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1. Introduction

In his fundamental work [15] Lannes has introduced a functor T defined in the
category K (resp. U) of unstable algebras (resp. modules) over the Steenrod algebra
which has many important applications in homotopy theory. This functor is, in
some sense, the algebraic analogue of the mapping space functor Map(BV,−) for
an elementary abelian group V . More precisely, there is a functor T = TV : K → K
which is adjoint to the functor −⊗H∗(BV ) : K → K, and which computes, under
some hypothesis, H∗(Map(BV,−∧p )). Here, and throughout this paper, H∗(−)
denotes H∗(−;Fp) for some fixed prime p and Y ∧

p denotes the p-completion of
Y in the sense of Bousfield-Kan ([7]). We also assume that all constructions are
done simplicially. For practical purposes, one would like to work on a component
of the mapping space containing a particular map f : BV → X. This is done by
considering an algebraic “connected component” of the functor T which we denote
Tf . Hence, we will assume that we have fixed a map f : BV → X so that we have
a natural transformation

Γ: Tf (H∗(X)) = T (H∗(X))⊗(T (H∗X))0 Fp
{f} → H∗(Map(BV, X∧

p )f )

which is, under quite general conditions, an isomorphism. Here Fp
{f} means Fp

considered as a module over T (H∗X)0 via the restriction to degree zero of the
adjoint of the map f∗ : H∗X → H∗BV and Map(Y,Z)g denotes the subspace
of the mapping space Map(Y, Z) which contains all maps g : Y → Z with g∗ =
f∗ : H∗(Z) → H∗(Y ). (In the cases which we deal with in this paper, this subspace
is just the connected component which contains f .)

It is clear that some hypothesis on X are needed for Γ to be an isomorphism.
For instance, if we take V = 0, the spaces X such that Γ is an isomorphism are
called Fp-good (cf. [7]) and it is known that there are spaces which are not Fp-
good (cf. [6]). It is more difficult to find an example in which X is a 1-connected
p-complete space with H∗(X) of finite type and, nevertheless, T does not compute
the cohomology of the mapping space. We provide an example of this kind in the
last section of this paper.

The authors acknowledge support from DGES grant PB97-0203.
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The relationship between TfH∗(X) and H∗(Map(BV, X∧
p )f ) was made clear

in the work of Dror-Smith ([10]) and Morel ([17], [18]). It turns out that TfH∗(X) is
isomorphic to the continuous cohomology of the profinite space Map(BV, Y ) where
Y is the p-completion of the profinite completion of X. On the other side, there are
some well known conditions on the low dimensional behavior of TfH∗(X) which
imply that Γ is an isomorphism. Lannes ([15]) proves that Γ is an isomorphism
if H∗(X) and TfH∗(X) are of finite type and TfH∗(X) vanishes in degree 1 or,
more in general, if TfH∗(X) is free in degrees ≤ 2 (see [15], 3.2). The purpose
of this paper is to find more general conditions which imply also that Γ is an
isomorphism.

In [1] it was necessary to compute the cohomology of some mapping spaces
in cases in which the functor T does not vanish in degree one and where Lannes’
freeness condition does not hold. The problem was solved there by some ad hoc
method adapted to the specific value of TfH∗(X). The same kind of problem was
encountered in [8] and again an ad hoc method was devised to solve it. Once again,
along the investigation of the classifying spaces of Kac-Moody groups from a ho-
motopy point of view ([2], see also [3]) it was necessary to compute the cohomology
of some mapping spaces in cases when Lannes’ condition does not hold.

What we want to do here is to put all these ad hoc methods into a quite
general framework in such a way that we can deduce from a single theorem all
computations of the cohomology of mapping spaces that we have just mentioned
as well as some other computations which could arise. In section 3 we introduce
a condition —which looks rather technical but has many direct applications—
called T -representability or finite T -representability and then Theorem 3, our main
theorem, states that finite T -representability together with the usual finiteness
conditions is a sufficient condition for the homomorphism

Γ: Tf (H∗(X)) → H∗(Map(BV, X∧
p )f )

to be an isomorphism.
This condition of T -representability looks much more complex than Lannes’

freeness condition. However, we show in sections 4 and 5 of this paper how this
condition of T -representability can be deduced from the low-dimensional behavior
of Tf (H∗(X)). This provides us with several concrete examples of cases in which
the functor T effectively computes the cohomology of the mapping space. We
recover Lannes’ criterion, as well as the cases which have been studied in [1], [8]
and [2]. Our arguments here heavily depend on group cohomology calculations.
The main idea in sections 4 and 5 is to reproduce the low dimensional behavior of
TfH∗(X) by the cohomology of a finite p-group P .

