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Abstract

In this note we study the structure of the Cuntz monoid S(C0(X)) associated
to a locally compact space X. It is shown that for a wide class of spaces, namely
the locally compact σ-compact ones, the Riesz decomposition on the monoid forces
the (covering) dimension of the space to be zero. It is possible then to diagonalize
matrices over C0(X) in a unique way with respect to an equivalence relation. As
a consequence, we give a representation of S(C0(X)) as a monoid of lower semi-
continuous functions over X, from which order-cancellation on S(C0(X)) follows.

Introduction

In [3], Cuntz introduced an equivalence relation for positive elements of A ⊗ K,
where A is a C∗-algebra and K the algebra of compact operators on a separable infinite-
dimensional Hilbert space. The set of all such equivalence classes was denoted S(A)
in [11], and it is an abelian monoid that can be endowed with a partial order, which
turns out to extend the Murray-von Neumann subequivalence of projections to general
positive elements. The study of the monoid S(A) has proved to be useful in different
instances. For example, it was used in [3] to prove the existence of dimension functions
for stably finite simple unital C∗-algebras (see also [1]), and in [11] to study structural
properties of C∗-algebras of the form B⊗D, where D is unital, simple and stably finite
and B is a UHF -algebra.

If A is a σ-unital C∗-algebra with real rank zero and stable rank one, the author
established in [9] the exact relation between S(A) and V (A). Our aim in this paper is
to push forward that relation in case the C∗-algebra is moreover commutative, hence of
the form C0(X) for some locally compact σ-compact zero-dimensional topological space
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X. It turns out then that the algebraic structure of the monoid S(C0(X)) is stored
topologically in X.

In [8, Corollary 5.8], it is shown that the totally disconnected compact Hausdorff
spaces with the property that for every n, each normal element in Mn(C(X)) can be
continuously diagonalized, are precisely the sub-Stonean spaces (see [7]). In order to
achieve our goal, we also prove that it is possible to eliminate the sub-Stonean con-
dition (for locally compact and σ-compact spaces), thus obtaining a weaker form of
diagonalization, namely with respect to the equivalence relation mentioned before.

Here is a brief outline of the paper. Section 1 is devoted to summarizing the necessary
basic notions. In Section 2 we relate the zero-dimensionality of a σ-compact Hausdorff
space to a decomposition property of σ-compact open sets. In Section 3, we prove
that the Riesz decomposition property on S(C0(X)) is equivalent to X having covering
dimension zero. From this, a special diagonalization of matrices over C0(X) follows,
and we subsequently represent S(C0(X)) as a monoid of lower semicontinuous functions
over X, which is cancellative.

1 Preliminaries

Let A be a C∗-algebra and a, b ∈ A. Following [3], [11], we write a . b if there
is a sequence {xn} in A such that xn = rnbsn for some rn, sn ∈ A and xn → a in
norm. We write a ∼ b if a . b and b . a. Then ∼ is an equivalence relation.
Let M∞(A) = lim−→ Mn(A) with inclusions Mn(A) 3 x 7→ diag(x, 0) ∈ Mn+1(A). For
x, y ∈ M∞(A)+, say that x ∼ y if and only if x ∼ y in Mn(A) for some n. By [11,
Proposition 2.1], the relation ., when restricted to projections, gives the usual Murray-
von Neumann subequivalence. For the case of ∼, its restriction to projections gives the
Murray-von Neumann equivalence when the algebra has stable rank one. Denote by 〈x〉
the ∼-equivalence class of x and define 〈x〉 + 〈y〉 = 〈x′ + y′〉 where x′, y′ ∈ M∞(A)+

satisfy x′ ∼ x, y′ ∼ y and x′y′ = 0, or by 〈x〉+ 〈y〉 = 〈
(
x 0
0 y

)
〉. We sometimes write(

x 0
0 y

)
as x⊕ y. Note that if xy = 0, then x+ y ∼ x⊕ y. Define S(A) to be the set

of all ∼-equivalence classes in M∞(A)+, and define a partial ordering on it by:

〈x〉 ≤ 〈y〉 if and only if x . y.

