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ABSTRACT. We show that every (discrete) group ring D[G] of a free-by-amenable
group G over a division ring D of arbitrary characteristic is stably finite, in the sense
that one-sided inverses in all matrix rings over D[G] are two-sided. Our methods use
Sylvester rank functions and the translation ring of an amenable group.

INTRODUCTION

In the late 1960’s, Kaplansky [8] showed that over a field K of characteristic 0, the
(discrete) group algebra K[G] is directly finite for all groups G. Alternative proofs of
this were given shortly after by Montgomery [11] and Passman [15]; see also [16, Chapter
2]. We recall that a ring R is directly finite (resp. stably finite) if one-sided inverses
in R (resp. in all matrix rings M,(R)) are two-sided : zy =1 = yx = 1. (Von
Neumann finite and 1-finite are other synonyms for directly finite.) Direct finiteness of
K[G] in characteristic p > 0 has, however, remained an open problem. We show that
over a division ring D of any characteristic, and for any free-by-amenable group G, the
group ring D[G] is stably finite (Theorem 3.4).

The key to Kaplansky’s proof in characteristic 0 is showing that every non-trivial
idempotent in the complex group algebra C[G] has a real trace (coefficient of 1 € G)
strictly between 0 and 1. (One then elegantly concludes that 2y = 1 = tr(yx) =
tr(ry) =1 = yx = 1.) In turn, this fact is established by embedding C[G] in the
weak closure of its action on the Hilbert space L?(G). Montgomery’s proof uses instead
the uniform closure, but Passman’s proof takes place entirely inside C[G] itself. (Notice,
however, that even in characteristic 0, the above techniques do not work if K is not
commutative.) Our general characteristic proof is more geometric than analytic. We
work with D[G] as a subring of the so-called translation ring associated with the Cayley
graph of a group (not necessarily the same group G).

In its simplest form, when G is a finitely generated amenable group and D is a division
ring, our idea is to show that D[G] faithfully embeds in some stably finite factor ring of
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the translation ring T(G, D) of G over D. The stable finiteness of this factor is in turn to
be deduced from the existence of a faithful Sylvester rank function on its (finite) matrix
rings. However, this technique can’t work in the non-amenable case, as evidenced by
the fact that if a group G contains a free subgroup of rank two, then the translation
ring T(G, R) of G over any non-zero ring R has no (non-zero) directly finite factor rings
(Theorem 4.1). To get around this in the general case when G is an extension of a
free normal subgroup H by an amenable group G/H (which we can assume is finitely
generated), we need to replace the coefficient ring D by the group ring R = D[H], and
work with the crossed product R x (G/H) (=2 DI|G]) as a subring of the translation
ring T(G/H, R) of the amenable group G/H over R. The stable finiteness of D[G] is
then deduced from the following stronger result (again obtained by passing to a suitable
factor ring of the translation ring) (Theorem 3.2): If R *x G is a crossed product of a
finitely generated amenable group G over a ring R which admits a G-faithful Sylvester
rank function, then RxG too admits a faithful Sylvester rank function. The critical role
of amenability in all of this is that it enables one to extend Sylvester rank functions on
a ring R to Sylvester rank functions on the translation ring T(G, R).

We would like to thank Warren Dicks for his helpful comments, and also John Roe
for bringing translation algebras to the attention of the second author following the
publication of [6, 7, 14].

1. PRELIMINARIES

Let R be a (unital) ring and let (X, d) be a discrete metric space. Following Gromov
5, p. 262] we define the translation ring T(X, R) of X over R to be the ring of all square
matrices (a(x,y)), indexed by X x X and with entries from R, such that a(z,y) = 0
whenever d(z,y) > [ for some constant [ depending on the matrix. The least such [ is
called the bandwidth of the matrix. Of particular interest is the case where d : X? — Z+
and the space (X,d) is uniformly discrete in the sense that all balls of a given finite
radius have a uniformly bounded finite size. The simplest such example is X = N with
the Euclidean metric and R = K is a field. Then T(X, K) is just the algebra of all
w X w matrices over K with constant bandwidth in the classical sense, i.e. of the form
below
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(In [6, 7, 14] this algebra was called the growth algebra G(0) since it was the first of a
whole spectrum of growth algebras G(r) for r in the unit interval [0, 1].)