Given a p-complete space X and a map f : BV → X, the structure in low
dimensions of Tf (H∗(X)) is formally captured by an auxiliary algebra L that we
define as follows. Let W ∗

1 denote the Fp-vector space of elements of degree one of
Tf (H∗(X)). Adjoint to the inclusion it is defined a map of unstable algebras over
the Steenrod algebra U(W ∗

1 ) → Tf (H∗(X)), where U is Steenrod’s free unstable
algebra functor. If Q∗2 denotes the kernel of this map in degree two, we obtain
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a factorization U(W ∗
1 )//U(Q∗2) → Tf (H∗(X)) which is an isomorphism in degree

one and a monomorphism in degree two. We define L = U(W ∗
1 )//U(Q∗2).

To one such algebra L, we attach a system of finite p-groups C(L) by the
property that their mod p cohomology algebras mimic the behavior of L in low
dimensions; more precisely, a finite p-group belongs to C(L) if there is a homo-
morphism of unstable algebras over the Steenrod algebra ρ : L → H∗(P ) which
is an isomorphism in degree one and a monomorphism in degree two. The par-
ticular nature of the system C(L) would imply T -representability and even finite
T -representability. The case in which the system consists of only one finite p-group
behaves particularly well and is developed independently in section 4. In cases in
which we can deduce finite T -representability, we also show that the fundamental
group of Map(BV,X∧

p )f is either a finite p-group of the system or a pro-finite
p-group obtained as a limit of a chain in the system.

As said before, the paper ends with an example where T does not compute
the cohomology of Map(BV,X∧

p )f for some 1-connected space X of finite type.
This example helps in understanding the scope of the main theorem.

We are grateful to F.-X. Dehon for his comments on a previous version of
this paper.

2. Finiteness conditions and the geometric interpretation of T

To simplify the notation, let us say that a connected space Y is of finite Ẑp-type
if π1(Y ) is a finite p-group and πi(Y ) is a finitely generated Ẑp-module for all
i > 1. Let us say that Y is of finite Fp-type if Hi(Y ) is a finite dimensional
Fp-vector space for all i. For 1-connected, p-complete spaces, both conditions are
equivalent (see [1], 5.7). On the other side, if Y is of finite Ẑp-type then Y is p-
complete and of finite Fp-type. To prove this, consider the universal cover of Y ,
Ỹ → Y → K(π1(Y ), 1). Ỹ is of finite Fp-type and π1(Y ) is a finite p-group. Hence,
by [7] II.5.2 the fibration is nilpotent in the sense of [7], II.4 and Y is p-complete.
Then, the Serre spectral sequence shows that Y has also finite Fp-type.

We would like to remark that a finitely generated Ẑp-module is an Ext-p-
complete abelian group in the sense of [7], VI.3. Conversely, an Ext-p-complete
abelian group A has a canonical structure of Ẑp-module given by a natural iso-
morphism A ∼= Ext(Zp∞ , A). This implies that the category of finitely generated
Ẑp-modules is a full subcategory of the category of abelian groups. Moreover, these
same ideas can be used to prove that the category of finitely generated Ẑp-modules
is closed under abelian group extensions.

Let us recall also the well known fact that lim←− is an exact functor in the
category of towers of finite groups and in the category of towers of finitely gener-
ated Ẑp-modules (Jensen, [14]). Also, a homomorphism of towers of finite groups
{Gs} → {Hs} is a pro-monomorphism (pro-epimorphism) if and only if it induces
a monomorphism (epimorphism) lim←−Gs → lim←−Hs.
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Finally, we recall the geometric interpretation of the functor T developed by
Dror Farjoun-Smith in [10]. Let X be a space such that H∗X is of finite type
and vanishes in degree one. Then π1X is Fp-perfect and we get that X∧

p is simply
connected, p-complete and H∗X ∼= H∗X∧

p . Also, the homotopy groups of X∧
p are

finitely generated Ẑp-modules. Let f : BV → X be a map and consider TfH∗X.
Let {PsX

∧
p } be the Postnikov tower of X∧

p and denote Es = Map(BV, PsX
∧
p )fs

(fs is the map induced by f). Then Dror Farjoun-Smith prove ([10]) that

TfH∗X ∼= lim−→H∗(Es),

the isomorphism being induced by the natural map. Hence, the homomorphism

Γ: Tf (H∗(X)) → H∗(Map(BV, X∧
p )f )

is an isomorphism if and only if H∗(holim Es) ∼= lim−→H∗(Es) and so the problem
that we are investigating in this note is, in a certain sense, a problem about the
commutation of homology and inverse limits.

