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Abstract. We analyse the structure of the multiplier ringM(R) of a (nonunital) Von
Neumann regular ring R. We show that M(R) is not regular in general, but every
principal right ideal is generated by two idempotents. This, together with Riesz De-
composition on idempotents of M(R), furnishes a description of the monoid V (M(R))
of Murray-Von Neumann equivalence classes of idempotents which is used to examine
efficiently the lattice of ideals of M(R). The techniques developed here will allow as
well other applications to the category of projective modules over regular rings.

Introduction

The ring of multipliers of an associative algebra R was introduced by Hochschild in
[17] as a helpful tool for studying, given two algebras A and C, the possible extensions
of A by C. After Busby’s work ([10]) on the extension theory for C∗-algebras, the
multiplier algebra M(A) of a C∗-algebra A has been an object intensively studied and
used in many circumstances: see, e.g. [18], [2], [11], [9], [27], [33], [22]. In the general
setting of semiprime rings, the multiplier ring M(R) can be described as the (unique)
solution to the universal problem of adjoining a unit to a (nonunital) ring R, as follows:
There exist a unital ring M(R) and an injective ring homomorphism ϕ : R → M(R)
such that (1) ϕ(R) ✁ M(R), and (2) If S is a ring and ϕ1 : R → S is an injective
ring homomorphism such that ϕ1(R) ✁ S, then there exists a unique homomorphism
ϕ : S → M(R) such that ϕϕ1 = ϕ. Moreover, if S is unital then ϕ(1S) = 1M(R), and ϕ
is injective if and only if ϕ1(R) is an essential ideal of S (see also [4]).

An important technical feature of multiplier rings of semiprime rings is that they can
be equipped with a topology under which they are complete topological rings. (For
C∗-algebras, this was already done in [10].) This topology allows to define a so-called
approximate unit for R as a net that converges to the unit of M(R), so that rings with
local units are particular cases of rings having approximate units. Thus, an important
part of Section 1 is devoted to defining this topology and establishing its basic properties.
This tool can be used successfully to show that M(R) is not regular whenever R is a
nonunital prime ring with a countable unit (hence, in particular, there are nonunital
regular rings R such that M(R) is not regular).

Partially supported by MEC-DGICYT grant no.PB95-0626, and by the Comissionat per Universitats
i Recerca de la Generalitat de Catalunya.
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The description of the ideal theory of the multiplier algebras for C∗-algebras has
been a common objective pursued by several authors (to cite a few examples, see [20],
[21], [31], [32], [25]), with special emphasis on the class of C∗-algebras with real rank
zero, which can be algebraically described as those C∗-algebras that are exchange rings
([6, Theorem 7.2]). The abundance of idempotents in these algebras suggests that to
achieve a good description of multiplier rings of semiprime rings, the efforts should be
directed first to the class of regular rings. Also, many of the methods introduced in the
C∗-algebraic case make an intensive use of purely analytic tools, hence one of the key
points of Section 2 is to provide an algebraic framework that allows to derive results that
apply to a wide class of regular rings. More precisely, we concentrate on the non-stable
K-theory of M(R), that is, V (M(R)), whose order-ideal lattice is isomorphic to the
ideal lattice of M(R) (see also [32] and [25]). For proving this, Riesz decomposition
in V (M(R)) is established (parallel to [32, Theorem 1.1]), as well as the important
fact that each finitely generated right ideal of M(R) is generated by idempotents,
even though M(R) itself need not be regular. This latter result will also use some of
the technical facts proved in Section 1. Next, we give a representation of V (M(R))
that allows to systematize the study of the ideal lattice of M(R) (Theorem 2.11), and
that involves both V (R) and a semigroup of affine and lower semicontinuous functions
defined on its state space. This representation is directed to the class of simple, σ-unital
regular rings R with stable rank one and such that V (R) is strictly unperforated. It is
remarkable that no examples are known of simple regular rings whose V (R)’s are not
strictly unperforated. Also, this result will be used in a subsequent paper ([5]), in order
to study the category of non-finitely generated projective modules over a unital regular
ring satisfying various comparability conditions.

For a ring R lying in the abovementioned class, the analysis of the ideal lattice of
M(R) is taken up in Section 3, in analogy with [25]. We benefit considerably from the
monoid-theoretical approach carried out in the previous section and hence some of the
proofs use monoid techniques. Thus, we characterize those regular rings R for which
M(R)/R is simple: this occurs exactly when R is elementary or has continuous scale.
If the scale of R is not finite, then a rich ideal structure in M(R)/R opens up. For
example, if R has n infinite extremal pseudo-rank functions, then there is a quotient of
M(R)/R that has exactly 2n ideals, modulo each of which a purely infinite ring results.

We now fix some notations. Given any ring R, we denote by M∞(R) = lim
−→

Mn(R),
under the maps Mn(R) → Mn+1(R) defined by x 7→ diag(x, 0). Notice that M∞(R)
can also be described as the ring of countably infinite matrices over R with only finitely
many nonzero entries, and it is sometimes denoted by FM(R). If e, f ∈ M∞(R) are
idempotents, we write e ≤ f provided that e = ef = fe. Also, we say that e and f are
equivalent, and we write e ∼ f , if there exist elements x, y ∈M∞(R) such that e = xy
and yx = f . Finally, we write e . f (respectively, e ≺ f) provided that there exists an
idempotent e′ ∈M∞(R) such that e ∼ e′ ≤ f (respectively, e ∼ e′ < f). We then define
V (R) = {[e] | e ∈ M∞(R)}, where [e] denotes the ∼-equivalence class of e. Note that
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V (R) is naturally an abelian monoid, with operation defined by [e] + [f ] = [

(

e 0
0 f

)

].

In case R is unital V (R) can also be described as the abelian monoid of isomorphism
classes of finitely generated projective (right) R-modules, and its universal enveloping
group is then K0(R). If x, y ∈ V (R), we write x ≤ y if and only if x+ z = y, for some
z ∈ V (R). This defines a pre-ordering on V (R) (sometimes referred as to the algebraic
preordering). As usual, we write x < y if x ≤ y and x 6= y. If M is an algebraically
ordered abelian monoid and S ⊆ M is a submonoid, we say that S is an order-ideal

provided that whenever x ≤ y and y ∈ S, then x ∈ S. Given a monoid M and an
order-ideal S, we define an equivalence relation in M by setting x ∼ y if and only if
there exist z, w ∈ S such that x + z = y + w. We denote by M/S the quotient of M
modulo this equivalence relation, and by x the equivalence class of x ∈ M . Then M/S
is an abelian monoid, with an operation defined by x+ y = x+ y.

A monoid M is said to be conical provided that the set M∗ of nonzero elements in
M is closed under addition. Finally, we say that M is a Riesz monoid if the following
Riesz decomposition property holds: whenever x, y1, y2 ∈ M satisfy x ≤ y1 + y2, then
there exist x1, x2 ∈M such that x = x1 + x2 and xi ≤ yi for i = 1, 2. It is a well-known
fact that if R is either a von Neumann regular ring or a C∗-algebra with real rank zero,
then V (R) is a conical Riesz monoid (see [12, Theorem 2.8], [32, Theorem 1.1]).

1. The strict topology

Although most of the results in this section hold with more generality, we will restrict
to the class of semiprime rings in order to guarantee enough ‘nondegeneracy’.

Let R be a semiprime ring, possibly without unit. A double centralizer on R is
a pair (f, g), where f : R → R is a right module homomorphism, g : R → R is a
left module homomorphism, and they satisfy the balanced condition xf(y) = g(x)y, for
all x, y ∈ R. We denote by M(R) the set of all double centralizers on R. Note that
M(R) is a unital ring, with componentwise sum, and with a product defined by the
rule: (f1, g1)(f2, g2) = (f1f2, g2g1). The unit of M(R) is 1 = (id, id), where id is the
identity homomorphism from R to R. We call the ring M(R) the multiplier ring of
R.

There is an injective ring homomorphism ϕ : R → M(R), given by ϕ(x) = (fx, gx),
where fx(y) = xy and gx(y) = yx, for x, y ∈ R. The image of R under ϕ is a two-sided
essential ideal of M(R). As mentioned in the Introduction, this construction solves the
universal problem of adjoining a unit to R. In what follows, we will identify R with its
image ϕ(R) in M(R) without further comment.

