗x))x∗x(1− f2ε(x
∗x))‖ ≤ sup |(1− f2ε(t))

2t| ≤ 4ε ,

whence x ∈ E=. �

4.2. Corollary. If R is a closed right ideal of A, then cl(R) = R. �

4.3. Corollary. If B is a hereditary C∗−subalgebra of A, then cl(B) = B.

Proof. By definition B = L∩L∗ for some closed left ideal L in A, cf. [15, Theorem
1.5.2]. As ker hull (L) = L for every closed left ideal in A by [15, Lemma 3.13.5] we
have cl(L) = L by Theorem 2.2, and thus, by Corollary 4.2,

B ⊂ cl(B) ⊂ cl(L) ∩ cl(L∗) = L ∩ L∗ = B .

�

4.4. Corollary. Let E be a bounded subset of A contained in the closed ball Br(A)
with center 0 and radius r. Then also cl(E) ⊂ Br(A).

Proof. Since Br(A)A1
+ ⊂ Br(A) it follows from Theorem 4.1 that cl(Br(A)) =

Br(A). Consequently cl(E) ⊂ cl(Br(A)) = Br(A) by the monotonicity property
(ii) for cl in 1.2. �

4.5. Examples. Just to show that the operation cl is not completely predictable,
consider the open unit ball B1(A)◦ in a C∗−algebra A. Here we actually have
cl(B1(A)◦) = B1(A)◦. To see this note first that cl(B1(A)◦) ⊂ B1(A) by Corollary
4.4, so we only have to show that no element x in A with ‖x‖ = 1 can belong to
cl(B1(A)◦). Toward this end consider the trivial equation x∗x + (1 − x∗x) = 1.
If now x ∈ cl(B1(A)◦) we could find a y in A such that ‖x + y(1 − x∗x)‖ < 1.
However, if we let x = u|x| be the polar decomposition of x (say, in the universal
representation for A) and choose a state ϕ of A such that ϕ(|x|) = 1 (which is
possible since ‖ |x| ‖ = 1), then since 1−|x| ≥ 0 it follows from the Cauchy-Schwarz
inequality that ϕ(z|x|) = ϕ(z) for any z in the weak closure of A. (ϕ is “definite”
on |x| in Kadison’s terminology.) Consequently we obtain the contradiction

‖x+ y(1− x∗x)‖ ≥ ϕ(u∗(x+ y(1− |x|2)))

= ϕ(|x|+ u∗y(1− |x|2)) = 1 + ϕ(u∗y)− ϕ(u∗y) = 1 .

Another interesting case occurs when we consider the unit sphere S(A) in a
unital C∗−algebra A. Then

cl(S(A)) = B1(A) \ (A−1
ℓ ∩B1(A)◦) .

To prove this note first that cl(S(A)) ⊂ B1(A) by Corollary 4.4. If now x ∈ B1(A)
and ax+ b = 1 we shall try to find a y in A such that ‖x+ yb‖ = 1. If b 6= 0 this
can be achieved simply with a scalar y. But if b = 0, which can occur only if x
is left invertible, then ‖x + yb‖ = 1 means that ‖x‖ = 1. The elements in B1(A)
excluded from cl(S(A)) are therefore precisely those in A−1

ℓ ∩B1(A)◦.
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4.6. Proposition. If A is a unital C∗−algebra, then

cl(A−1
q ) = (A−1

q )= .

Proof. Since A−1
q A−1 = A−1

q , it follows from Theorem 4.1 that cl(A−1
q ) ⊂ (A−1

q )=.

Assume now that x ∈ (A−1
q )= and consider an equation ax+ b = 1. Then

1 = (ax+ b)∗(ax+ b) ≤ 2(x∗a∗ax+ b∗b)

≤ 2‖a‖2x∗x+ 2b∗b ≤ 2‖a‖2 ‖x‖ |x|+ 2b∗b .