We claim that the spaces Es are of finite Ẑp-type. We prove this by induction
on s. Recall that the spaces Es are defined by Es = Map(BV, PsX

∧
p )fs

. Hence, we
have principal fibrations Es → Es−1 whose fibre is a union of components from
Map(BV, K(πsX

∧
p , s)). Each component is a product of Eilenberg-MacLane spaces

K(Hs−j(BV ; πsX
∧
p ), j), 1 ≤ j ≤ s. Notice that X∧

p is simply connected. Hence, if
we take into account the remarks on the category of finitely generated Ẑp-modules
that we have made above, the homotopy long exact sequence of these fibrations
yields the result by induction.

3. T -representability

Here is our condition on the low dimensional behavior of TfH∗X:

Definition 1. We say that f : BV → X is T -representable if there is an increasing
sequence α(s) and a map of towers

g : {Eα(s)} → {Bs}
such that

1. Bs = K(Gs, 1) and Gs is a finite p-group for all s.
2. g induces a pro-isomorphism in H1 and a pro-epimorphism in H2.
3. H∗(lim←−Gs) ∼= lim−→H∗(Gs), induced by the natural map.

If we have a T -representation g : {Eα(s)} → {Bs}, then we denote B∞ =
holim Bs and G∞ = lim←−Gs. Then, since the groups Gs are finite, we have B∞ =
K(G∞, 1).

Here are some straightforward examples of T -representability:
1. If TfH∗X vanishes in degree one then we get T -representability in a trivial

way, by taking Bs = ∗.
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2. If TfH∗X is free in degrees ≤ 2 (see [15], 3.2) we also get T -representability
in the following way. Let W be the Fp-vector space T 1

f H∗X. We can take
{Bs} to be the constant tower {K(W, 1)}. Then, conditions 1 and 3 are
trivially satisfied and 2 is just the condition of being free in degrees ≤ 2.

In the next sections, we present some other examples of T -representability.
In order to prove that Γ is an isomorphism we need that the T -representation

satisfies some finiteness condition. Notice that a T -representation {Eα(s)} → {Bs}
produces a structure of H∗(G∞)-module on TfH∗X = lim−→H∗(Es).

Definition 2. We say that f : BV → X is finitely T -representable if TfH∗X is
of finite type and there is a T -representation {Eα(s)} → {Bs} such that either of
these conditions holds true:

1. G∞ is a finite p-group.
2. H∗(G∞) is of finite type and Tor∗,∗H∗(G∞)(TfH∗X,Fp) is finite dimensional

in each total degree.

In most practical cases, it happens that TfH∗X is free over H∗(G∞) and the
above finiteness condition on Tor holds trivially.

We are now ready to state the main result of this paper which says that
finite T -representability implies that the functor T computes the cohomology of
the appropriate mapping space.

Theorem 3. If X is a space of finite Fp-type such that H1X = 0 and f : BV → X
is finitely T -representable, then

Γ: Tf (H∗(X)) → H∗(Map(BV, X∧
p )f )

is an isomorphism. Furthermore, Map(BV, X∧
p )f is p-complete and if the tower of

p-groups {Gs} provides a T -representation and we write G∞ = lim←−Gs, then we
have π1 Map(BV, X∧

p )f
∼= G∞.

Proof. We want to show that H∗(holim Es) ∼= lim−→H∗(Es). We will work in homol-
ogy. Notice that if we assume that both TfH∗X = lim−→H∗(Es) and H∗(B∞) are
of finite type then we have that H∗(lim←−Gs) ∼= lim←−H∗(Gs) and we need to prove
that H∗(holim Es) ∼= lim←−H∗(Es).

We start with a T -representation {Es} → {Bs} (we take α(s) = s without
loss of generality) and we denote by Fs the homotopy fibre of the map Es → Bs.
Then, we split the proof in several steps.