We now present a classical example (see [8], and also [16]). Recall that if D is a
division ring and DV , WD are vector spaces over D, then the pair (V,W ) is called a
pair of dual spaces provided there exists a D-valued nondegenerate bilinear form
〈, 〉 : V ×W → D. A D-linear map f : V → V is called adjointable if there exists a
D-linear map f ∗ : W → W such that 〈(v)f, w〉 = 〈v, f ∗(w)〉, for all v ∈ V and w ∈ W .
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Denote by LW (V ) the set of all adjointable endomorphisms of V , and by R := FW (V )
the subset of LW (V ) consisting of the elements with finite rank. Then R is an ideal of
LW (V ), and by [8, Theorem 4.3.7(vi), Theorem 4.3.8(iv)], we have that R = Soc(R) and
it is simple. Then it follows from [4, Proposition 2] that M(R) ∼= LW (V ). In case we
have a field K, and if V = K(ω), the K-vector space which is a direct sum of countably

many copies of K, then (V, V ) with the product 〈(vi)i∈N, (wi)i∈N〉 =
∞
∑

i=1

viwi becomes

a dual pair. Notice that R := FV (V ) = M∞(K), and it follows from the previous
considerations that M(R) ∼= B(K), the ring of countably infinite matrices over K such
that each row and each column have finitely many nonzero entries. It is well known
that B(K) is not a regular ring, even though R is a regular ring. A related example,
which will be useful for [5], states that the multiplier ring of M∞(R), where R is any
unital semiprime ring, is exactly the ring of row- and column-finite countably infinite
matrices over R, denoted by FRCM(R). Although this is possibly well known, we give
the short argument for completeness.

Proposition 1.1. Let R be a unital semiprime ring. Then the multiplier ring of
M∞(R) is FRCM(R).

Proof. Denote by FCM(R) (respectively FRM(R)) the ring of all column-finite (re-
spectively, row-finite) countably infinite matrices over R. If A ∈ FRCM(R), define
TA ∈ M(M∞(R)) by TA = (LA, RA), where LA (resp. RA) is left (resp. right) multipli-
cation by A. It is clear that this defines an embedding FRCM(R) ⊆ M(M∞(R)). Now
let T ∈ M(M∞(R)), and denote by {eij | i, j ≥ 1} the usual system of matrix units
for M∞(R). Set ei := eii. Since Tei = (Tei)ei, the element Tei ∈ M∞(R) has all its
columns, except possibly the i-th, equal to zero. Let A be the matrix in FCM(R) which
agrees in the i-th column with Tei for all i. Similarly, let B be the matrix in FRM(R)
which agrees in the j-th row with ejT for all j. By using the relation ej(Tei) = (ejT )ei,
we get A = B, so A ∈ FRCM(R). Now observe that TM = AM and that MT =MA
for all M ∈M∞(R), whence it follows that T = A.

Our next task will be to introduce a topology on M(R) which, in analogy with the
case of C∗-algebras, will be called the strict topology on M(R) induced by R. It will
turn out that M(R) is a complete topological ring and that in cases of interest, M(R)
is the completion of R under this topology. This topology will also become a useful tool
for establishing structural properties of M(R).

Define a basis of open neighbourhoods of 0 inM(R) as follows: for any a1, . . . , an ∈ R,
set

(†) U(a1, . . . , an) = {x ∈ M(R) | xai = aix = 0 for i = 1, . . . , n}.

If x ∈ M(R) is any other point, then the basis of open neighbourhoods of x is defined
simply by taking x+ U , where U is a set of the form (†). (Observe that this topology
is the discrete topology in case the ring R is unital.) In terms of convergence, we say
that a net (xλ)λ∈Λ converges strictly to an element x ∈ M(R), if and only if for all
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a1, . . . , an ∈ R, there exists λ0 ∈ Λ such that (xλ − x)ai = ai(xλ − x) = 0 for λ ≥ λ0
and for i = 1, . . . , n. Equivalently, (xλ) converges strictly to x if and only if for any
a ∈ R, there exists λ0 such that (xλ − x)a = a(xλ − x) = 0 for λ ≥ λ0.

Remark 1.2. The previous discussion can be done for semiprime rings R equipped
with a metric d : R × R → R+. In this context, we define the strict topology on
M(R) by giving a sub-basis of open neighbourhoods of 0 as follows: for ǫ > 0 and
a1, . . . , an ∈ R, take U(ǫ; a1, . . . , an) = {x ∈ M(R) | d(xai, 0), d(aix, 0) < ǫ}. This
generality applies both to regular rings (where d(x, y) = 1 − δx,y), and to C∗-algebras
(where d(x, y) = ‖x − y‖). Since the more immediate applications will be directed to
regular rings, we will not work in that level of generality.

It is clear that the sum is strictly continuous. For the product, we have the following:

Lemma 1.3. Let R be a semiprime ring, and let (xλ)Λ, (yµ)µ∈Γ be two nets in M(R)
that converge, respectively, to x and y, in the strict topology induced by R. Then
(xλyµ)(λ,µ)∈Λ×Γ converges strictly to xy.

Proof. Let a ∈ R. Since xλ converges to x, there exists λ0 such that a(xλ−x) = 0 and
(xλ − x)ya = 0 whenever λ ≥ λ0. Similarly, there exists µ0 such that ax(yµ − y) = 0
and (yµ − y)a = 0 if µ ≥ µ0. Therefore, if (λ, µ) ≥ (λ0, µ0) we have that

xλyµ − xy = xλ(yµ − y) + (xλ − x)y,

hence
a(xλyµ − xy) = axλ(yµ − y) + a(xλ − x)y = ax(yµ − y) = 0,

as well as
(xλyµ − xy)a = xλ(yµ − y)a+ (xλ − x)ya = 0.

Definition 1.4. Let R be a semiprime ring. We say that R has an approximate

unit if there exists a net (ai)i∈I in R that converges to 1 ∈ M(R) in the strict topology
induced by R. If R has an approximate unit consisting of idempotents, then we say that
R has local units.

Notice that our definition of a ring with local units is equivalent to other definitions
already existing in the literature (see, for example, [3] and [1]).

If R is a semiprime ring with an approximate unit (ai)i∈I , then we say that (ai)i∈I is
increasing provided that, if i < j for i, j ∈ I, then ai = aiaj = ajai.

Lemma 1.5. Let R be a semiprime ring. Then R has an approximate unit if and only
if R has an increasing approximate unit.

Proof. The condition of sufficiency is clear. Suppose that (ai)i∈I is an approximate
unit for R. Let Λ = {a ∈ R | a = ai for some i ∈ I}. Define a partial order in Λ as
follows: if λ, µ ∈ Λ, set λ ≤ µ if either λ = µ or if λ = λµ = µλ in case λ 6= µ. Note
that Λ is an upward directed set. For, if λ, µ ∈ Λ, then there exist i, j ∈ I such that
λ = ai and µ = aj. Since al → 1 strictly, there exists k ∈ I such that aiak = akai = ai
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and ajak = akaj = aj . Set ν = ak, and then it is clear that λ, µ ≤ ν. Define aλ = λ
if λ ∈ Λ. Then the net (aλ)λ∈Λ is an increasing approximate unit for R. Indeed, it
suffices to check that it converges strictly to 1. Let x ∈ R. There exists i ∈ I such that
aix = xai = x. Let λ0 = ai ∈ Λ. Then, if λ ≥ λ0 we have that λx = (λλ0)x = λ0x = x,
and analogously xλ = x.

If R has an approximate unit (ai)i∈I with I countable, then there exists a sequence
(an)n∈N such that anan+1 = an = an+1an for all n ∈ N and that converges strictly to
1 (Lemma 1.5). In this situation we say that R is σ-unital (see [19, Definition 1.2.1])
and that the approximate unit (an)n∈N is a σ-unit for R.

Proposition 1.6. Let R be a semiprime ring. Then M(R) is complete in the strict
topology induced by R, that is, every strict Cauchy net in M(R) converges to an element
of M(R). Moreover, R has an approximate unit if and only if M(R) is the completion
of R in the strict topology.

Proof. Let (xλ)λ be a strict Cauchy net in M(R). Then, for every a ∈ R, there exists
λ0 such that (xλ − xµ)a = a(xλ − xµ) = 0 for all λ, µ ≥ λ0. Hence lim

λ
xλa and lim

λ
axλ

exist and belong to R. Define maps f, g : R → R by the rules f(a) = lim
λ
xλa and

g(a) = lim
λ
axλ. Given a, b ∈ R, there exists λ0 such that xλa = xλ0

a and bxλ = bxλ0

for all λ ≥ λ0. Then bf(a) = b(xλ0
a) = g(b)a. Thus (f, g) is a double centralizer.