An important class of translation rings over discrete metric spaces arises from con-
nected graphs: if I is a connected graph, we take X = V(I') to be the vertex set and
d(z,y) to be the minimum of the lengths of the paths joining x and y. In turn, the
specialization of this which is central for us is to take I' = T'(G, S), the Cayley graph
of a finitely generated group G with respect to a finite generating set S. We denote
the corresponding translation ring by T(G, R). Recall that with the Cayley graph,
X = V(I') = G and that there is an edge from z to y precisely when 2 = h*!y for some
h in S, so that the corresponding metric is just the word metric and X is uniformly
discrete. In particular the closed ball B(1,n) centered on 1 with radius n is simply
{h' . hFl it <nand hy,...,h, €S}

Note that for a finitely generated group G, the translation ring T(G, R) does not
depend on the particular choice of the finite set of generators. The translation ring is
big enough to contain the group ring R[G], and also any crossed product R x G see
Lemma 3.1.

Originally the concept of an amenable group G arose in ergodic theory, and was de-
fined in terms of the existence of an invariant mean or invariant measure (e.g. every
continuous action of G on a compact space has a G-invariant measure). For our pur-
poses, it is more appropriate to adopt an equivalent definition in terms of the asymptotic
behaviour of boundaries of finite symmetric subsets of G, formulated by Fglner [4] in
the 1950’s (see also [1, Theorem F.6.8]). (A subset S of a group G is called symmetric
if S is closed under inverses.)

Definition 1.1. A group G is called amenable if for each finite symmetric subset S of
G and positive real number ¢, there exists a finite non-empty subset A of G with

05 A| < elAl.
Here 9sA={a € A: Sa ¢ A} is the S-boundary of A.

Remark 1.2. This definition of amenable group is not totally symmetric, since the set
O0s A is a “left boundary” for A. However, the symmetry of the condition is evident once
we consider the sets A~! for “right boundaries”.

The class of amenable groups is closed under subgroups, factor groups, extensions
and directed unions, and contains every abelian group (consequently, every solvable
group) and every finite group. An amenable group cannot contain a free subgroup on 2
generators. Although Olshanskii in the 1970’s constructed a non-amenable group which
has no such subgroup, at least it is true that every finitely generated non-amenable
group must have exponential growth (in the Gelfand-Kirillov sense). Just recently an
example of a finitely presented, non-amenable group not containing a free subgroup
of rank 2 has been constructed by Olshanskii and Sapir [13], thereby settling a long-
standing conjecture. A general reference for amenable groups is [18].
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We now describe the type of rank function that we will use throughout the paper.
Let R be a ring. Adopting the terminology of [19, Page 97|, we say that a function
p which assigns a non-negative real number to each finite (but not necessarily square)
matrix a is a Sylvester rank function if the following conditions hold:

(S1) p(z) = 0, where z is any zero matrix (hereafter we denote zero matrices by 0) ;
(S2) p((1)) =1, where (1) is 1 x 1;

(S3) p(ab) < min{p(a), p(b)} for all matrices a and b which can be multiplied;

(S4) p < = p(a) + p(b) for all matrices a,b;

A Sylvester rank function p is said to be faithful if p(a) # 0 for all non-zero matrices
a. Note that p(a) > p(a;;) by (S3), where a = (a;;), and so p is faithful if and only
if p(a) # 0 for every a in R (identified with a 1 x 1 matrix). Note that if we have an
(injective) homomorphism ¢ from R to a division ring D, then we obtain a (faithful)
Sylvester rank function p on R by the rule p(a) = rankp(p(a)). Malcolmson proved
in [10] that, conversely, given a Sylvester rank function p on R taking integer values,
there exists a division ring D and an epimorphism in the category of rings ¢ : R — D
such that p is induced by . (Sylvester rank functions taking integer values are called
algebraic rank functions in [10].)