With γ = max(2, 2‖a‖2‖x‖) this means that |x|+b∗b ≥ γ−11, so c = |x|+b∗b ∈ A−1.
Let x = u|x| be the polar decomposition of x in some faithful representation of

A on a Hilbert space. Choose for each n a continuous function fn on R+ vanishing
in a neighbourhood of 0 and such that fn(t) = t for t ≥ 1

n . Since x ∈ (A−1
q )=, there

is by [9, Corollary 2.3] an extreme partial isometry un in A−1
q such that

ufn(|x|) = unfn(|x|) .

This implies that

‖x− un|x|‖

≤ ‖u(|x| − fn(|x|))‖+ ‖ufn(|x|)− unfn(|x|)‖+ ‖un(fn(|x|)− |x|)‖

≤ 1
n
+ 0 + 1

n
= 2

n
.

By the estimate above,

‖un − (x+ unb
∗b)c−1‖ ≤ ‖un − (un|x|+ unb

∗b)c−1‖+ 2
n
‖c−1‖

= ‖un − un(|x|+ b∗b)c−1‖+ 2
n
‖c−1‖ = 2

n
‖c−1‖ .

For an element y in A−1
q the number mq(y) denotes the length of the gap around

zero in the spectrum of |y|, cf. [9, Definition 1.4]. However, mq(y) also measures
the distance from y to A \A−1

q by [9, Proposition 1.5]. Since mq(un) = 1 it follows

that mq((x + unb
∗b)c−1) > 0 for n > 2‖c−1‖. Thus (x + unb

∗b)c−1 ∈ A−1
q , and

therefore also x+ unb
∗b ∈ A−1

q ; proving that x ∈ cl(A−1
q ). �

4.7. Remark. We apologize to the readers for having inadvertently used the
assumption (A−1

q )= = A instead of the one stated (viz. x ∈ (A−1
q )=) in the proof

of [6, Proposition 9.1]. The present Proposition 4.6 is meant to rectify this error.
Under the stronger asssumption that A−1

q is dense in A, it is shown in [9,
Theorem 3.3] that whenever ax + yb = 1 for some a, y in A (equivalently, when
x∗x+ b∗b ∈ A−1), then x+ub ∈ A−1

q for some extreme partial isometry u in A, i.e.
an element for which (1− uu∗)A(1− u∗u) = 0, so that u∗ is a quasi-inverse for u.
Inspection of the argument reveals that it suffices to know that x and b both belong
to (A−1

q )=. If just x ∈ (A−1
q )=, then by Proposition 4.6 we only get x+ub∗b ∈ A−1

q .
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4.8. Remark. The key ingredient in the proof of Proposition 4.6, viz. [9, Corollary
2.3], is also available for the more elementary subsets A−1 and A−1

ℓ . In the case of

A−1 this is [16, Theorem 5], and for A−1
ℓ the argument is given in [17, Corollary

7.2]. It follows that we can assert that

cl(A−1) = (A−1)= and cl(A−1
ℓ ) = (A−1

ℓ )= .

For the subset A−1
r of right invertible elements a direct argument is at hand. Note

first that cl(A−1
r ) ⊂ (A−1

r )= by Theorem 4.1. Then take x in (A−1
r )= and consider

an equation ax + b = 1. This implies, as in the proof of Proposition 4.6, that
x∗x + b∗b ∈ A−1. Since A−1 is open we can find y in A−1

ℓ , approximating x∗, so
that yx+ b∗b ∈ A−1. Now choose z in A−1

r with zy = 1 and observe that

x+ (zb∗)b = z(yx+ b∗b) ∈ zA−1 ⊂ A−1
r ;

which proves that x ∈ cl(A−1
r ). Thus, also in this case we have

cl(A−1
r ) = (A−1

r )= .

4.9. Proposition. The set of persistently regular elements in a unital C∗−algebra
A coincides with the (topological) interior of Ar, i.e.

inl(Ar) = (Ar)◦ .

Proof. Since ArA−1 = Ar also (A \ Ar)A−1 = A \ Ar, so cl(A \ Ar) ⊂ (A \ Ar)=

by Theorem 4.1. Thus, (Ar)◦ ⊂ inl(Ar) = Apr.
To prove the reverse inclusion take x in Apr and choose a partial inverse y for x.