(1) Without loss of generality, we can assume that Fs is connected.
To see this, consider φs : π1Es → π1Bs and define B′

s = K(Im φs, 1). We have
a map of towers {Es} → {B′

s} and if we could prove that {B′
s} → {Bs} is a weak

pro-homotopy equivalence ([7], III.3) then it would be clear that {Es} → {B′
s} is

also a (finite) T -representation with connected fibers.
Recall now that the maximal subgroups of a finite p-group are normal and of

index p. Then, define Hs/Gs to be equal to Gs if φs : π1Es → π1Bs is onto and to
be a maximal subgroup of Gs containing the image of π1Es if φs is not onto. We



6 Jaume Aguadé, Carles Broto, and Laia Saumell

want to show that {Hs} → {Gs} is a pro-epimorphism i.e. we need to show that
lim←−Gs/Hs = 1. By hypothesis, {H1Es} → {H1Gs} is a pro-epimorphism and so
it is {H1Hs} → {H1Gs}. But the cokernel of H1Hs → H1Gs contains a copy of
Gs/Hs.

(2) The tower {H1Fs} is pro-trivial.
We have for each s a fibration Fs → Es → Bs with connected fibre. Notice

that The spaces Fs are of finite Ẑp-type and so they are p-complete and of finite Fp-
type. Hence, to prove that {H1Fs} is pro-trivial we can prove that the (ascending)
tower of finite Fp-vector spaces {H1Fs} is pro-trivial.

Let us consider the cohomology Serre spectral sequences E∗,∗
∗ (s) of the fi-

brations Fs → Es → Bs. Let α ∈ E0,1
2 (s) = H0(Bs; H1Fs) = (H1Fs)Gs and let

us consider dα ∈ H2Bs. Since {H2Bs} → {H2Es} is a pro-monomorphism, if we
take s large enough we can assume dα = 0. Hence, α represents an element in
H1Es not in the image of H1Bs. Since {H1Bs} → {H1Es} is a pro-epimorphism,
again if we take s large enough we see that α = 0.

Thus, we have seen that for any s there is h such that

(H1Fs)Gs → (H1Fs+h)Gs+h

is trivial. We finish now with a lemma:

Lemma 4. Let {Vi} be an ascending tower of Fp-vector spaces. Let {Gi} be a
descending tower of finite p-groups. Assume that each Vi is a Gi-module and that
the obvious coherence condition is satisfied. Then, if the tower of invariants {V Gi

i }
is pro-trivial then the tower {Vi} is also pro-trivial.

Proof. Recall that when a finite p-group G acts on an Fp-vector space V , then there
is a finite filtration of V by G-submodules, 0 = V (0) ⊂ V (1) ⊂ · · · ⊂ V (k) = V
such that G acts trivially on each quotient V (i)/V (i−1).

In our case, we want to prove that for any s there is N such that Vs → Vs+N

is the trivial map. We find N by induction along the filtration of Vs. Assume
we have found h such that all elements of V

(i)
s die in Vs+h. By hypothesis, all

elements in (Vs+h)Gs+h die in some Vs+h+k. Since V
(i+1)
s → Vs+h factors through

V
(i+1)
s /V

(i)
s , it factors also through (Vs+h)Gs+h and so V

(i+1)
s → Vs+h+k is trivial

and the induction goes on.

(3) The tower {HiFs} is pro-constant for any i.
This statement is the point where the finiteness assumption is needed. To

prove that the tower {HiFs} is pro-constant it is enough to show that lim←−HiFs

is finite. This is proven using the Serre spectral sequence or the Eilenberg-Moore
spectral sequence, depending on which finiteness condition we assume.

If lim←−Gs is a finite p-group then we use the (homology) Serre spectral se-
quence in the following way. The fibrations Fs → Es → Bs produce an inverse
system of Serre spectral sequences of finite dimensional Fp-vector spaces

H∗(Bs; H∗Fs) =⇒ H∗Es.
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Since lim←− is exact in this context, we get a spectral sequence

lim←−H∗(Bs; H∗Fs) =⇒ lim←−H∗Es.

By hypothesis, this spectral sequence converges to a graded Fp-vector space of
finite type. Let us investigate the E2-term. First of all, we have an isomorphism
(use the spectral sequences of theorem 4.4 in [14])

H∗(lim←−Gs; lim←−H∗Fs) ∼= lim←−H∗(lim←−Gs; H∗Fs).