Assume that R admits a Sylvester rank function p. If e and f are equivalent idem-
potent matrices over R, so that e = ab and f = ba for some (finite) matrices a and b
over R, then, by (S3) we have p(e) = p(ab) = p(abab) < p(ba) = p(f) and by symmetry
p(f) < p(e), so that p(e) = p(f). Moreover, if e and f are orthogonal idempotent finite
matrices over R, then p(e+ f) = p(e) +p(f) since the matrices <e —5 / 8) and (S ?)
are conjugate. It follows that a ring R admitting a faithful Sylvester rank function must
be stably finite. Indeed, if a and b are n X n matrices over R such that ab = I,,, where I,
is the n x n identity matrix, then by (S2), (S4) and the above observations on idempo-
tents, we have p(ba) = p(ab) = p(I,,) = n and so p(I,, —ba) = 0, which gives I,, —ba = 0
because p is faithful.

Notice that for any Sylvester rank function p, we have p(a+b) < p(a) + p(b). For we
always have (1 1) <8 2) G) = (a+0) and can then apply (S3) and (S4).

In Section 2, when we come to extend Sylvester rank functions to a translation ring,
we need to have a notion of a “limit” that exists for all bounded sequences of real
numbers (a,). The only properties we require of this limit is that it should agree with
the usual one when that exists, that the limit of a sum be the sum of the limits, and
that non-negative sequences have non-negative limits. To achieve this, we fix a free (also
called non-principal) ultrafilter w on N and take lim a,,, the limit along that ultrafilter.
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(Recall that this limit is [ if, by definition, for each € > 0, the set {n € N: [ — a,| < €}
belongs to w.) Different choices of the ultrafilter can result in different limits. A general
reference for the theory of filters and convergence is [2, Chapter I: §6].

2. TRANSLATION RINGS ASSOCIATED WITH AMENABLE GROUPS

Let G be an amenable finitely generated group and let X be its Cayley graph with
respect to a given finite set Gen(G) of generators of G. Let R be a ring and let T =
T(X, R) = T(G, R) be the corresponding translation ring.

Assume that R has a Sylvester rank function p. We now prepare to show (Theorem
2.3) that p can be extended to a Sylvester rank function on T(G, R). Let a be any
element in T = T(G,R). For a finite subset A C X, we define the normalized rank
pa(a) by

_ ple(A)ae(A)] _ ple(A) ae(A)]
pA(a) - - )
ple(A)] |A]
where e(A) is the diagonal idempotent in T such that

(2, 7) = 1 ifzeA
0 ifx g A,

Note that 0 < pa(a) < 1 and that pa(a+b) < pa(a) + pa(b).

We denote by S,, the closed n-sphere in X centered at 1, that is, S, = B(l,n) =
{hE'---hf' it < nand hy,...,h € Gen(G)}. The following result is equivalent to
amenability for finitely generated groups; see [5, 0.5.A].

Proposition 2.1. There is an increasing chain of finite subsets Ay C Ay C A3z C ...
such that

(a) X = U Ay, and
n=1
|An]
2 |Sn] -

For the remainder of the paper, we fix the chain A; C A, C ... constructed in
Proposition 2.1. The following computations will be useful. Let us denote e(Ay) simply
by ey and e(SiAy) simply by sy.

Lemma 2.2. Let R be a ring with a Sylvester rank function p. Then the following
properties hold:

(1) For all k > 1 we have p(sp — ex) < 2 *p(ex).

(2) If a € T has bandwidth at most k, then epa = erasy and aey, = spaey.