Moreover, we have that lim
λ
xλ = (f, g). To see this, take a ∈ R. Then, if λ is large

enough, we have xλa = (f, g)a and axλ = a(f, g).
Assume now that R has an approximate unit (ai)i∈I . Then, if x ∈ M(R), we have

that aix → 1 · x = x in the strict topology, by Lemma 1.3, hence M(R) is the strict
completion of R. The converse is obvious.

Let R be a semiprime ring, and let {pi}i∈I be a set of orthogonal idempotents in
M(R). If J ⊂ I is finite, define pJ =

∑

i∈J

pi. Then (pJ)J is a net consisting of idempo-

tents, which is a Cauchy net if and only if, for all a ∈ R there exists a finite subset J0
of I such that pia = api = 0 for all i ∈ I \ J0. In this case, and since M(R) is strictly
complete by Proposition 1.6, we write

∑

i∈I

pi ∈ M(R) to denote the limit of (pJ)J . By

Lemma 1.3, we have that
∑

i∈I

pi is an idempotent of M(R). The following Lemma will

be needed later.

Lemma 1.7. Let R be a semiprime ring. Let (ei)i∈I and (fi)i∈I be two sets of orthogonal
idempotents of M(R) such that e :=

∑

i∈I

ei and f :=
∑

i∈I

fi exist. For every i ∈ I, let

xi ∈ M(R) be an element satisfying xi ∈ eiM(R)fi. Then x :=
∑

i∈I

xi exists and

x ∈ eM(R)f .



VON NEUMANN REGULAR RINGS 7

Proof. Let a ∈ R. Then there exist two finite subsets J1, J2 of I such that eia = aei = 0
for all i ∈ I \J1, and fia = afi = 0 for all i ∈ I \J2. Let J0 = J1∪J2 ⊂ I, and notice that
xia = xifia = 0 and axi = aeixi = 0 for all i ∈ I \ J0. Thus the net (

∑

i∈J

xi){J⊂I;|J |<∞} is

Cauchy, hence strictly convergent. Let x =
∑

i∈I

xi. Then it is clear that x ∈ eM(R)f .

Let R be a semiprime ring. We say that R has a countable unit provided that R
is σ-unital and R has local units. Notice that this means exactly that R = ∪npnRpn,
where (pn) is an increasing sequence of idempotents in R. We will call such a sequence
(pn) a countable unit for R. Observe also that in case R is regular, then R has a
countable unit if and only if R is σ-unital. This follows immediately from the fact that,
for regular rings, the set of idempotents is an upward directed set (see [23, Lemma 1.1]).
The following result extends to a wider class of rings the known fact that, for a field K,
the ring B(K) is not a regular ring.

Proposition 1.8. Let R be a nonunital prime ring with a countable unit. Then M(R)
is not a regular ring.

Proof. Let (pn)n∈N be a countable unit for R. Write en = pn − pn−1, with p0 = 0.
Since R is nonunital, we may assume that en 6= 0 for all n ∈ N. By an easy inductive
argument (that uses the primeness of R), there exists a sequence (xn) in R such that
xn ∈ enRen+1 and x1x2 . . . xn 6= 0 for all n ≥ 1.

Let x =
∞
∑

n=1

xn ∈ M(R), which exists by Lemma 1.7. We now claim that the element

1 + x is not von Neumann regular in M(R). Assume that there exists y ∈ M(R) such
that

(1) 1 + x = (1 + x)y(1 + x).

Set e0 = x0 = 0. First, we will prove that emyen = 0 for all m > n and that enyen = en
for all n. We proceed by induction on n. This is clear if n = 0. Suppose that there exists
k ≥ 0 such that emyek = 0 for all m > k and enyen = en for all n ≤ k. Multiplying
relation (1) on the right by ek+1 we get

(2) (1 + x)y(ek+1 + xk) = ek+1 + xk.

Note that there exists l > k + 1 such that yek+1 ∈ plR. By the induction hypothesis
(using that emyek = 0 for all m > k), we also have that yxk ∈ pkR. Hence, multiplying
relation (2) on the left by et with k + 1 ≤ t, we get that etyek+1 = 0 if t ≥ l, that
etyek+1 + xtyek+1 = 0 if k + 1 < t < l, and that ek+1yek+1 + xk+1yek+1 = ek+1 if
t = k + 1. Using the first two relations, it turns out after a recurrent process (starting
with t = l− 1) that etyek+1 = 0 for all k + 1 < t. Thus xk+1yek+1 = 0 and therefore we
have that ek+1yek+1 = ek+1.

Now we will prove that for all n ≥ 1 and all 0 ≤ i < n we have

eiyen = (−1)n−ixixi+1 . . . xn−1.
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Again, we proceed by induction on n. The equality is clear if n = 1. Suppose that
it is valid for some n ≥ 1. Then, using that emyen = 0 if m > n and the fact that

1 + x =
∞
∑

k=1

(ek + xk) we get

(1 + x)yxn = (1 + x)(
n

∑

i=1

(−1)n−ixixi+1 . . . xn)

=

n
∑

i=1

(−1)n−ixixi+1 . . . xn +

n
∑

i=1

(−1)n−ixi−1xixi+1 . . . xn = xn.

Using this and relation (2), we conclude that

en+1 + xn = (1 + x)y(en+1 + xn) = (1 + x)yen+1 + xn,

and therefore en+1 = (1 + x)yen+1. Multiplying this equation on the left by et with
1 ≤ t ≤ n we get that 0 = etyen+1 + xt(et+1yen+1). Since en+1yen+1 = en+1, the
previous relations show (recurrently) that etyen+1 = (−1)n+1−txtxt+1 . . . xn, and this
completes the induction.

Finally, note that there exists k > 1 such that e1yek = 0 and thus we have 0 =
e1yek = (−1)k−1x1x2 . . . xk−1 6= 0, which is a contradiction with our choice of the
sequence (xn).

We remark that R being prime is an assumption needed in the previous result. For
example, let {Kn} be a sequence of fields, and consider the ring R =

⊕∞
n=1Kn, which

is semiprime, nonunital and has a countable unit. Then M(R) =
∏∞

n=1Kn, which is
regular.

We close this section by showing two useful properties for multiplier rings of semiprime
rings. Although these results are known for C∗-algebras, we could not locate references
in the literature for semiprime rings, hence we provide proofs for the reader’s conve-
nience.

Lemma 1.9. Let R be a semiprime ring with approximate unit, and let p ∈ M(R) be
an idempotent. Then pRp is a semiprime ring and M(pRp) = pM(R)p.

Proof. It is clear that pRp is a semiprime ring. We denote by Mp the set of all
pairs (f, g) such that f : pR → pR and g : Rp → Rp are (respectively) right and
left module maps, and xf(y) = g(x)y for all x ∈ Rp and y ∈ pR. Then it is easy to
check that Mp is a unital ring under the natural sum and multiplication rules. Define
a map Θ : Mp → M(pRp) by Θ(f, g) = (f|pRp, g|pRp). Clearly, Θ is a unital ring
homomorphism. Assume that Θ(f, g) = 0. Then f|pRp = g|pRp = 0. Using the balance
condition on f and g, we get that:

pRf(pR) = pRpf(pR) = g(pRp)pR = 0,

whence f(pR)2 = f(pRf(pR)) = 0. Thus f(pR) = 0, since R is semiprime, and
therefore f = 0. Similarly g = 0. This shows that Θ is injective.
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We claim that Θ is moreover surjective. Let (f, g) ∈ M(pRp). Then f, g : pRp→ pRp
are, respectively, right and left pRp-module maps, and xf(y) = g(x)y for all x, y ∈ pRp.
We want to extend these maps to a pair (f0, g0) ∈ Mp.

Let (ai)i∈I be an approximate unit of R. Then the net (paip)i converges in the strict
topology (induced by pRp) to p ∈ M(pRp). We claim that the nets (f(paip))i and
(g(paip))i converge in the strict topology induced by pRp to elements w, t ∈ M(pRp),
respectively. Indeed, it is enough to check that both nets are Cauchy nets and use the
fact that M(pRp) is strictly complete (by Lemma 1.6). Let x ∈ R. Since (paip)i is a
Cauchy net, there exists i0 ∈ I such that (paip)(pxp) = (pajp)(pxp) and g(pxp)(paip) =
g(pxp)(pajp) whenever i, j ≥ i0. Therefore, if i, j ≥ i0, we have that

f(paip)(pxp) = f((paip)(pxp)) = f(pajp)(pxp),

and also

(pxp)f(paip) = g(pxp)(paip) = g(pxp)(pajp) = (pxp)f(pajp).