Thus (S(A),≤) is a partially ordered abelian monoid.
Let X be a locally compact Hausdorff space, and let f ∈ C0(X). We denote by

Coz(f) the cozero set of f , that is, Coz(f) = {x ∈ X | |f(x)| > 0}.

Lemma 1.1 Let A be a C∗-algebra and x, y ∈ A+. Then x . y if and only if there
exists {rj} in A with x = lim

j→∞
rjyr

∗
j . If g, h ∈ C(Spec(x))+ and Coz(g) ⊆ Coz(h), then

g(x) . h(x). In particular, if A is commutative, it follows that f . g for f, g ∈ A if
and only if Coz(f) ⊆ Coz(g).
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Proof. The first conclusion is [11, Proposition 2.4], while the second is observed in [11,
Section 1]. The last assertion follows from the two first conclusions. 2

Let M be a monoid. All monoids in this paper will be abelian, written additively.
We say that M is a refinement monoid provided that whenever x1, x2, y1, y2 ∈ M

satisfy x1 + x2 = y1 + y2, then
2∑
j=1

zij = xi and
2∑
i=1

zij = yj for some elements zij ∈ M .

If (M,≤) is preordered, then we say that M is a Riesz monoid provided that M
satisfies the Riesz Decomposition Property, that is, whenever x, y1, y2 ∈ M satisfy
x ≤ y1 + y2, then there exist x1, x2 ∈ M such that x = x1 + x2 and xi ≤ yi for all
i. Finally, M is said to satisfy the Riesz Interpolation Property provided that,
whenever x1, x2, y1, y2 ∈ M such that xi ≤ yj for i, j = 1, 2, then there exists z ∈ M
such that xi ≤ z ≤ yj for i, j = 1, 2.

If M is the positive cone of a partially ordered abelian group, then these three
properties are all equivalent, by [6, Proposition 2.1]. However, for general orderings,
there is no relation among them.

A non-zero element u ∈ M is called an order-unit provided that for any x ∈ M ,
there exists n ∈ N such that x ≤ nu. If A is a unital C∗-algebra, then 〈1A〉 is trivially
an order-unit for S(A).

Let M be a partially ordered abelian monoid. An interval over M is a nonempty
subset I ⊆ M which is upward directed and order-hereditary (i.e.: if x ≤ y and y ∈ I,
then x ∈ I). Denote by Λ(M) the set of all intervals of M . We can endow Λ(M) with
a natural abelian monoid structure, namely if I, J ∈ Λ(M)

I + J = {z ∈M | z ≤ x+ y for some x ∈ I, y ∈ J}.

If M is a Riesz monoid, then I + J = {x+ y | x ∈ I, y ∈ J}.
We say that an interval I is countably generated if there exists a countable cofinal

subset X ⊆ I (that is, there exists a sequence {xn}n∈N ⊆ I such that for all x ∈ I,
there exists n ∈ N such that x ≤ xn). Notice that in this context, we can write
I = {y ∈M | y ≤ xn for some n}. If given intervals I and J , we have that I ⊆ J , then
we say that I is bounded by J .

2 Some general topology

The purpose of this section is to express the condition of zero-dimensionality in terms
of decomposition of cozero sets of continuous functions. We will make use of the following
topological property, similar to normality, which is a modification of the open reduction
property introduced by Wehrung in [13, Definition 3.2].

Definition 2.1 Let X be a topological space. We say that X satisfies the σ-compact
open reduction property if given open and σ-compact subsets U and V of X, there
exist open and σ-compact subsets U ′ ⊆ U and V ′ ⊆ V such that U ′ ∩ V ′ = ∅ and
U ∪ V = U ′ ∩ V ′.
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Note that the last condition may be written as U ∪ V = U ′ t V ′, where t denotes
disjoint union of sets.

Our goal is to show that for locally compact σ-compact Hausdorff spaces, this prop-
erty coincides precisely with having zero covering dimension. To prove the desired
equivalence, we need some preliminary notions that can be found in [5].