PT‘OOf. (1) We have SkAk = Ak USk(askAk) so that |SkAk| S |Ak| + |Sk| |85kAk| Note
that by construction e, < s; (as idempotents), hence we have an orthogonal decompo-
sition s = (s, — ex) + ex. As we have observed in Section 1, p is additive on orthogonal
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sums of idempotents, whence p(sx) = p(sr — ex) + p(ex). This fact, coupled with the
fundamental property of the sequence {A;} (condition (b) in Proposition 2.1) yields

A
plse — e6) = [S6Ac] — | A4x] < 105, 4] 152l < 4]
as desired.
(2) We will prove only the statement corresponding to exa.
Note that

o if 2 ¢ Ay
(exa)(z,t) = {a(z,t) if 2 € A

Since a has bandwidth at most k£ we have a(z,t) = 0if d(z,t) > k and so (exa)(z,t) # 0
implies t € Sy Ax. We conclude that e a = egasy. O

Let X be any uniformly discrete metric space and let n € N . For any ring R there
is an obvious ring isomorphism

T(X, M, (R)) —> M,(T(X, R)).

The 1somorphlsn’1 sends a matrix a = (a(x, Y))(@y)exxx, with a(z,y) in M, (R) to the
matrix a' in M,(T(X, R)) such that a}; = (a(2,y)i)@y)exxx. It will be convenient to
identify M, (T(X, B)) with T(X, M, (E)).

We now return to our earlier situation where X is the Cayley graph of a finitely

generated amenable group G and R is a ring with a Sylvester rank function p. Let
a € T(X, M,(R)). For a finite subset A C X, we define the normalized rank p(a) by

vy _ Pl () aen ()]
PA( ) = |A| )

where e™(A) is the diagonal idempotent in T(X, M, (R)) such that

I, ifxeA

(A, 2) = {0 ifzd A

(The ranks are computed viewing e™(A)ae”(A) as a finite matrix over R.) We have
0 < p(a) < nand pfh(a+0b) < phla) + p%(b) for all a, b in T(X, M, (R)). Note that
p"% = (p™)a, where p" corresponds to the (unnormalized) rank function p" induced by p
on matrices over M,(R). Set pj := pfy for all k,n (where {A;} is the sequence of sets
fixed according to Proposition 2.1). We will write pj, for p}.

Let w be a free ultrafilter on N. Define p, on T by
po(a) = lim pi(a)

for a in M, (T(G, R)) = T(G, M,(R)). Note that the limit along the ultrafilter exists
because 0 < pp(a) < n for all k. If a is a non-square matrix over T(G, R), then we
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a

define p,(a) = p, 0 8 , where the zero matrices are chosen to make the matrix

a 0 .
0 o) Sduare.

Theorem 2.3. Let G be a finitely generated amenable group and let R be a ring with a
Sylvester rank function p. For any free ultrafilter w on N, the function p, is a Sylvester
rank function on T(G, R) extending p.

Proof. Set T = T(G, R). It is clear that p, extends p if we identify R with its diagonal
copy in T. Let us check properties (S1)-(S5). By the extension property, (S1) and (S2)
are obviously satisfied.

(S4) By completing with suitable zero matrices we can assume that a and b are square
matrices. Assume that a € M,(T) and b € M,,(T). Setting e} = €} , we have

n+m a 0 n+mi __ 62@62 0 _ n n mi,.,.m
e (5 ) e = o (HeE ) = pletoch) + plepoep).

a 0\ ..  ,yimfa O
pe (o b)—hinpk (o b)

P[6k+ (0 b) 6k+ ]

Consequently we get

= lim

w | A

. plegaeg) . plefber)
= llm _— + hm _—

w A w A

= pu(@) + pu(b) .

Property (S5) is proved in a similar way to (S4).