It follows that (f(paip))i is a Cauchy net. A similar argument shows that (g(paip))i is
a Cauchy net, establishing the claim.

If x ∈ R, define f0(px) = tpx, and similarly set g0(xp) = xpw. It is clear that both
f0 and g0 are (respectively) right and left R-module maps. We have to check, finally,
that (f0, g0) ∈ Mp and that Θ(f0, g0) = (f, g).

Note that (f0, g0) ∈ Mp if, and only if, yptpx = ypwpx for any x, y ∈ R. If j ∈ I and
z ∈ R, we have that g(pzp)pajp = pzpf(pajp), and computing strict limits it follows
that g(pzp) = pzpw. Thus, if i ∈ I and x, y ∈ R we have that ypg(paip)px = ypaipwpx,
whence computing strict limits a second time it follows that yptpx = ypwpx. Thus
(f0, g0) ∈ Mp.

It is easy to check that f0|pRp = f and that g0|pRp = g. Therefore, Θ is surjective and
the claim is proved.

Now it is clear that pM(R)p ⊆ M(pRp). Conversely, let (f, g) ∈ M(pRp) be a double
centralizer. Let (f0, g0) ∈ Mp be the preimage of (f, g) under the map Θ, and define
maps f ′, g′ : R → R by f ′(x) = f0(px) and g

′(x) = g0(xp), for x ∈ R. Then it is clear
that f ′ and g′ are (respectively) right and left R-module maps, and in fact, if x, y ∈ R,
then xf ′(y) = xf0(py) = xpf0(py) = g0(xp)py = g′(x)y. Therefore (f ′, g′) ∈ M(R),
and clearly p(f ′, g′)p = (f, g).

That the hypotheses imposed on Lemma 1.9 are not superfluous follows from the next
example:

Example 1.10. There exist a prime ring R and an idempotent p ∈ M(R) such that
M(pRp) 6= pM(R)p.

Proof. Let

R =





2Z 2Z 22Z
2Z 2Z 23Z
22Z 23Z 24Z



 ,
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with the ring operations induced from M3(Z). Since for any x ∈ M3(Z), we have that
24x ∈ R and M3(Z) is a prime ring, it follows easily that R is also prime.

Let p = e11 + e22 ∈ M(R). Then

pRp =





2Z 2Z 0
2Z 2Z 0
0 0 0



 .

Let x ∈ M(pRp) correspond to the multiplier (e21, e21), and suppose x agrees with
multiplication by some y ∈ pM(R)p. Then y(2e11) = x(2e11) = 2e21, and therefore
y(23e13) = y(2e11)(2

2e13) = 23e23. But y(2
3e13) = 2[y(22e13)], so we would have 23e23 ∈

2R, a contradiction.

The previous example contrasts with the fact that if R is any semiprime ring and
p2 = p ∈ Q := Qs(R), then pQp = Qs(pQp ∩ R) (see, for example, [8, Proposition
2.3.14]).

Lemma 1.11. Let R be a semiprime ring. Then Mn(M(R)) = M(Mn(R)) for all
n ≥ 1.

Proof. It is clear thatMn(M(R)) ⊆ M(Mn(R)). For 1 ≤ i, j ≤ n, let eij ∈Mn(M(R))
be the matrix whose (i, j)-th entry is 1 ∈ M(R), and all the other entries are zero.
Denote ei = eii.

Let x ∈ M(Mn(R)). Note that for 1 ≤ j ≤ n, the elements from xejMn(R)ej are
matrices (over R) that have (possibly nonzero) entries in the j-th column, and zeros
elsewhere. Denote by fij : R→ R the maps defined by the equation fij(a)eij = eix(aej),
where a ∈ R. Observe that fij are right R-module maps. In fact, they are clearly
additive, whereas if a, r ∈ R, we have that fij(ar)eij = eix(arej) = ei(xa)ejrej =
fij(a)eijrej = fij(a)reij.

A similar computation, multiplying on the left by the element x, provides left R-
module maps gij : R → R, defined by gij(a)eij = (eia)xej , where a ∈ R.

It is easy to check that the pairs (fij, gij) are double centralizers and that x =
((fij , gij))i,j. Thus M(Mn(R)) ⊆Mn(M(R)), as desired.

In case the ring R has an approximate unit, the previous result can be derived from
Proposition 1.6 by computing strict completions (this is, in fact, the argument used for

C∗-algebras). Briefly, if S
β
denotes the completion of a semiprime ring S in the strict

topology, then we have that M(Mn(R)) =Mn(R)
β ∼= Mn(R

β
) =Mn(M(R)).

2. Multiplier rings of regular rings

The purpose of the current section is to establish the exact relation existing between
the monoids V (M(R)) and V (R), for a σ-unital regular ring with stable rank one.
We first relate V (M(R)) to a certain monoid of intervals in V (R), and then we shall
specialize to the simple case, assuming also strict unperforation on V (R). In this case
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the representation obtained for V (M(R)) will allow to systematize the analysis of the
ideal lattice of M(R), as we will see in the last section.

Two important ingredients in what follows will be the facts that V (M(R)) is a Riesz
monoid and that every principal right ideal of M(R) is generated by two idempotents,
whenever R is σ-unital and regular.

Lemma 2.1. Let R be a σ-unital regular ring, and let p ∈ M(R) be an idempotent.
Then pRp is a regular ring and there exists an increasing sequence (fn) of idempotents
in pRp which is a σ-unit for pRp. Moreover, if q ∈ R is an idempotent, then q . p if
and only if q . fn for some n ∈ N.

Proof. Let x ∈ pRp. Then x ∈ R, hence there exists y ∈ R such that x = xyx. Now,
since x = pxp we have x = (pxp)(pyp)(pxp), showing that pRp is regular.

Recall that by [23, Lemma 1.1], the set E(S) of idempotents of a regular ring S is
upward directed, and so S = ∪e∈E(S)eSe.

Let (en) be a σ-unit for R, and write R = ∪∞
n=1enRen. Write also

pRp = ∪e∈E(pRp)e(pRp)e.

Note that pe1p ∈ f1(pRp)f1, for some idempotent f1 ∈ pRp, and also pe2p ∈ f ′
2(pRp)f

′
2

for some idempotent f ′
2 ∈ pRp. Using the upward directedness of the idempotents of

pRp, we find an idempotent f2 ∈ pRp such that f1, f
′
2 ≤ f2, whence pe2p ∈ f2(pRp)f2.

Continuing in this way, we obtain a sequence f1 ≤ f2 ≤ f3 ≤ . . . of idempotents in pRp
such that penp ∈ fn(pRp)fn for all n ∈ N. Clearly, ∪nfnRfn ⊆ pRp. For the converse,
if x ∈ pRp, then there exists n ∈ N such that x = enxen, and also x = pxp. Thus
x = (penp)x(penp) = fn(penpxpenp)fn ∈ fnRfn.

Note now that since fn ∈ pRp for all n ∈ N, we have fn = fnp = pfn, hence fn ≤ p.
Therefore, if q ∈ R is an idempotent and q . fn for some n ∈ N, then it is clear that
q . p. Conversely, if q . p, then q ∼ q′ ≤ p for some idempotent q′ ∈ pRp. Thus there
exists n ∈ N such that q′ ∈ fnRfn, whence q

′ ≤ fn and so q . fn.

Remark 2.2. Let R be a regular ring, and let p ∈ M(R) be an idempotent. Then the
strict topologies on M(pRp) induced by pRp and by R coincide.

Proof. First note that M(pRp) = pM(R)p by Lemma 1.9. Suppose that (xi) is a net
in pM(R)p that converges strictly to x ∈ pM(R)p in the topology induced by pRp.
Let a ∈ R. Using the regularity, we have that pa = (pa)b(pa), for some b ∈ R. Hence
xia = xipa = xi(pabp)a = x(pabp)a = xa, if i is large enough. The argument works
similarly for axi.

The proof of the following lemma is straightforward, and we omit it.