Assume now that X is a completely regular space. We will consider two notions for
dimension of X: the usual covering dimension, denoted by dimX (see [4, 1.6.7]) and
the one considered in [5, Chapter 16], which we will denote by dim1X. The definition
of dim1X is the same as dimX, except that only covers consisting of cozero sets are
considered. It is shown in [5, Corollary 16.9] that dimX = dim1X if X is a normal
space. If dim1X = 0, then X is called strongly zero-dimensional (see [12, 3.34]),
while if dimX = 0 we call X zero-dimensional. As noted in [12, 3.39], not all zero-
dimensional spaces are strongly zero-dimensional, so that the concepts of dimX and
dim1X are not identical in general, but they coalesce for Lindelöf spaces, by [12, 3.35].

Lemma 2.2 Let X be a completely regular space. Then dim1X = 0 if and only if
whenever f, g ∈ C(X) satisfy X = Coz(f) ∪ Coz(g), then there exist clopen subsets
U ⊆ Coz(f) and V ⊆ Coz(g) of X such that U ∩ V = ∅ and U ∪ V = X.

Proof. It is a rephrasing of the equivalence (a)⇔ (b) in [5, Theorem 16.17]. 2

Remark 2.3 If X is a locally compact Hausdorff space, then the σ-compact open sub-
sets of X are precisely the cozero sets of functions in C0(X)+. In fact, this follows from
an easy application of Urysohn’s Lemma (for a proof, see [7]).

Proposition 2.4 Let X be a locally compact Hausdorff space. If X is strongly zero-
dimensional, then X satisfies the σ-compact open reduction property. If X is σ-compact,
then the converse is also true.

Proof. First, we show that if Y ⊆ X is a σ-compact open subset of X, then Y is
Lindelöf.

Take an open cover {Uα}α of Y , and write Y = ∪nKn, where Kn are compact subsets

of X. Each Kn is covered by finitely many elements of {Uα}α, say Kn ⊆ ∪s(n)i=1 Uαi,n
for

some s(n), whence Y ⊆ ∪n∪iUαi,n
.

Now assume that X is strongly zero-dimensional. Let Y ⊆ X be a σ-compact open
subset of X. Clearly, Y has a basis of clopen sets. Therefore, since Y is Lindelöf it
follows after the implication (c) ⇒ (a) of [5, Theorem 16.17] that Y is strongly zero-
dimensional.

Let U and V be open and σ-compact subsets of X. By Remark 2.3, there exist
f, g ∈ C0(X)+ such that U = Coz(f) and V = Coz(g). Let Y = Coz(f) ∪ Coz(g).
Then Y is open and σ-compact, so by the previous observation Y is strongly zero-
dimensional. Notice that f|U and g|U belong to C(U) (because CozX(f),CozX(g) ⊆ U).
Then, there exist relatively clopen sets U ′ ⊆ Coz(f) and V ′ ⊆ Coz(g) of Y such that
U ′ ∩ V ′ = ∅ and U ′ ∪ V ′ = Y . Now, if Y = ∪nKn, for some compact sets Kn, then
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U ′ = U ′ ∩ Y = ∪n(Kn ∩ U ′). Notice that U ′ is a relatively closed subset of Y , hence
U ′ = Y ∩ T , for a closed set T of X. Then Kn ∩ U ′ = Kn ∩ Y ∩ T = Kn ∩ T , because
Kn ⊆ Y . Observe that Kn ∩ T is closed in Kn, a compact space, so Kn ∩ T is compact.
Thus Kn ∩ U ′ is compact for all n, whence U ′ is σ-compact open. Similarly, V ′ is σ-
compact open. Therefore X satisfies the σ-compact open reduction property. For the
converse, assume that X is σ-compact and that satisfies the σ-compact open reduction
property. Then X is Lindelöf and hence completely regular, by [5, 3.15].

Suppose that there exist f, g ∈ C(X) such that X = Coz(f)∪Coz(g). Then Coz(f)
and Coz(g) are open and σ-compact subsets of X. Therefore, there exist open and
σ-compact sets U ′ ⊆ Coz(f) and V ′ ⊆ Coz(g) such that U ′ ∩ V ′ = ∅ and U ′ ∪ V ′ =
Coz(f)∪Coz(g) = X. In particular, U ′ and V ′ are also clopen sets, so that X is strongly
zero-dimensional by Lemma 2.2. 2

Corollary 2.5 Let X be a locally compact σ-compact Hausdorff space. Then dimX = 0
if and only if X satisfies the σ-compact open reduction property.