Now, HiFs is a lim←−Gs-module via lim←−Gs → Gs and Gs is a finite p-group. Hence,
HiFs has a finite filtration whose factors have trivial lim←−Gs-action. By the T -
representability hypothesis, H∗(lim←−Gs;N) ∼= lim←−H∗(Gs;N) if N is a trivial FpGs-
module. Then, by induction along the filtration of HiFs and using the exactness
of lim←− on finite Fp-vector spaces, we get isomorphisms

lim←−H∗(lim←−Gs;H∗(Fs)) ∼= lim←−
r

lim←−
s

H∗(Gs; H∗Fr) ∼= lim←−
s

H∗(Gs; H∗Fs).

Hence, we have an spectral sequence starting at H∗(lim←−Gs; lim←−H∗(Fs)) and con-
verging to something of finite type. By hypothesis, lim←−Gs is a finite p-group. Then,
we can show inductively that lim←−H∗(Fs) is of finite type, using the following easy
lemma:

Lemma 5. If G is a finite p-group and M is an FpG-module such that H0(G; M)
is finite, then M is finite.

Proof. Let I be the augmentation ideal of FpG. Since G is a finite p-group, it is
well known that In = 0 for some n and so it suffices to prove inductively that
IrM/Ir+1M is finite. M/IM = H0(G; M) is finite by hypothesis. The homology
exact sequence

H1(G; IrM/Ir+1M) → H0(G; Ir+1M) → H0(G; IrM)

yields the inductive step.

If the finiteness condition 2 (involving Tor) is assumed then we use the coho-
mology Eilenberg-Moore spectral sequence. It converges strongly by [11] because
the fundamental group of the base space is Gs, a finite p-group, thus acting nilpo-
tently on the mod p cohomology of the fibre. In the limit, the exactness of lim−→
produces a spectral sequence

Tor∗,∗lim−→H∗(Gs)(lim−→H∗Es,Fp) =⇒ lim−→H∗Fs.

The assumption on Tor implies that lim−→H∗Fs is of finite type.

(4) holim Fs is p-complete, simply connected, and H∗(holim Fs) ∼= lim←−H∗Fs.
This is proved as follows. For a space X let us denote by {RsX} the Bousfield-

Kan Fp-tower of X ([7]). Each RsFs is Fp-nilpotent, and therefore the coaugmen-
tation of Rs induces a weak pro-homotopy equivalence {RsFs} → {RsRsFs}.
Hence, also the map {RsFs} → {RsRsFs} obtained by applying the functor Rs to
φ : Fs → RsFs is a weak pro-homotopy equivalence and then, the map of towers
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{Fs} → {RsFs} induces pro-isomorphisms {Hi(Fs)} ∼= {Hi(RsFs)} for all i (see
[7], III.6.6). Now the tower of fibrations of Fp-nilpotent spaces {RsFs} satisfies the
hypothesis of lemma 9.3 in [5]. We can conclude that holim RsFs is p-complete and
simply connected and there are pro-isomorphisms {Hi(holim RsFs)}∼={Hi(RsFs)}
for all i. Since each Fs is p-complete, holim RsFs = holim Fs. We deduce that there
are pro-isomorphisms {Hi(holim Fs)} ∼= {Hi(Fs)} for all i and the claim follows.

(5) Final step.
Consider the inverse system of fibrations {Fs → Es → Bs}. For simplicity,

let us denote E∞ = holim Es, F∞ = holimFs. Since the homotopy fibre of a map
is a particular kind of homotopy limit, we have a fibration F∞ → E∞ → B∞.

As discussed above, the fibrations Fs → Es → Bs produce an inverse system
of Serre spectral sequences of finite Fp-vector spaces

H∗(Bs; H∗Fs) =⇒ H∗Es

and a limit spectral sequence

lim←−H∗(Bs; H∗Fs) =⇒ lim←−H∗Es.

Let us analyze the E2-term of this second spectral sequence. He have seen that
the tower {H∗F∞} is pro-isomorphic to the tower {H∗Fs}. Notice now that it is
easy to show that a homomorphism of towers is a pro-isomorphism if and only if it
is a pro-isomorphism of pointed sets. We mean that {H∗F∞} and {H∗Fs} are also
pro-isomorphic as towers of FpG∞-modules. Hence, the towers {H∗(B∞; H∗F∞)}
and {H∗(B∞; H∗Fs)} are pro-isomorphic too and this implies that

H∗(B∞;H∗F∞) ∼= lim←−H∗(B∞; H∗Fs).