Lemma 2.3. Let R be a regular ring, and let p, q ∈ M(R) be orthogonal idempotents
such that pRp and qRq have respective σ-units (consisting of idempotents) (en) and
(fn). Then (en + fn) is a σ-unit for (p+ q)R(p+ q).
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With these ingredients, we now establish Riesz decomposition in V (M(R)) for σ-
unital regular rings. The proof is analogous to the one known for C∗-algebras, and
established by Zhang in [32, Theorem 1.1], so we just indicate which modifications
should be adopted in the regular, σ-unital case.

Theorem 2.4. Let R be a σ-unital regular ring. Then V (M(R)) is a Riesz monoid.

Proof. Let [r], [p], [q] ∈ V (M(R)) be elements such that [r] ≤ [p]+[q]. Since all matrix
rings over R are regular (see [12, Lemma 1.6]) and σ-unital, and using Lemma 1.11, we
may assume without loss of generality that r, p and q are idempotents in M(R), that
pq = qp = 0 and that r ≤ p+ q. Also, since (p+ q)M(R)(p+ q) = M((p+ q)R(p+ q))
by Lemma 1.9, we may assume that p+ q = 1.

Fix σ-units (pn) for pRp, (qn) for qRq, (rn) for rRr and (r′n) for (1 − r)R(1 − r).
Then, by Lemma 2.3, the idempotents en := pn + qn and fn := rn + r′n form σ-units for
R. Now we use that R = ∪nenRen = ∪nfnRfn, and that every subsequence of a σ-unit
is also a σ-unit, whence we may assume by changing notation that:

e1 ≤ f1 ≤ e2 ≤ f2 ≤ . . . .

Now the proof ends as in [32, Proof of Theorem 1.1], using whenever necessary that
V (R) is a Riesz monoid (see [12, Theorem 2.8]).

The lack of regularity of M(R) (shown in Proposition 1.8) can be replaced by the
existence of enough idempotents, as proved in the next result. This will be useful for
studying the ideal lattice of M(R).

Theorem 2.5. Let R be a σ-unital regular ring, and let x ∈ M(R). Then there exist
idempotents pi ∈ xM(R) and elements xi ∈ M(R), for i = 1, 2, such that x = p1x1 +
p2x2. Consequently, the ideals of M(R) are generated by idempotents.

Proof. Let (en) be a σ-unit for R consisting of idempotents. Notice first that it follows
from Lemma 1.3 that lim

n
xen = lim

n
enx = x.

Set e0 = 0. We deduce immediately that x =
∞
∑

n=0

x(en − en−1) and that x =
∞
∑

n=0

(en −

en−1)x, in the strict topology. Consider xe1 ∈ R. There exists n ≥ 2 such that
xe1 ∈ enRen, and thus xe1 = enxe1en = enxe1. Analogously, there exists m ≥ 2 such
that e1x = e1xem. Renumbering if necessary we may assume that n = m = 2, and
hence we have xe1 = e1xe1 + (e2 − e1)xe1 and e1x = e1xe1 + e1x(e2 − e1).

Using induction we will prove that, for n ≥ 2 (and, again, up to renumbering the
σ-unit):

(1) x(en − en−1) = (en−1 − en−2)x(en − en−1)+

(en − en−1)x(en − en−1) + (en+1 − en)x(en − en−1),

(2) (en − en−1)x = (en − en−1)x(en−1 − en−2)+

(en − en−1)x(en − en−1) + (en − en−1)x(en+1 − en).
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Proceeding in this way we can represent the element x as a tridiagonal matrix with
countably many rows and columns: setting an = (en − en−1)x(en+1 − en), bn = (en −
en−1)x(en − en−1) and cn = (en+1 − en)x(en − en−1), for n ≥ 1, we then have:

x =

















b1 a1 0 0 · · ·
c1 b2 a2 0 · · ·
0 c2 b3 a3 · · ·
0 0 c3 b4 · · ·
0 0 0 c4 · · ·
...

...
...

...
. . .

















.

Let us prove now that this decomposition holds. Suppose that n = 2, and consider
the elements x(e2 − e1) and (e2 − e1)x. As before, there exists n ≥ 3 such that x(e2 −
e1), (e2 − e1)x ∈ enRen. Renumbering, we may assume that n = 3 and thus we get

x(e2 − e1) = e3x(e2 − e1) = (e3 − e2)x(e2 − e1)+

(e2 − e1)x(e2 − e1) + e1x(e2 − e1),

and also

(e2 − e1)x = (e2 − e1)x(e3 − e2) + (e2 − e1)x(e2 − e1) + (e2 − e1)xe1.

Suppose that for some n > 2 , the equalities (1) and (2) hold. Consider in this case
the elements x(en+1− en) and (en+1− en)x. We may assume that both elements belong
to en+2Ren+2. Therefore

x(en+1 − en) =

n+2
∑

k=1

(ek − ek−1)x(en+1 − en),

(en+1 − en)x =

n+2
∑

k=1

(en+1 − en)x(ek − ek−1).

If k = 1, then e1x(en+1 − en) = e1xe2(en+1 − en) = 0, since n > 2. On the other
hand, if 1 < k < n, then by the induction hypothesis (ek − ek−1)x(en+1 − en) =
(ek − ek−1)x(ek+1 − ek−2)(en+1 − en) = (ek − ek−1)x(ek+1(1− en))en+1 = 0. This proves

that x(en+1 − en) =
n+2
∑

k=n

(ek − ek−1)x(en+1 − en), and establishes equality (1). Equality

(2) follows in a similar manner, and hence the induction is complete.
For i = 1, 2, let xi ∈ M(R) be the elements defined as follows (which exist by

Lemma 1.7):

x1 =
∞
∑

n=1

(x(e4n−3 − e4n−4) + x(e4n−2 − e4n−3)) =
∞
∑

n=1

x(e4n−2 − e4n−4),

x2 =
∞
∑

n=1

(x(e4n−1 − e4n−2) + x(e4n − e4n−1)) =
∞
∑

n=1

x(e4n − e4n−2).
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Then x = x1 + x2. Let yn = x(e4n−2 − e4n−4) ∈ R. Since R is regular, there exist
elements zn ∈ R such that yn = ynznyn. The relation (1) applied to yn yields

yn = (e4n−1 − e4n−4)x(e4n−2 − e4n−3)+

(e4n−2 − e4n−5)x(e4n−3 − e4n−4) = (e4n−1 − e4n−5)yn,

so we may assume that zn ∈ (e4n−1 − e4n−5)R(e4n−1 − e4n−5). Note that the elements

fn := ynzn = xzn are orthogonal idempotents. Let p1 =
∞
∑

n=1

fn ∈ M(R). Then p21 = p1

and if z =
∞
∑

n=1

zn ∈ M(R), then we have p1 =
∑

n

ynzn =
∑

n

xzn = x
∑

n

zn = xz. Note

also that x1 =
∑

n

yn =
∑

n

fnyn = p1x1.

Similarly, we construct an idempotent p2 ∈ M(R) such that p2 ∈ xM(R) and x2 =
p2x2. Then we have x = x1+ x2 = p1x1 + p2x2. This proves that the ideal generated by
x ∈ M(R) is generated by the idempotents p1 and p2, whence the result follows.

Remark 2.6. In [15, p.115], it was mentioned that if K is a field, then any one-sided
ideal in FRCM(K) (and also in some of its subalgebras) is generated by idempotents
(see also [29] for related results). Combining Theorem 2.5 and Proposition 1.8 we obtain
lots of examples of nonregular rings such that all their one-sided ideals are generated
by idempotents.

The previous facts enable us to faithfully relate the ideal structure of M(R) to the
order-ideal structure of the monoid V (M(R)). This has already been done for σ-unital
C∗-algebras with real rank zero ([32]); for an exchange ring R (and, in particular, for
a regular ring), there is also a close relation between the ideal lattice of R and the
order-ideal lattice of V (R) ([6]). The essential ingredients in the proof of the next result
(which we outline below) are Theorems 2.4 and 2.5, and we refer the reader to [32,
Theorem 2.3], [24, Teorema 4.1.7] and [25, Theorem 2.1] for further details.

Theorem 2.7. Let R be a σ-unital regular ring. Then the lattice of ideals of M(R) is
isomorphic to the lattice of order-ideals of V (M(R)).