Proof. Since X is σ-compact, it is Lindelöf and therefore normal (see, e.g. [5, Exercise
3D]). By [5, Corollary 16.9], we have that dimX = dim1X. Thus the equivalence follows
from Proposition 2.4. 2

3 The structure of S(C0(X))

In this section we analyze the structure of the monoid S(C0(X)) for a locally com-
pact σ-compact Hausdorff space X. Since the Riesz decomposition property is the key
that leads to a representation of S(C0(X)), we first establish for which spaces this de-
composition holds. It is possible then to diagonalize matrices over C0(X) in a unique
way with respect to the equivalence relation ∼. By using techniques from [9] and [13],
we finally give an explicit order-isomorphism between S(C0(X)) and a monoid of lower
semicontinuous functions over X.

Let X be a compact space. From [10, Proposition 1.7] and [2, Proposition 1.1]
we have that sr(C(X)) = [dimX/2] + 1 and that RR(C(X)) = dimX. In case the
space is locally compact, then by definition sr(C0(X)) = sr(C0(X )̃ ) = sr(C(αX)) and
RR(C0(X)) = RR(C(αX)), where αX is the one-point compactification of X. It follows
that if X is a zero-dimensional σ-compact Hausdorff space, then the real rank of C0(X)
is zero and the stable rank is one.

When dealing with arbitrary matrices over a ring of continuous functions, it is often
useful to evaluate at some point of the space where the functions are defined. It is easy
to see that the usual matrix rank is an invariant for the order-relation . (that is, if
〈a〉 ≤ 〈b〉 in S(C0(X)), then we have rank(a(x)) ≤ rank(b(x)) for all x ∈ X).

Theorem 3.1 Let X be a locally compact σ-compact Hausdorff space. Then the follow-
ing conditions are equivalent:

1) dimX = 0;
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2) RR(C0(X)) = 0;

3) S(C0(X)) is a Riesz monoid.

Proof. 1)⇔ 2) is clear.
2)⇒ 3). Let A = C0(X). If RR(A) = 0, then dimX = 0. Hence sr(A) = 1 and so

S(A) is a Riesz monoid by [9, Theorem 2.13].
3) ⇒ 1). By Corollary 2.5, it suffices to show that X satisfies the σ-compact open

reduction property. Let A = C0(X) and let f, g ∈ A. Since Coz(f) = Coz(|f |) and
Coz(g) = Coz(|g|), we can assume with no loss of generality that f, g ≥ 0.

Notice that Coz(f+g) = Coz(f)∪Coz(g). As X is σ-compact, the C∗-algebra C0(X)
is σ-unital, hence there exists a sequence {fn} of functions that form an approximate
unit. Now observe that:(

fn fn
0 0

)(
f 0
0 g

)(
fn 0
fn 0

)
=

(
fn(f + g)fn 0

0 0

)
,

and this tends to

(
f + g 0

0 0

)
as n → ∞. Therefore f + g . f ⊕ g. By the Riesz

decomposition property, there exist F,G ∈Mn(A) for some n such that f + g ∼ F ⊕G
while F . f and G . g. In particular, if F = (fij) for some fij ∈ A, then for each
k ∈ N there exist functions ak1, . . . , a

k
n ∈ A such that:

 ak1 0 . . . 0
...

...
. . .

...
akn 0 . . . 0

( f 0
0 0

)
ak1 . . . akn
0 . . . 0
...

. . .
...

0 . . . 0

→ F,

hence fij = lim
k→∞

faki a
k
j and so Coz(fij) ⊆ Coz(f) for all i and j.