Now, the same argument as in step 3 of the proof shows that

lim←−H∗(B∞;H∗Fs) ∼= lim←−H∗(Bs; H∗Fs)

and the proof of the theorem is complete.

4. Examples I

In this section and in the next one we want to show how we can obtain T -
representability for cohomology algebras, assuming some low dimensional condi-
tions on Tf (H∗(X)). As we have already pointed out, if we assume that TfH∗(X)
is free in degrees ≤ 2 then we have T -representability in a trivial way, by a con-
stant tower BW where W is an Fp-vector space, and we want to deal now with a
more general situation.

Given two algebras over the Steenrod algebra A and B, we will say that
a K-map f : B → A is an n-equivalence if it is bijective in degrees r < n and
injective in degree n. A sequence of connected algebras over the Steenrod algebra
C → B → A is called an n-approximation of A if the composition is trivial in
positive degrees and induces an n-equivalence B//C → A. T -representability will
be seen to be related to n-approximations for small values of n.
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If A is a finite type connected unstable algebra over the Steenrod algebra,
we can obtain a 2-approximation of A in the following way. Let W1 be the Fp-
vector space dual to A1. The Fp-linear map W ∗

1 → A extends to a K-algebra
homomorphism

ϕ : U(W ∗
1 ) → A,

where U is Steenrod’s free unstable algebra functor. Let now Q2 be the Fp-
vector space dual to the kernel of ϕ in degree 2. Then, we have a canonical 2-
approximation

U(Q∗2)
ψ- U(W ∗

1 )
ϕ- A .

This 2-approximation produces a central extension of finite p-groups in the follow-
ing way. Let H2(W1) → Q2 be dual to the inclusion Q∗2 ⊂ U2(W ∗

1 ) ∼= H2(W1).
This defines an element ω ∈ H2(W1;Q2) and therefore a central extension of finite
p-groups

(1) 1 - Q2
i- P

π- W1
- 1 .

Then, one can check by a spectral sequence argument that π induces a 2-approxi-
mation

(2) U(Q∗2)
ψ- U(W ∗

1 )
Bπ∗- H∗(P ) .

Notice that this 2-approximation depends only on the structure of the initial al-
gebra A in degrees one and two.

As always throughout this paper, let X be a connected space of finite Fp-type
with H1(X) = 0 and let f : BV → X be a map. Assume that Tf (H∗(X)) is of finite
type and let us perform the above construction starting with A = Tf (H∗(X)). We
obtain a 2-approximation like (2).

Theorem 6. If the 2-approximation (2) associated to Tf (H∗X) is a 3-approxima-
tion, then f is finitely T -representable.

Hence the question of finite T -representability is essentially reduced to one
about group cohomology. Notice also that if Tf (H∗(X)) is free in degrees ≤ 2 then
this theorem applies trivially (Q∗2 = 0) and so this theorem generalizes Lannes’
criterion.

Proof of Theorem 6. The idea here is to prove that the constant tower {BP} can
be used to prove T -representability. Let {Es} be the tower of fibrations with Es =
Map(BV, PsX

∧
p )fs as in section 2. It provides in mod p cohomology a direct system

{H∗(Es)} with limit Tf (H∗(X)). On the other side, we have the canonical 2-
approximation

U(Q∗
2)

ψ- U(W ∗
1 )

ϕ- Tf (H∗(X)).
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Then, for some large index s, there is a factorisation
U(W ∗

1 )//U(Q∗2)

@@@
ϕ̂

R
H∗(Es)

ĝ∗s
?

js

- Tf (H∗(X))

where g∗s : U(W ∗
1 ) → H∗(Es) is induced by a map gs : Es → BW1 which should

lift to BP . Hence, we have a diagram
H∗(BP )

¡¡¡Bπ∗ µ @@@
ḡ∗s

R

HHHHHHH

ḡ∗

j
U(W ∗

1 )//U(Q∗
2) ĝ∗s

- H∗(Es)
js

- Tf (H∗(X))

where we defined ḡ∗ = js ◦ ḡ∗s . Bπ∗ is a 3-equivalence by hypothesis and therefore
ḡ∗ : H∗(BP ) → Tf (H∗(X)) is a 2-equivalence. It follows that the obvious map of
towers {Es} → {BP} induces a pro-isomorphism in H1 and a pro-epimorphism in
H2 and so f : BV → X is T -representable.