Proof. Denote by L(M(R)) the lattice of ideals of M(R) and by L(V (M(R))) the
lattice of order-ideals of V (M(R)). Define φ : L(M(R)) → L(V (M(R))) by φ(I) =
V (I). We claim that φ is a lattice isomorphism.

First note that by Riesz decomposition in V (M(R)), it follows that V (I) is the
submonoid of V (M(R)) generated by {[e] ∈ V (R) | e is an idempotent in I} for any
ideal I of M(R). It is clear that V (I ∩J) = V (I)∩V (J), and also that V (I)+V (J) ⊆
V (I+J), whenever I, J ∈ L(M(R)). If [e] ∈ V (I+J), where e is an idempotent in I+J ,
then it follows after a standard argument that there exist idempotents e1, . . . , en ∈ I

and f1, . . . , fm ∈ J such that [e] ≤
n
∑

i=1

[ei] +
m
∑

j=1

[fj ]. Therefore [e] ∈ V (I) + V (J), using

Riesz decomposition on V (M(R)). This shows that φ is a lattice homomorphism.
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Since the ideals ofM(R) are generated by idempotents, it is clear that I = J whenever
V (I) = V (J), hence φ is injective. Let S be an order-ideal of V (M(R)), and let I(S)
be the ideal of M(R) generated by {e ∈ M(R) | e is an idempotent and [e] ∈ S}.
Then V (I(S)) = S. For, if e ∈ I(S) is an idempotent, then again a standard argument
shows that there exist idempotents e1, . . . , en ∈ M(R) with [ei] ∈ S for all i, such that

[e] ≤
n
∑

i=1

[ei]. Since [ei] ∈ S for all i, we conclude that [e] ∈ S. If, conversely, [e] ∈ S,

then we may write [e] =
n
∑

i=1

[ei], for some idempotents ei ∈ M(R), using again Riesz

decomposition on V (M(R)). It follows that ei ∈ I(S) for all i, whence [ei] ∈ V (I(S))
for all i, so that [e] ∈ V (I(S)). Therefore φ is surjective, hence a lattice-isomorphism,
as claimed.

Now, in analogy with [25, Theorem 2.4] (see also [13, Theorem 1.10]), we can represent
the monoid V (M(R)) in terms of a monoid of intervals in V (R). Recall that an interval

in a monoidM is any nonempty, hereditary, upward directed subset I ofM . An interval
I in a monoid M is said to be countably generated provided that I has a countable
cofinal subset. For any ring R, define D(R) = {[e] ∈ V (R) | e ∈ R}. In case R has a
countable unit (en), then D(R) may be described as the countably generated interval
which has ([en]) as a countable cofinal subset.

Assume now that R is a σ-unital regular ring with stable rank one. If e ∈Mn(M(R))
is an idempotent, then eM∞(R)e is a σ-unital regular subring of Mn(R). Define:

θ(e) = {[p] ∈ V (R) | p is an idempotent in eM∞(R)e}.

Then θ(e) is an interval in V (R), and indeed θ(e) = {[p] ∈ V (R) | p . e} =
{[p] ∈ V (R) | p . ek for some k}, where e1 ≤ e2 ≤ . . . is a σ-unit for eMn(R)e
(see Lemma 2.1). Clearly, θ(e) ⊆ nD(R).

Theorem 2.8. Let R be a σ-unital regular ring with stable rank one. Then there is
a normalized monoid isomorphism between the monoid (V (M(R)), [1M(R)]) and the
monoid (WD

σ (V (R)), D), whose elements are those countably generated intervals I in
V (R) for which there exist n ∈ N and a countably generated interval J in V (R) such
that I + J = nD, where D = D(R).

Proof. Using the Riesz decomposition property on V (M(R)) it follows that if e, f ∈
M∞(M(R)) are idempotents, then θ(e⊕f) = θ(e)+ θ(f). From this, if e ∈Mn(M(R))
is an idempotent, then taking g = 1Mn(M(R)) − e we see that θ(e) + θ(g) = nD(R).

Define a map γ : V (M(R)) → WD
σ (V (R)) by γ([e]) = θ(e). The method used in

the proof of [13, Proposition 1.7] shows that γ is an injective monoid homomorphism.
That γ is surjective follows from a similar argument to the one used in [13, Proposition
1.8]. Finally, it is clear that D is an order-unit for WD

σ (V (R)) and that γ([1M(R)]) = D,
hence γ is normalized.
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Let R be a simple ring. We say that R is elementary provided that R has minimal
idempotents. (Here, a nonzero idempotent e ∈ R is minimal if eR is a minimal
right ideal.) If R is simple with an approximate unit, then it can be shown that R is
elementary if and only if there exist a division ring D and a dual pair DV,WD such that
R ∼= FW (V ). This is equivalent to saying that R is regular and V (R) ∼= Z+ (see [26,
Proposició 3.1.4]).

Remark 2.9. Notice that if R is a simple σ-unital (nonunital) elementary ring, then
M(R)/R is simple. To see this, note that R can be identified with FV (W ), for a certain
dual pair DV,WD of countably dimensional vector spaces over a division ring D. If
I is an ideal of M(R) such that R $ I, then there exists an idempotent p ∈ I with
rank(p) = ∞. Since R is nonunital, we see that rank(1M(R)) = ∞. Hence, we conclude
that p ∼ 1M(R), and so I = M(R) (see also [26, Teorema 3.1.5].

Definition 2.10. Let M be a cancellative monoid. We say that M is strictly unper-

forated if whenever nx < ny for some n ∈ N and x, y ∈M , it follows that x < y.

Recall that a state on a monoidM with order-unit u ∈M is a monoid homomorphism
s : M → R+ such that s(u) = 1. The set of states on (M,u) is denoted by Su =
St(M,u). It is clear that St(M,u) = St(G(M), u), where G(M) is the Grothendieck
group of M . Let Aff(Su) denote the ordered Banach space of affine continuous (real-
valued) functions defined on the compact convex set Su. Denote by φu : M → Aff(Su)
the natural representation map (given by evaluation). We define LAffσ(Su)

++ as the
semigroup whose elements are those affine and lower semicontinuous functions with
values on R++ ∪{+∞}, and that can be expressed as countable (pointwise) suprema of
an increasing sequence of (strictly positive) elements from Aff(Su). Recall also that an
interval I in a monoid M is called soft provided that I 6= 0 and for each x ∈ I, there
exist y ∈ I and n ∈ N such that (n+ 1)x ≤ ny (see [14]).

Let R be a σ-unital simple regular ring with stable rank one. Fix u ∈ V (R)∗, and set
d = sup φu(D(R)). We define:

W d
σ (Su) = {f ∈ LAffσ(Su)

++ | f + g = nd for some g ∈ LAffσ(Su)
++ and n ∈ N}.

Now consider the set V (R) ⊔W d
σ (Su), where ⊔ denotes disjoint union of sets. This set

can be endowed with a monoid structure, by extending the natural operations in V (R)
and W d

σ (Su), and by setting x+ f = φu(x) + f , whenever x ∈ V (R) and f ∈ W d
σ (Su).

Theorem 2.11. Let R be a simple σ-unital (nonunital) regular ring with stable rank
one. Assume that R is nonelementary and that V (R) is strictly unperforated. Fix a
nonzero element u ∈ V (R). Let D = D(R) and d = supφu(D). Then there is a
normalized monoid isomorphism

ϕ : V (M(R)) → V (R) ⊔W d
σ (Su),

such that ϕ([p]) = [p] if p ∈ R, and ϕ([p]) = sup{φu([q]) | [q] ∈ V (R) and q . p} if
p ∈ M(R) \R.
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Proof. By Theorem 2.8 there is a normalized monoid isomorphism between the monoid
(V (M(R)), [1M(R)]) and (WD

σ (V (R)), D(R)). Note now that V (R) is a conical refine-
ment monoid, which is simple and cancellative since R is regular, simple and has stable
rank one. Further, the interval D(R) is countably generated, because R has a count-
able unit. We claim that, as long as R is nonunital, D(R) is a soft interval. Sup-
pose that D(R) is not soft. Then there exists a nonzero element x ∈ D(R) such that
(n + 1)x 6≤ ny for all n ∈ N and all y ∈ D(R). Set x = [e] for some idempotent
e ∈ R. Since e is not a unit for R, there exists a ∈ R such that a − ea 6= 0, whence
(1 − e)R 6= 0. Let B = (1 − e)R(1 − e), which is a nonzero regular ring, (otherwise
(1− e)R = (1− e)R(1− e)R = BR = 0). Therefore there exists a nonzero idempotent
f ∈ B, whence e+ f is a nonzero idempotent of R. Now use the simplicity of R to find
k ∈ N such that [e] ≤ k[f ], and then (k + 1)[e] = k[e] + [e] ≤ k[e + f ], a contradiction.