Similarly, if G = (gij), then Coz(gij) ⊆ Coz(g) for all i and j. Further, we also have
Coz(

∑
i,j

|fij|) = ∪i,jCoz|fi,j| ⊆ Coz(f), and Coz(
∑
k,l

|gk,l|) ⊆ Coz(g), because F . f and

G . g.
Now, using the fact that the matrix rank is an invariant for the relation ., the

condition f + g ∼ F ⊕G implies that

(
∑
i,j

|fi,j|)(
∑
k,l

|gk,l|) = 0,

as well as Coz(
∑
i,j

|fi,j|)tCoz(
∑
k,l

|gk,l|) = Coz(f + g) = Coz(f)∪Coz(g). Hence, letting

U = Coz(
∑
i,j

|fij|) and V = Coz(
∑
k,l

|gkl|), we get that U t V = Coz(f) ∪ Coz(g) and

that U ⊆ Coz(f) and V ⊆ Coz(g), whence X satisfies the σ-compact open reduction
property. 2
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Corollary 3.2 Let X be a locally compact σ-compact Hausdorff space. If S(C0(X)) is
a Riesz monoid, then it satisfies the refinement and interpolation properties.

Proof. Let A = C0(X). If S(A) is a Riesz monoid, then RR(A) = 0 by Theorem 3.1,
and so sr(A) = 1. Apply then [9, Theorem 2.13]. 2

We will see now that it is possible to describe more precisely the structure of
S(C0(X)), diagonalizing matrices in a special way. First we state a general fact con-
cerning σ-unital C∗-algebras with real rank zero and stable rank one. It follows from
[9, Lemma 2.2] that if A is a σ-unital C∗-algebra and {en} is an increasing approximate

unit, then the element e =
∞∑
n=1

1
2n
en ∈ A satisfies that the class u := 〈e〉 is an order-unit

for S(A).

Lemma 3.3 Let A be a σ-unital C∗-algebra with real rank zero, stable rank one, and
let u = 〈e〉 (for some e ∈ A) be an order-unit for S(A). If a ∈ M∞(A)+ and 〈a〉 ≤ u,
then there exists a′ ∈ A such that a ∼ a′. In particular, every element in M∞(A)+ is
∼-equivalent to a diagonal matrix over A.

Proof. Let a ∈ M∞(A)+ and assume that 〈a〉 ≤ u. Take an (increasing) approximate

unit {pn} of projections for the hereditary algebra generated by a. Let r =
∞∑
n=1

1
2n
pn.

Then a ∼ r by [9, Lemma 2.2]. Observe that e . 1 (in Ã). Now, since p1 . a . e . 1,
we have that p1 ∼ q1 ≤ 1 for some projection q1 and, in fact, q1 ∈ A. Moreover, since
p2 . 1, there exists a projection r2 ∈ M∞(A) such that (p2 − p1) ⊕ p1 ⊕ r2 ∼ 1. By
cancellation on projections, it follows from the relation (p2−p1)⊕p1⊕ r2 ∼ q1⊕ (1− q1)
that (p2 − p1) ⊕ r2 ∼ (1 − q1), whence there exists a projection q′2 ≤ 1 − q1 such that
(p2 − p1) ∼ q′2. Notice that q′2 ∈ A, and define q2 = q1 ⊕ q′2 ∈ A. Observe that
p2 = (p2 − p1)⊕ p1 ∼ q′2 ⊕ q1 = q2.

By induction on n, we obtain an increasing sequence {qn} of projections in A such

that pn ∼ qn. Let a′ =
∞∑
n=1

1
2n
qn ∈ A. By [9, Proposition 2.3] r ∼ a′ and so a ∼ r ∼ a′.

Now let a ∈ M∞(A)+. There exists n ∈ N such that 〈a〉 ≤ nu. Using the Riesz
decomposition property ([9, Theorem 2.13]), there exist a1, . . . , an ∈M∞(A)+ such that
〈a〉 = 〈a1〉+. . .+〈an〉 and 〈ai〉 ≤ u for all i. By the argument in the preceding paragraph,
there exist a′i ∈ A+ such that ai ∼ a′i, so a ∼ diag(a′1, . . . , a

′
n). 2

Proposition 3.4 Let X be a zero-dimensional locally compact σ-compact Hausdorff
space. Given continuous functions f1, . . . , fn ∈ C0(X)+, there exist g1, . . . , gn ∈ C0(X)+
such that Coz(gi) ⊆ Coz(gi−1) for i = 2, . . . , n and Coz(g1) = ∪ni=1Coz(fi), which satisfy:

f1 ⊕ . . .⊕ fn ∼ g1 ⊕ . . .⊕ gn.