Since 0 is persistently regular if and only if A = Ar (= Apr) we may assume that
x 6= 0, whence also y 6= 0. Then 1 + ay ∈ A−1 for each a in A with ‖a‖ < ‖y‖−1.
Consequently,

x+ a = x+ ayx+ a(1− yx) = (1 + ay)x+ a(1− yx)

= (1 + ay)(x+ (1 + ay)−1a(1− yx)) ⊂ R−1Rr = Rr

by condition (iv) in Theorem 3.2. �

4.10. Remark. Being a persistently regular element in a C∗−algebra A is a very
strong notion, cf. [10, §7], where it is labeled persistently closed range. The reason,
presumably, is that the maximal regular ideal of A coincides with the socle of A,
i.e. the ideal Soc(A) generated by the minimal projections in A, isomorphic to a
direct sum of algebras Bf (H) of finite rank operators on Hilbert spaces, so that
finite-dimensionality is just below the surface. In fact, it is shown in [10. Theorem
7.7] that

Apr = A−1
q + Soc(A) .

Moreover, for each element in Apr its component in Soc(A) can be chosen with
arbitrarily small norm, so that the two sets Apr and A−1

q are simultaneously dense

in A. Since AprA−1 = Apr it follows from Theorem 4.1 that cl(Apr) ⊂ (Apr)=. For
a unital C∗−algebra A we therefore have the result:

{ cl(Apr) = A } =⇒ { cl(A−1
q ) = A } .

Unfortunately, this is not necessarily true for all rings. In fact, [4, Example 3.2]
provides an example of a stably finite, von Neumann regular ring R (so R = Rr =
Rpr) for which cl(R−1

q ) 6= R, cf. [6, Example 8.8.e].
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4.11. Theorem. For each C∗−algebra A we have cl(Asa) = Asa.

Proof. As in the proof of Theorem 4.1 we define for each ε > 0 the continuous
function gε on R for which

gε(t) =











0 for t ≤ ε,

ε−1 − t−1 for ε ≤ t ≤ 2ε,

t−1 for t ≥ 2ε.

We then define fε(t) = tgε(t) and note that 0 ≤ fε ≤ 1 and fεf2ε = f2ε.
Consider x in cl(Asa) and for ease of notation put hε = fε(x

∗x). For the first
step we let a = gε(x

∗x)x∗ and b = 1 − hε. Then ax + b = 1, so x + yb ∈ Asa for
some y in A by assumption. Since (1− fε)f2ε = 0 this implies that

h2εxh2ε = h2ε(x+ yb)h2ε ∈ Asa.

For the second step in the proof we let a = (1− i(1− hε/2)x)gε(x
∗x)x∗ and put

b = 1− hε + i(1− hε/2)xhε. Again we have ax+ b = 1 so x+ yb ∈ Asa for some y
in A, i.e.

(∗) x+ y(1− hε) + iy(1− hε/2)xhε ∈ Asa.

Multiplying this expression left and right with h2ε, and recalling that h2εxh2ε ∈ Asa

we learn that

(∗∗) ih2εy(1− hε/2)xh2ε ∈ Asa,

since (1 − hε)h2ε = 0. Multiplying the expression (∗) with 1 − hε/2 left and right
leads to the equation

(1− hε/2)(x+ y)(1− hε/2) ∈ Asa,

from which we deduce that

(∗∗∗) (1− hε/2)(y − y∗)(1− hε/2) = (1− hε/2)(x
∗ − x)(1− hε/2) .

Writing out (∗) in the form z − z∗ = 0 and multiplying left with h2εx
∗(1 − hε/2)

and right with h2ε yields the equation

h2εx
∗(1− hε/2)xh2ε + ih2εx

∗(1− hε/2)y(1− hε/2)xh2ε

− h2εx
∗(1− hε/2)x

∗h2ε − h2εx
∗(1− hε/2)y

∗h2ε = 0 .

In this equation the first summand is positive, the third summand is small, since
‖(1− hε/2)x

∗‖ ≤ ε by spectral theory, and the fourth summand is skew-adjoint by
(∗∗). The self-adjoint part of the second summand equals

h2εx
∗(1− hε/2)i(x

∗ − x)(1− hε/2)xh2ε

by (∗∗∗), and thus has norm at most 2‖x‖2ε. Taken together this implies that

‖h2εx
∗(1− hε/2)xh2ε‖ ≤ 2‖x‖2ε+ ‖x‖ε .