(S3) It is here that we use the amenability of G. Since M, (T) = T(G, M, (R)) for
all n, we can assume without loss of generality that a,b € T(G, R). By condition (2)
in Lemma 2.2, we have eyabe, = epaspber = epaerbey + epa(sy — ex)bey for all k > 1.
Therefore

| Al

plerabey) < pl(eraer)(erber)] + p(sk — ex) < pleraer) + BT

where the last inequality follows from condition (1) in Lemma 2.2. We conclude that
pr(ab) < pr(a) +27%,
and so
pus(ab) = lim py(ab) < lim py(a) +lim 27" = p,(a).
Similarly p, (ab) < p,(b). O
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3. CROSSED PRODUCTS AND GROUP ALGEBRAS

In this section we will apply the results of Section 2 to obtain stable finiteness of group
algebras of free-by-amenable groups. For this we need to consider crossed products. We
will use the notation in [17]. We recall that a crossed product R x G of a group G over
a ring R is an associative ring that contains R and has as an R-basis the set G, a copy
of G. Thus every element of R * G is uniquely a finite sum ) _. 77, with r, in R. The
product in R * GG is determined by the rules

Ty =1Y7(2,y)
for some map 7 of G x GG into the group of units of R, and
1T = 7r’®

where 0 : G — Aut(R). By [17, Lemma 1.3], if R * G is a crossed product and N is a
normal subgroup of G then Rx G = (R * N) x (G/N), where the latter is some crossed
product of the group G /N over the ring R x N.

Lemma 3.1. Let R+ G be a crossed product of a finitely generated group G over a ring

R. Then the regular representation 8 embeds the crossed product R+G in the translation
ring T(G, R).

Proof. Recall that the crossed product R+G is a free right R-module with basis {Z : = €
G'}. Consider the regular matrix representation ¢ of R * G (under left multiplication)
relative to the basis X = G. For 7 in R we have 0(r)(Z) = 7r°®, so 0(r) € T(G, R)
(with bandwidth 0). Fix g = h{'---hf" € G (with the h’s from the fixed generating

set Gen(G)). For any y in G, the yth column of §(g) has a single non-zero entry
(7(g,v)) at position (z,y) for x = gy. Since d(x,y) < t, this shows that 0(g) € T(G, R)

with bandwidth at most ¢. Since #(R x G) is generated by #(R) and 6(G), the result
follows. .

Given a crossed product R % GG, we say that a Sylvester rank function p on R is
G-faithful if
inf{p(r°@) .z € G} >0
for all non-zero r in R. In particular, notice that this condition is fulfilled by any faithful
Sylvester rank function p which is also G-invariant, in the sense that p(a®®) = p(a)
for all finite matrices a over R and for all z in G.

Theorem 3.2. Let RxG be a crossed product of a finitely generated amenable group G
over a ring R. Assume that R admits a G-faithful Sylvester rank function. Then R*x G
admits a faithful Sylvester rank function. In particular, R x G is stably finite.

Proof. As we have already observed in Section 1, any ring having a faithful Sylvester
rank function is stably finite, so the second assertion will follow from the first.

By Lemma 3.1 the regular representation § embeds R % GG in the translation ring
T = T(G, R) of the Cayley graph X of G. Fix a free ultrafilter w on N and define the
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Sylvester rank function p, on T as in Section 2. Let I, be the set of elements a in T
such that p,(a) = 0. Clearly I, is an ideal of T, and for a in M,(T) we have p,(a) =0
if and only if a € M,,(I,,). Define a Sylvester rank function p, on T/I, by

P,(@) = pu(a)
for all finite matrices @ over T/1,,, where a is a lift of @. Clearly p,, is a faithful Sylvester
rank function.
It is enough to check that (R x G) () I, = 0, for then R * G will embed in T/I, and
will therefore admit a faithful Sylvester rank function.