Proof. We proceed by induction on n.
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n = 2. Suppose we have f, g ∈ C0(X)+. Because of the zero- dimensionality of X
and Corollary 2.5, we get Coz(f) ∪ Coz(g) = Coz(f ′) t Coz(g′) for some f ′, g′ ∈ C0(X)
such that Coz(f ′) ⊆ Coz(f) and Coz(g′) ⊆ Coz(g). Therefore f ∼ ff ′ ⊕ fg′ and
g ∼ gf ′ ⊕ gg′, hence

f ⊕ g ∼ ff ′ ⊕ fg′ ⊕ gf ′ ⊕ gg′ ∼ f ′ ⊕ fg′ ⊕ gf ′ ⊕ g′ ∼

∼ f ′ ⊕ g′ ⊕ fg′ ⊕ gf ′.
Let g1 = f ′ ⊕ g′ and g2 = fg′ ⊕ gf ′. Then Coz(g2) ⊆ Coz(g1) = Coz(f) ∪ Coz(g).

n > 2. Using the σ-compact open reduction property, write Coz(f1)∪. . .∪Coz(fn) =
Coz(f ′1) t . . . t Coz(f ′n) for some f ′i ∈ C0(X)+, with Coz(f ′i) ⊆ Coz(fi). Then, for
i = 1, . . . , n we have

fi ∼ fif
′
1 ⊕ . . .⊕ fif ′i ⊕ . . .⊕ fif ′n ∼ fif

′
1 ⊕ . . .⊕ f ′i ⊕ . . .⊕ fif ′n.

Therefore:
f1 ⊕ . . .⊕ fn ∼

∼ (f ′1 ⊕ f1f ′2 ⊕ . . .⊕ f1f ′n)⊕ . . .⊕ (fnf
′
1 ⊕ . . .⊕ fnf ′n−1 ⊕ f ′n) ∼

∼ (f ′1 ⊕ . . .⊕ f ′n)⊕ (f1(f
′
2 ⊕ . . .⊕ f ′n)⊕ f2f ′1)⊕ . . .⊕ (fn−1f

′
n ⊕ fn(f ′1 ⊕ . . .⊕ f ′n−1)).

By induction hypothesis, there exist functions G2, . . . , Gn ∈ C0(X)+ with Coz(Gi) ⊆
Coz(Gi−1) for i = 3, . . . , n and

Coz(G2) = Coz(f1(f
′
2 ⊕ . . .⊕ f ′n)⊕ f2f ′1) ∪ . . . ∪ Coz(fn−1f

′
n ⊕ fn(f ′1 ⊕ . . .⊕ f ′n−1)).

Note that Coz(G2) ⊆ Coz(f ′1 ⊕ . . .⊕ f ′n). Set G1 = f ′1 ⊕ . . .⊕ f ′n ∈ C0(X)+. Thus:

f1 ⊕ . . .⊕ fn ∼ G1 ⊕ . . .⊕Gn. 2

Remark 3.5 The situation for projections is simpler, as follows. Let X be a locally
compact Hausdorff space. Let p1, . . . , pn ∈ C0(X) be projections. Then there exist
projections q1, . . . , qn ∈ C0(X) such that Coz(qi) ⊆ Coz(qi−1) for i = 2, . . . , n, and
Coz(q1) = ∪ni=1Coz(pi), which satisfy:

p1 ⊕ . . .⊕ pn ∼ q1 ⊕ . . .⊕ qn.

Proof. Note that a function f ∈ C0(X) is equivalent to a projection p if and only
if Coz(f) is a compact open subset of X. Now arguments similar to the ones used in
Proposition 3.4 carry over. 2

The proof of the following Lemma is straightforward and we omit it.