Thus we can apply [25, Theorem 3.8], which establishes a (normalized) monoid iso-
morphism between (WD

σ (V (R)), D(R)) and (V (R) ⊔W d
σ (Su), d). Finally, the composi-

tion of this isomorphism with the one given at the beggining of the proof provides an
isomorphism between (V (M(R)), [1M(R)]) and (V (R) ⊔W d

σ (Su), d), as desired.

We close this section proving a result that implies simplicity of the ring M(R)/R for
a simple, σ-unital, purely infinite regular ring R.

Definition 2.12. Let M be a monoid. We say that M is purely infinite if whenever
x ∈ M is nonzero, then there exists a nonzero element y ∈ M such that x + y = x. If
R is any ring, and e ∈ R is a nonzero idempotent, we say that e is infinite provided
that there exists f ∈ R such that f < e and e ∼ f . Finally, a ring is said to be purely

infinite if any nonzero right ideal I of R contains an infinite idempotent.

It is easy to see that R is purely infinite if and only if any nonzero principal right
ideal contains an infinite idempotent, as well as that the condition of pure infiniteness is
indeed symmetric. Observe that if R is purely infinite, then every nonzero idempotent
is infinite. For, if e ∈ R is a nonzero idempotent, then there is an infinite idempotent
f ∈ R such that fR ⊆ eR. Thus f = ef and so g = fe is an idempotent with
f ∼ g ≤ e. Now g is infinite, so there is an idempotent h such that g ∼ h < g. Thus
e ∼ h ⊕ (e − g) < e. Notice also that if R is a simple purely infinite ring containing
nonzero idempotents e and f , then it follows from the simplicity of R that e ≺ f . If R
is a regular ring, then R is purely infinite if and only if V (R) is a purely infinite monoid.

For C∗-algebras, it is known that if A is a σ-unital stable C∗-algebra (see, for example,
[30] for definitions), then M(A)/A is simple if and only if A is elementary or A is purely
infinite simple (see [21, Theorem 3.8] and [28, Theorem 3.2]). Also, it was proved in
[33, Theorem 1.2 (i)]) that if A is σ-unital, purely infinite and simple, then A is either
unital or stable, whence it follows that if A is nonunital, then M(A)/A is simple.

A monoidM is said to be separative provided that whenever a+a = a+b = b+b, for
a, b ∈M , it follows that a = b. We say that a ring R is separative if the corresponding
monoid V (R) is. In the presence of separativity, simple regular rings are shown to have
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a very extreme behaviour: either they have stable rank one or they are purely infinite
(see [6]). Also, there are no examples known of non separative regular rings, so this
seems to suggest that only these two cases are to be considered. We are indebted to
Enric Pardo for the following observation:

Proposition 2.13. Let R be a σ-unital simple regular ring. Assume that R is purely
infinite. Then e ∼ f for evey pair of idempotents e, f ∈ M(R) \R. Consequently, if R
is nonunital, V (M(R)) ∼= V (R) ⊔ {∞}, where x+∞ = ∞, for any x ∈ V (R).

Proof. Let e, f ∈ M(R) \ R be idempotents. Take countable units (en) and (fn) for
eRe and fRf respectively (see Lemma 2.1). Since R is purely infinite simple, we have
that e1 ≺ f2 ≺ e3 ≺ f4 ≺ . . .

Without loss of generality, we may assume that ei 6= ei+2 and fi 6= fi+2 for all
i. Let h1 ∈ R be an idempotent such that h1 ∼ e1 and h1 < f2. Then we have that
f2−h1 ≺ e3−e1 6= 0. Let g′ ∈ R be an idempotent such that g′ < e3−e1 and g

′ ∼ f2−h1,
and let g2 := e1 ⊕ g′. Then g2 ∈ R and e1 < g2 < e3 with g2 ∼ f2. Continuing in this
way we define idempotents g2j, h2j+1 ∈ R such that e2j−1 < g2j < e2j+1, and g2j ∼ f2j
for all j, and f2j < h2j+1 < f2j+2, and h2j+1 ∼ e2j+1 for all j. Let us summarize this
situation as follows:

h1 < f2 < h3 < f4 < . . .
≀ ≀ ≀ ≀
e1 < g2 < e3 < g4 < . . .

Let g0 = h0 = 0, gi = ei for i odd, and hi = fi for i even. Then (gn) and (hn) are
increasing approximate units consisting of idempotents for eRe and fRf respectively,
that satisfy gi ∼ hi for all i. Note also that hi < hi+1 and gi < gi+1 for all i. Now observe
that gi ⊕ (gi+1 − gi) = gi+1 ∼ hi+1 = hi ⊕ (hi+1 − hi), and hi ∼ gi. Taking into account
that V (R)∗ is a group (see [6, Proposition 2.4]), it follows that hi+1 − hi ∼ gi+1 − gi for
all i.

Then there exist elements xi, yi ∈ R such that xiyi = gi+1 − gi and yixi = hi+1 − hi
for all i. Set x =

∑

i xi and y =
∑

i yi. Then xy = e and yx = f , and therefore e ∼ f .
Now, if e ∈ M(R) \ R is an idempotent, it follows from the above that e ∼ 1M(R).

If, on the other hand, e ∼ 1M(R), for an idempotent e ∈ R, then 1M(R) = xy = xey for
some x, y ∈ M(R), which would imply 1M(R) ∈ R.

3. Ideals of multiplier rings

Combined with [32, Theorem 2.3] (see also [25, Theorem 2.1]), Theorem 2.11 provides
an effective method to study the ideal structure of multiplier rings of regular rings in
the class we are considering. For simple C∗-algebras with real rank zero, an extensive
account of what type of results one may expect using this technique can be found in
[25]. In fact, the arguments used in [25] derive from the representation of the monoid
of equivalence classes of projections of M∞(M(A)) (for a C∗-algebra A) as a monoid
involving a semigroup of functions over the quasitrace space of A. In order to make
these results available for regular rings, we first need to establish the relation between
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the state space Su and the space of pseudo-rank functions over R, in a parallel way to
what is done for unital regular rings (see [12, Proposition 17.12]).

Definition 3.1. [7, Section 2] Let R be a regular ring. A pseudo-rank function

over R is a map N : R → R+ such that N(xy) ≤ N(x), N(y) for x, y ∈ R, and
such that N(e + f) = N(e) + N(f) whenever e, f ∈ R are orthogonal idempotents. If
supN(R) = 1, we say that N is normalized.

We denote by P(R) the set of normalized pseudo-rank functions, which is a convex
subspace of RR, not compact in general. Let R be a regular ring, and let x ∈ R be a
nonzero element. Denote by P(R)x the set of unnormalized pseudo-rank functions N
such that N(x) = 1. Notice that P(R)x is a convex subset of RR. We will prove now
that if R is simple, e ∈ R is a nonzero idempotent and if u = [e] ∈ V (R), then the
spaces Su and P(R)e are affinely homeomorphic. The argument we use is based on the
unital case.

Proposition 3.2. Let R be a simple regular ring and let e ∈ R be a nonzero idempotent.
Set u = [e] ∈ V (R). Then there exists an affine homeomorphism α : P(R)e → Su such
that α(N)([f ]) = N(f), for every N ∈ P(R)e and every idempotent f ∈ R.

Proof. First, we prove that P(R)e is affinely homeomorphic to P(eRe). If N ∈ P(R)e,
then it is easily verified that its restriction to eRe gives a pseudo-rank function on eRe.
Denote by r : P(R)e → P(eRe) the restriction map, which is affine and continuous.
Now, let N ∈ P(eRe), and let x ∈ R. There exists an idempotent f ∈ R such that
xR = fR. Since R is simple, there exists n ∈ N such that [f ] ≤ n[e] in V (R), and by
Riesz decomposition there exist idempotents f1, . . . , fn ∈ eRe such that [f ] =

∑

i[fi],

and [fi] ≤ [e] for all i. Define N(x) =
∑

iN(fi). By [7, Lemma 2.1(a)], this map is

well-defined, and it is an unnormalized pseudo-rank function on R such that N(e) = 1.
Hence, the assignment N 7→ N defines a map r : P(eRe) → P(R)e. It is not difficult to
check that r and r are mutually inverse, and so r is an affine continuous isomorphism.
To see that r is continuous, observe that whenever Ni → N in P(eRe), we have that
Ni(exe) → N(exe) for all x ∈ R. Now, let x ∈ R. Using the regularity and simplicity
of R as before, we find n ∈ N and idempotents f1, . . . , fn ∈ eRe such that r(Ni)(x) =

Ni(x) =
n
∑

j=1

Ni(fj) and r(N)(x) = N(x) =
n
∑

j=1

N(fj). Since Ni(fj) → N(fj) for all j,

we conclude that r(Ni)(x) → r(N)(x) for all x ∈ R, and so r(Ni) → r(N). Therefore r
is a homeomorphism.