The question is now to decide when the sequence

(3) U(Q∗2)
ψ- U(W ∗

1 )
π∗- H∗(P )

associated to a group extension Q2 ½ P ³ W1 is a 3-approximation. This question
can be investigated by means of the Serre spectral sequence of the extension. The
first differential d2 : E0,1

2 → E2,0
2 is identified with the map ψ in (3) in degree 2.

The next differential d3 : E0,2
3 → E3,0

3 is the transgression

τ : βQ∗
2

- U3(W ∗
1 )

/
W ∗

1 ·Q∗2
that satisfies τ(βq) = β(ψ(q)) modulo Im ψ.

We thus have Fp-vector spaces isomorphisms E1,0
∞ ∼= W ∗

1
∼= H1(P ), and

E2,0
∞ ∼= U2(W ∗

1 )/Q∗
2 ⊂ H2(P ), with complement isomorphic to E1,1

∞ ⊕ E0,2
∞ ; and

furthermore, there are exact sequences

0 - E1,1
∞ - W ∗

1 ⊗Q∗2
m- U3(W ∗

1 ) - U3(W ∗
1 )/W ∗

1 ·Q∗
2

- 0

0 - E0,2
∞ - βQ∗

2

τ- U3(W ∗
1 )/W ∗

1 ·Q∗2 - E3,0
∞ ⊂ H3(P ),

where m is given by multiplication in U(W ∗
1 ): m(ω ⊗ q) = ω · ψ(q).

It follows that the necessary and sufficient condition for (3) to be a 3-
approximation is that m and τ are injective. If p = 2, then m is always injec-
tive because U(W ∗

1 ) does not contain zero divisors but for an odd p this is not
necessarily so. We have thus proved

Proposition 7. (3) is a 3-equivalence if and only if either p = 2 and the trans-
gression map τ : Sq1Q∗

2 → U3(W ∗
1 )

/
W ∗

1 · Q∗2 is injective; or p is odd and both
the transgression τ : βQ∗

2 → U3(W ∗
1 )

/
W ∗

1 · Q∗2 and m : Q∗2 ⊗W ∗
1 → U3(W ∗

1 ) are
injective.
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We will now look more closely at the particular case in which Q∗2 is 1-
dimensional generated by a quadratic form q ∈ H2(W1). In this case the extension
Z/p ½ P ³ W1 is an extraspecial group and the cohomology of these groups
has been largely studied. The mod 2 cohomology of extraspecial 2-groups was de-
scribed by Quillen ([19]). At odd primes our knowledge is not complete. Diethelm
([9]) and Leary ([16]) computed the mod p cohomology of extraspecial groups or
order p3. A general reference is a beautiful paper by Benson and Carlson [4].

For p = 2, if n is the dimension of W ∗
1 and h is the codimension of a maximal

isotropic subspace of q in W ∗
1 , we have

H∗(P ;F2) ∼= P [x1, x2, . . . , xn]/(qo, q1, ..., qh−1)⊗ P [ζ]

where xi are all of degree 1, q0 = q has degree 2, qi+1 = Sq2i

qi, and deg ζ = 2h.

Corollary 8. Assume that p = 2 and Tf (H∗(X)) has a 2-approximation

U(Q∗
2)

ψ- U(W ∗
1 )

ϕ- Tf (H∗(X))

where Q∗2 is generated by a single quadratic form q ∈ U2(W ∗
1 ) with the property

that a maximal isotropic subspace of q has codimension h ≥ 2. Then f : BV → X
is finitely T -representable.

Example 9. If p = 2 and Tf (H∗(X)) has two generators x, y in degree one which
satisfy a single relation q in degree 2, there are three possible cases: q = x2,
q = xy or q = x2 + xy + y2. In the first two cases, the codimension of a maximal
isotropic subspace is 1 and Corollary 8 does not apply. Here the group P is either
Z/4Z× Z/2Z or the dihedral group of 8 elements. Those cases will be considered
in next section. In the case in which q = x2 + xy + y2, P is the quaternion group
of order 8, h = 2 and Corollary 8 applies.