Lemma 3.6 Let X be a zero-dimensional locally compact σ-compact Hausdorff space.
Let f1, . . . , fn and g1, . . . , gn be elements in C0(X). Suppose that Coz(fn) ⊆ . . . ⊆
Coz(f1) and that Coz(gn) ⊆ . . . ⊆ Coz(g1). If

f1 ⊕ . . .⊕ fn . g1 ⊕ . . .⊕ gn,

then fi . gi for all i. 2
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Theorem 3.7 Let X be a locally compact σ-compact Hausdorff space with dimX = 0.
Then for all n ∈ N, every element in Mn(C0(X))+ is equivalent, with respect to ∼, to a
diagonal matrix with entries in C0(X)+ that have decreasing cozero sets. Further, this
expression is unique up to ∼-equivalence classes.

Proof. Apply Lemma 3.3, Proposition 3.4 and Lemma 3.6. 2

This special form of the elements in the commutative case can be used to obtain
a nice representation of the monoid, which yields an interesting consequence, namely
cancellation on S(C0(X)).

Proposition 3.8 Let X be a locally compact σ-compact Hausdorff space with dimX =
0. Then

V (C0(X)) ∼= C0(X,Z+)

as ordered monoids.

Proof. Let u ∈ S(C0(X)) be an order-unit. Let [p] ∈ V (C0(X)). Then there exists
n ∈ N such that 〈p〉 ≤ nu. By Riesz decomposition on S(C0(X)) and by [9, Proposition
3.12], there exist projections p1, . . . , pn ∈ C0(X) such that p ∼ p1⊕ . . .⊕pn. By Remark
3.5, we get that

p1 ⊕ . . .⊕ pn ∼ q1 ⊕ . . .⊕ qn,
for some projections q1, . . . , qn ∈ C0(X) such that qi . qi−1 for i = 2, . . . n. Therefore,
there exist compact open subsets Ui of X such that qi = χUi

for each i. Define a map:

ϕ : V (C0(X))→ C0(X,Z+), [p] 7→ χU1 + . . .+ χUn .

By Remark 3.5 and Lemma 3.6, ϕ is a well-defined map which is also an ordered monoid
morphism. It is easy to see that ϕ is an order-isomorphism onto its image.

Let f ∈ C0(X,Z+). Then f is locally constant, and since it is assumed to vanish at

infinity, it only takes a finite number of values, so we can write f =
k∑
i=1

niχUi
, where ni

are positive integers and Ui are compact open sets. Thus pi := χUi
is a projection in

C0(X). Let [p] = n1[p1] + . . .+ nk[pk] ∈ V (C0(X)). Then ϕ([p]) = f , and therefore ϕ is
also surjective, hence an ordered monoid isomorphism. 2

Let X be a locally compact space. Denote by LSCσ,b(X,Z+) the abelian monoid of
bounded lower semicontinuous functions over X that are countable (pointwise) suprema
of functions from C0(X,Z+). This monoid has a natural ordered structure given by the
pointwise ordering.

Let M be a monoid. Let Λσ(M) be the monoid (under addition) of countably
generated intervals over M , (partially) ordered under set inclusion. Fix D ∈ Λσ(M),
and let Λσ,D(M) be the hereditary submonoid of Λσ(M) generated by D. Note that the
elements of Λσ,D(M) are countably generated intervals over M bounded by nD for some
n.
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For a C∗-algebra A, denote D(A) = {[p] ∈ V (A) | p is a projection from A}. In
case the algebra is commutative, σ-unital and has real rank zero, that is, of the form
C0(X) for some zero-dimensional locally compact σ-compact Hausdorff space X, then
by Proposition 3.8 we can write

D = D(C0(X)) = {χU | U is a compact open subset of X}.

The next result is similar to [13, Lemma 5.6], and for completeness we include a proof.

Proposition 3.9 Let X be a locally compact σ-compact Hausdorff space with dimX =
0. Define the following maps:

Φ : Λσ,D(C0(X,Z+))→ LSCσ,b(X,Z+), I 7→ sup
g∈I

g

Ψ : LSCσ,b(X,Z+)→ Λσ,D(C0(X,Z+)), f 7→ {g ∈ C0(X,Z+) | g ≤ f}.

Then Φ and Ψ are (order-preserving) mutually inverse maps and Φ is an ordered-monoid
isomorphism.