Let 0 # Zgin— € R+ G. We can write
i=1

_ p*l +1
9i = hz-l T hit(i) )

where h;,..., h; . € Gen(G). Since p is G-faithful, there exist ¢; > 0 such that

b (i)

p(rf(x)) > ¢; for all z in G. Set ¢ = max{¢; :i=1,... ,m}.

Let £ > max{t(i) : 1 =1,...,m}. Let A} = A;\0s, A and note that SyA; C Aj. In
particular g;v € Ay, for all i = 1,...,m and all x in A}. By using Proposition 2.1, we
compute that

A = A~ 195, A 2 1A~ S
: = 1 s,

Choose a subset A} of A} with |A}] > |A}|/m? and with the “separating” property
{giz |1 <i<m}N\{gv|1<i<m} = 0 for all distinct x, y in A}. For example,
choose A} maximal with respect to this separating property. (Note that if B has the
separating property but m?|B| < | A}, then there is some y in A}, not of the form gj’lgz-a:,
with = in B, and then B U {y} also has the separating property.) Put e} = e(A}), and
note that e} = eje, = egej. Therefore we have

p(ekﬁ(i §m~> er) > p(eke(i ?ﬂ"i) er) -

m

For z, in AJ, the action of H(Z gin—) on the basis element T, (in the regular repre-
i=1

sentation) is

m m
0(> 7)) = > Gwar(gis wa)r{ .
i=1 i=1

We infer from this computation, the fact that A} C A}, and the separating property
of the family A}, that the matrix 6199(2;11 giri)ejc’ looks like blocks of m x 1 column

?(ma)

)T for z, ranging over A}, with the blocks positioned

over disjoint rows for different z,. By (S5) we have p(C'(z,)) > max{p(7(g;, xa)r?(m“)) :

matrices C'(z4) = (7(g;, xa)T
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i=1,...,m} > ¢, where the last equality follows from the facts that 7(g;, x4) is a unit
of R and max{p(rf(xa)) ci=1,...,m} >max{¢;:i=1,... ,m} =c.
Using the observations above we get

p(ekﬁ(i §m>6k) > p(eke(igﬂ"z) er)
= p( @ C(xq))

To €AY
= Y p(Clxa)) (by (S4))
T €AY
c| ALl clAxl ¢ |Ag]
> c|lA”| > kL — :
> eyl 2 m2 = m2 2k | Sk m?

Therefore

pk(9(Z§m)) > % - W;W
i=1

Taking limits along the ultrafilter w, we get

pw(ﬁ(;m)) = liypk(<e(;yiri)>) 2l = ) = s 0.
It follows th:;c : .
H(Z §m~> ¢1,.
=1 -

Remark 3.3. Observe that the Sylvester rank function p, in the proof of Theorem 3.2
induces a G-invariant Sylvester rank function p/, on R via p/,(a) = p,(0(a)) for all finite
matrices a over K. This new function will agree with the original p only in case p itself
is G-invariant.

We can now establish our principal theorem.

Theorem 3.4. Let D be any division ring and let G be a group having a free normal
subgroup H such that G/H is amenable. Then the group ring D|G] admits a faithful
Sylvester rank function. In particular, D|G] is stably finite.

Proof. Note that a subgroup of a free-by-amenable group is also free-by-amenable.
Hence, we only have to prove the result for finitely generated free-by-amenable groups,
since D[G] is stably finite if this is true of each subring D[H] with H a finitely generated
subgroup.

We have D[G] = D[H] * (G/H). It is well-known that D[H] is a fir (see [3, Theorem
5.3.9]), and so it can be embedded in a division ring. Fix an embedding of D[H] into
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a division ring L and consider the faithful Sylvester rank function p; on matrices over
D[H] given by pr(a) = ranky(a). Since pp(r) = 1 for all non-zero elements r in D[H]
we trivially have that p;, is G-faithful. The result now follows from Theorem 3.2. [