By [12, Proposition 17.12], there is an affine homeomorphism θe between P(eRe) and
St(V (eRe), [e]). On the other hand, there is an isomorphism ψ : V (R) → V (eRe) that
maps [e] to [e], cf. [6, Lemma 1.5(c)]. Therefore the map β : St(V (eRe), [e]) → Su

defined by β(s)([f ]) = sψ([f ]), is an affine homeomorphism. Set α := β ◦ θe ◦ r :
P(R)e → Su. Then α is an affine homeomorphism. Now, let N ∈ P(R)e and let f ∈ R
be an idempotent. By simplicity, there exists n ∈ N such that [f ] ≤ n[e], and again by
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Riesz decomposition there exist idempotents f1, . . . , fn ∈ eRe such that [f ] =
n
∑

i=1

[fi].

Let f ′
1, . . . , f

′
n ∈ R be orthogonal idempotents such that f =

∑n
i=1 f

′
i and f ′

i ∼ fi for
all i. Then

α(N)([f ]) = β((θer)(N))[f ] = (θer)(N)(ψ[f ]) =
n

∑

i=1

(θer)(N)[fi] =
n

∑

i=1

N(f ′
i) = N(f),

as desired.

Remark 3.3. The proof of Proposition 3.2 gives the following more general result: let R
be a regular ring and let e ∈ R be an idempotent with R = ReR. Then u := [e] ∈ V (R)
is an order-unit, and the spaces P(R)e and Su are affinely homeomorphic. In this case,
P(R)e is a compact convex set.

For a compact convex set K, we denote by ∂eK the set of all its extreme points.

Definition 3.4. Let M be a monoid with order unit u, and let D be a generating inter-
val. We say that (M,D) has continuous scale if the affine function d := supφu(D) is
a continuous function from Su to R. We say that (M,D) has finite scale if the restric-
tion of d = sup φu(D) to ∂eSu is finite. If R is a simple regular ring, and if u ∈ V (R)
is a nonzero element, then we say that R has continuous scale (resp. finite scale)
provided that (V (R), D(R)) has continuous scale (resp. finite scale).

Now we obtain a description of the rings in our class whose multiplier rings have only
the trivial ideals.

Proposition 3.5. Let R be a simple σ-unital (nonunital) regular ring. Suppose that R
has stable rank one and that V (R) is strictly unperforated. Then M(R)/R is simple if
and only if R is elementary or R has continuous scale.

Proof. If R is elementary, then M(R)/R is simple by Remark 2.9. Hence, we may as-
sume that R is nonelementary. Now the proof follows along the lines of [25, Proposition
4.1, Corollary 4.4].

The argument used in [25, Proposition 4.1] shows that in factM(R) contains a unique
ideal L(R) which properly contains R and such that is contained in every ideal that
properly contains R. Moreover, if u ∈ V (R)∗, then V (L(R)) ∼= V (R) ⊔ Aff(Su)

++. For
C∗-algebras, the existence of this ideal was noted first by Lin in [20] for simple AF
algebras, and later in [21] for simple and separable C∗-algebras.

Theorem 3.6. Let R be a σ-unital simple regular ring with stable rank one. Assume
that R is nonelementary, that V (R) is strictly unperforated and that the state space
Su is metrizable, where u ∈ V (R)∗. Then R has finite scale if and only if the monoid
V (M(R))/V (L(R)) is cancellative.

Proof. This is proved using arguments similar to the ones in [25, Theorem 4.8].
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Proposition 3.7. Let R be a σ-unital (nonunital) simple regular ring with stable rank
one. Assume that V (R) is strictly unperforated and that R is nonelementary. Fix a
nonzero idempotent e ∈ R, and suppose that P(R)e is metrizable. Then there exists a
unique ideal Ifin(R) of M(R) properly containing R, which is maximal with respect to
the property that V (Ifin(R))/V (L(R)) is cancellative.

Proof. Let u = [e] ∈ V (R), and set Ifin := V (R) ⊔ {f ∈ W d
σ (Su) | f|∂eSu

is finite}.
Define Ifin(R) to be the unique ideal of M(R) such that ϕ(V (Ifin(R))) = Ifin, where
ϕ is the monoid isomorphism in Theorem 2.11. The rest of the proof follows now the
lines of [25, Proposition 6.1].

Definition 3.8. Let R be a regular ring. We say that a pseudo-rank function N over
R is infinite provided that sup

i

N(ui) = ∞, for some (hence any) approximate unit (ui)

for R.

Lemma 3.9. Let R be a σ-unital regular ring. Let I be an ideal of M(R). If the
monoid V (M(R))/V (I) is purely infinite, then M(R)/I is a purely infinite ring.

Proof. Denote by π : M(R) → M(R)/I the natural quotient map and let x ∈ M(R)/I
be a nonzero element. Take y ∈ M(R) \ I such that π(y) = x. By Theorem 2.5,
there exist idempotents p1, p2 ∈ M(R) and elements y1, y2, z, w ∈ M(R) such that
y = p1y1 + p2y2 and p1 = yz, p2 = yw. Since y /∈ I, we may assume that p1 /∈ I. Thus,
setting f = p1, we have that π(f) 6= 0, as well as π(f)(M(R)/I) ⊆ x(M(R)/I). Denote
by ψ : V (M(R)) → V (M(R))/V (I) the natural quotient map. If V (M(R))/V (I) is a
purely infinite monoid, there exists an idempotent q ∈M∞(M(R)) such that [q] /∈ V (I)
and ψ[f ] = ψ[f ] + ψ[q]. Hence we can find idempotents g, h ∈ M∞(I) such that
[f ] + [g] = [f ] + [q] + [h]. Finally we get that π(f) ∼ π(f) ⊕ π(q) in M∞(M(R)/I),
and π(q) 6= 0 since q /∈M∞(I). This shows that π(f) is an infinite idempotent, whence
x(M(R)/I) contains infinite idempotents, whence M(R)/I is a purely infinite ring.

Theorem 3.10. Let R be a σ-unital (nonunital) simple regular ring with stable rank
one. Assume that R is nonelementary and that V (R) is strictly unperforated. Let e ∈ R
be a nonzero idempotent, and suppose that P(R)e is metrizable. Let c be the cardinality
of the set of infinite extremal pseudo-rank functions in P(R)e.
(a) If c = n, then there exist precisely 2n ideals between Ifin(R) and M(R).
(b) If c is infinite, then M(R) has at least c different maximal ideals that properly

contain Ifin(R).
(c) If c is infinite and ∂eP(R)e is compact Hausdorff, then M(R)/Ifin(R) has exactly

c minimal ideals.

In each case, the quotient of M(R) by any of these ideals is a purely infinite ring.

Proof. The first three assertions of the theorem follow using similar arguments to the
ones in [25, Theorem 6.3, Theorem 6.6, Proposition 6.7]. For the last part, let I be an
ideal of M(R) such that Ifin(R) ⊆ I. Proceeding as in [25, Proposition 6.5], we get
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that V (M(R))/V (I) is a purely infinite monoid, and by Lemma 3.9, this implies that
M(R)/I is a purely infinite ring.

Remark 3.11. The ideal lattice of M(R) is, in general, very intricate. Indeed, under
the same hypotheses as in Theorem 3.10, it can be shown that if ∂eP(R)e is a compact
Hausdorff space that contains a nonisolated infinite pseudo-rank function, then there
exist uncountably many (proper) different ideals between L(R) and M(R) that form a
chain with respect to inclusion (see [25, Theorem 6.8]). Similar to [13], [25] and [26],
all these pathologies can be realized with nonunital ultramatricial F -algebras, for any
field F .
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