Proof. Let I be a countably generated interval, bounded above by nD for some n. Let
{hi} be a countable cofinal sequence for I. Define f = sup

h∈I
h. Then f = sup

i
hi and

f ≤ n, so that f ∈ LSCσ,b(X,Z+). Note that {g ∈ C0(X,Z+) | g ≤ f} ⊇ I. If g ≤ f

and g ∈ C0(X,Z+), then g =
k∑
i=1

niχUi
for some positive integers ni and compact open

subsets Ui of X; hence U := Supp(g) = ∪Ui is compact and open. Define U by

U = {V ⊆ U | V is open and there exists b ∈ I such that g|V ≤ b|V },

and notice that is an open covering for U : for all x ∈ U , there exists b ∈ I such
that g(x) ≤ b(x) (because both g and f have discrete ranges). Since both g and b
are continuous and Z-valued, they are locally constant and thus there exists an open
neighbourhood V ′ (in X) of x such that g(y) = g(x) and b(y) = b(x) for all y ∈ V ′. Thus
V = V ′ ∩ U is an open neighbourhood of x in U such that g(y) = g(x) and b(y) = b(x)
for all y ∈ V , so that V ∈ U .

By compactness U = ∪mi=1Vi for some Vi ∈ U , and so there exist bi ∈ I such that
g|Vi ≤ bi|Vi . Let b ∈ I such that b ≥ bi. Then b ≥ g and thus g ∈ I. This shows that
{g ∈ C0(X,Z+) | g ≤ f} = I, and therefore (Ψ ◦ Φ)(I) = I.

Let f ∈ LSCσ,b(X,Z+), and let x ∈ X. Since f is lower semicontinuous, the set
U = {y ∈ X | f(y) ≥ f(x)} = {y ∈ X | f(y) > f(x)− 1} is an open subset of X which
contains x. Since X is locally compact, there exists a compact neighbourhood V ′ of x
contained in U , and as dimX = 0, we can find a clopen neighbourhood V of x such
that V ⊆ V ′ ⊆ U (note that in particular V is compact). Thus

g = f(x).χV ∈ {h ∈ C0(X,Z+) | h ≤ f},
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and so f(x) = g(x) ≤ (Φ◦Ψ)(f)(x). Thus f ≤ (Φ◦Ψ)(f), and since the other inequality
is obvious, we get (Φ ◦Ψ)(f) = f .

We have to check now that if f ∈ LSCσ,b(X,Z+), then

I = {g ∈ C0(X,Z+) | g ≤ f} ∈ Λσ,D(C0(X,Z+)).

Clearly, I is nonempty and order-hereditary. Since the pointwise supremum of two
Z-valued continuous functions vanishing at infinity is also continuous and vanishes at
infinity, it follows that I is upward directed. If f ≤ n for some n and if g ∈ I then,
taking U = Supp(g), we have that U is compact open in X and g ≤ nχU , whence
I ⊆ nD. Write f = sup

n
gn, with gn ∈ C0(X,Z+). Since I is an interval and f = sup

g∈I
g,

we may assume that gn is an increasing sequence. Take g ∈ I, let U = Supp(g), and
define

U ′ = {V ⊆ U | V is open and there exists n ∈ N such that g|V ≤ gn|V }.

Arguing as above, U ′ is an open covering for U . As U is compact, we obtain that g ≤ gk
for some k, whence I is countably generated by {gn}. Finally, it is easy to check that
both Φ and Ψ are order-preserving. 2

Definition 3.10 Let (M,≤) be a preordered monoid. We say that M is order-can-
cellative if whenever x, y, z ∈M satisfy x+ z ≤ y + z, then x ≤ y.

Theorem 3.11 Let X be a locally compact σ-compact Hausdorff space with dimX = 0.
Then S(C0(X)) is order-isomorphic to LSCσ,b(X,Z+). In particular, S(C0(X)) is order-
cancellative.

Proof. By [9, Theorem 2.13], S(C0(X)) is order-isomorphic to Λσ,D(V (C0(X))), where
D = D(C0(X)). Now apply Propositions 3.8 and 3.9. 2
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