Remarks 3.5. (i) Of course the proof of Theorem 3.4 shows that every crossed product
R % G of an amenable group G over a domain R which can be embedded in a division
ring is stably finite. If one is only interested in the stable finiteness of R x GG, there
is a somewhat shorter proof which does not use ultrafilters. We sketch this proof for
the convenience of the reader. Since R can be embedded in a division ring L we get a
faithful Sylvester rank function on R by setting p(a) = rankr(a) for every finite matrix
a over R. Set I = {z € T : limg_, pr(z) = 0}. By the arguments in the proof of
Theorem 3.2, (R+G) (I = 0. Suppose that a and b are n x n matrices over R G such
that ab = I,,. By using Lemma 2.2 one can see that all the entries of I,, — ba belong to
I and so I, — ba = 0. (Incidentally [ is an ideal of T(G, R); in fact I =, Ls.)

(ii) The previous observation shows that a more general result is available, namely in
the setting that G is a group having a normal subgroup H such that G/H is amenable
and such that, for the division ring D, the group ring D[H] is embeddable in a division
ring. This last property is known to be satisfied by other classes of groups properly
containing the class of free groups. For example, all group rings over division rings
of torsion-free one-relator groups can be embedded in division rings, as shown in [9,
Theorem 3]. (Evidently, this class contains the class of free groups.) As the result of
Mal’cev and Neumann shows (see, e.g. [16, Chapter 13, Theorem 2.11]), every group
algebra over a field K of an ordered group can be embedded in a K-division algebra.
(The class of ordered groups also extends that of free groups; see [16, Chapter 13,
Corollary 2.8].)

(iii) It was observed in [12, page 597] that for a given ring R, the class of groups G
such that R[G] is stably finite is residually closed, in the sense that if we have a family
{H,} of normal subgroups of G closed under finite intersections, with (|, H, = 1, and
with all rings R[G/H,] stably finite, then R[G] is also stably finite. Combining this fact
with Theorem 3.4 we obtain that D[G] is stably finite for every division ring D and
every residually amenable group G.

4. THE TRANSLATION RING OF A FREE GROUP

In this short section, we will prove that the translation ring associated with any
finitely generated group containing a free group of rank 2 has no (non-zero) stably finite
factors. For non-amenable groups G, this explains why our techniques require us to
consider the translation ring over a factor group of G (and over a bigger coefficient
ring).

Let G be a finitely generated group and let H be a finitely generated subgroup. For
any ring R, the translation ring T(H, R) is naturally contained in T(G, R) as follows.
First take a system of generators Gen(G) containing Gen(H). Let 7 be a right transver-
sal of H in G, so that G = J, .y Hzo. For a in T(H, R) define ¢(a) in T(G, R) as the
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linear map

p(a)(hra) = a(h)za,
or in terms of matrices ¢(a)(hta, kxg) = dopa(h, k) for all h, k in H. It is easy to check
that ¢ provides an isomorphism from T(H, R) onto a subring of T(G, R).

Theorem 4.1. Let G be a finitely generated group containing a free subgroup of rank
2 and let R be any non-zero ring. Then T(G, R) has no directly finite factor rings.

Proof. Let H be a free subgroup of rank 2 of G. Since T(H, R) is embedded in T(G, R)
it suffices to prove that there are orthogonal idempotents e; and ey in T(H, R) such
that each e; is equivalent to 1. Let x, y be free generators of H. We will use the reduced
expressions of words w in H with respect to x, y. Define R-linear maps a, b, c,d on R[H]
by specifying the following rules for their actions on H:

{xw if w does not start with z—!
a(w) =

yw if w starts with o !
rz~tw if w starts with x

b(w) =<y tw if w starts with yz =1 ;

0 otherwise

x~'w if w does not start with z
y tw if w starts with

xw if w starts with z=!
d(w) = yw if w starts with y~ '
0 otherwise

Clearly a,b,c,d € T(H,R). Moreover 1 = ba = dc, and ab and cd are orthogonal
idempotents, as desired. O
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