¿From spectral theory we know that xhε → x as ε → 0, and it follows from above
that (1− hε)x → 0, whence hεxhε → x. Since hεxhε ∈ Asa from the first part of
the proof, we conclude that x ∈ Asa. �
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4.12. Corollary. If A is a C∗−algebra, then cl(A+) = A+.

Proof. If x ∈ cl(A+) we know from Theorem 4.11 that x = x∗. As in the first
part of the proof of Theorem 4.11 we take a = gε(x

2)x and b = 1− fε(x
2), so that

ax + b = 1. By assumption x + yb ∈ A+ for some y in A. As before this implies
that

h2εxh2ε = h2ε(x+ yb)h2ε ∈ A+ ,

and since hεx = xhε → x we conclude that x ∈ A+. �

4.13. Proposition. If A is a unital C∗−algebra, then cl(A−1
sa ) = (A−1

sa )
=.

Proof. If x ∈ cl(A−1
sa ), then x = x∗ by Theorem 4.11. Moreover, since aA−1

sa a = A−1
sa

for every a in A−1
+ it follows, as in Theorem 4.1, that aA−1

sa a ⊂ (A−1
sa )

= for every a
in A+.

Now, with notations as in Theorem 4.11, put hε = fε(x
2), so that we have the

equation
gε(x

2)x2 + 1− hε = 1 .

Since x ∈ cl(A−1
sa ) there is a y in A such that x+ y(1− hε) ∈ A−1

sa . But then

h2εxh2ε = h2ε(x+ y(1− hε))h2ε ∈ (A−1
sa )

=

by the argument above; and since ‖x− hεxhε‖ → 0, it follows that x ∈ (A−1
sa )

=.
To prove the reverse implication we first observe that if x ∈ Asa and y ∈ A+, such

that x2 + y2 ≥ ε1 for some ε > 0, then the matrix
(

x y

y −x

)

is invertible. Otherwise,

representing A on a sufficiently large Hilbert space H, e.g. in the universal (or just
the reduced atomic) representation, there would be a non-zero vector (ξ, η) in H⊕H,
such that

(

x y
y −x

)(

ξ
η

)

=

(

xξ + yη
yξ − xη

)

=

(

0
0

)

.

This implies that 0 ≤ (yξ|ξ) = (xη|ξ) = (η|xξ) = −(η|yη) ≤ 0, whence yξ = yη = 0,
since y ≥ 0. But then also xξ = xη = 0, in contradiction with ‖xξ‖2 + ‖yξ‖2 =
((x2 + y2)ξ|ξ) ≥ ε‖ξ‖2.

If now x ∈ (A−1
sa )

= and ax + b = 1 for some a, b in A, then as in the proof of
Proposition 4.6 we see that γ1 ≤ |x| + b∗b for some γ > 0. Setting y = b∗b the
same argument gives γ21 ≤ (|x| + y)2 ≤ 2x2 + 2y2, so that x2 + y2 ≥ ε1 for some

ε = 1
2γ

2 > 0. By the argument above the matrix
(

x y

y −x

)

is invertible, so if we

choose z in A−1
sa sufficiently close to x (which we can), then also the matrix

(

x y

y −z

)

is invertible. However, this matrix is diagonalizable with
(

1 yz−1

0 1

)(

x y
y −z

)(

1 0
z−1y 1

)

=

(

x+ yz−1y 0
0 −z

)

∈ (M2(A))−1
sa <, ,

from which we conclude that x+ yz−1y ∈ A−1
sa . Since x+ yz−1y = x+ (b∗bz−1b∗)b

it follows that x ∈ cl(A−1
sa ), as desired. �

4.14. Remark. Proposition 4.13 shows that a C∗−algebra A has real rank zero
if and only if cl(A−1

sa ) = Asa. Since a C∗−algebra has real rank zero precisely when
it is an exchange ring, cf. [3, Theorem 7.2], this prompts the question whether the
operation cl can be used to characterize exchange rings in general.
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