If p is odd, q ∈ H2(W1) is not really a quadratic form. We have

H2(W1;Fp) ∼= Λ2(W ∗
1 )⊗ βW ∗

1 ,

thus q can be written as q = s + λ, where s ∈ Λ2(E∗
1 ) is a symplectic form and

λ ∈ βW ∗
1 a linear form.

Corollary 10. Assume that p is odd and Tf (H∗(X)) has a 2-approximation

U(Q∗
2)

ψ- U(W ∗
1 )

ϕ- Tf (H∗(X))

where Q∗
2 is generated by a single form q = s + λ ∈ U2(W ∗

1 ). Then, if both s and
λ are non-trivial, f : BV → X is finitely T -representable.

Proof. Let Z/p ½ P ³ W1 be the extension classified by q = s + λ. If we write
H∗(Z/p) ∼= P [z] ⊗ Λ(t), the differential d2 in the Serre spectral sequence of the
extension hits que extension class d2(t) = q. If λ 6= 0, then q is not a zero divisor
and E∗,1

3 = 0. The next differential is d3(z) = β(q) = β(s), and if s 6= 0, then it
is not divisible by λ. Hence d3(z) 6= 0 in E∗,∗

3 and z does not survive to E∗,∗
∞ . It

follows that
U(E∗

1 )//U(Q∗
2) - H∗(P ;Fp)
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is a 3-equivalence.

Example 11. If p is odd and Tf (H∗(X)) has two 1-dimensional generators y1, y2,
that satisfy a single relation q ∈ 〈y1y2, x1, x2〉, where we write xi = βyi, then there
are three possibilities.

1. If q = x1 then P ∼= Z/p2 × Z/p and Corollary 10 does not apply.
2. If q = y1y2 then P is the non-abelian group of order p3 and exponent p.

Its mod p cohomology is described in [16]. Again Corollary 10 does not
apply.

3. If q = y1y2 + x1 then P is now a non-abelian split metacyclic group of
order p3. The cohomology ring was computed in [9]. Now, Corollary 10
applies.

5. Examples II: Systems of p-groups with fixed low dimensional
cohomology

This section is devoted to a further investigation of cases in which Theorem 6 does
not apply. That is, cases in which the 2-approximation of Tf (H∗(X)) determines
an extension Q2 → P → W1 for which U(W ∗

1 )//U(Q∗2) → H∗(P ;Fp) is not a
3-equivalence (cf. Example 9 for q = x2, xy).

Fix the algebra L = U(W ∗
1 )//U(Q∗

2). As a first step we attach to L a system
of finite p-groups, or, more precisely, a system of isomorphism classes of finite
p-groups:

C(L) =
{

P finite p-group
∣∣ there is a 2-equivalence ρ : L → H∗(P )

}

where we just write P for the isomorphism class that it represents. C(L) is a poset
with the relation P l P ′ if there is an epimorphism π : P ′ ³ P . It is useful to
observe that this epimorphism induces a commutative diagram in cohomology

L

ª¡¡¡ρ1 @@@
ρ2

R
H∗(P )

π∗
- H∗(P ′)

where ρ1 and ρ2 are 2-equivalences. In fact, if K is the kernel of π, we have an
exact sequence 0 → H1(P ) → H1(P ′) → H1(K)P , so that π∗ is a monomorphism
in degree 1, but H1(P ) and H1(P ′) have the same finite dimension. This shows
the commutativity of the diagram in degree 1. In degree 2 the commutativity of
the diagram follows because L is generated by degree one elements.

Now we state some properties of the system C(L).

(A) If P ∈ C(L) and 1 → V → P ′ → P → 1 is a central extension, with V
elementary abelian p-group, determined by an inclusion V ∗ ⊂ H2(P ), then,
P ′ ∈ C(L) if and only if V ∗ ∩ ρ(L2) = {0}.
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(B) A relation P lP ′ can be refined to a chain P = P1lP2lP3l · · ·lPr = P ′

in C(L) such that, for each k there is a central extension 1 → Vk → Pk →
Pk−1 → 1, with Vk elementary abelian p-group.

(C) There is an initial element. Namely, the extension given by the 2-approxi-
mation U(Q∗

2) → U(W ∗
1 ) → L.

(D) An element P in C(L) is maximal if and only if the 2-equivalence ρ : L →
H∗(P ) is actually an isomorphism in degree 2.
We will say that a system C(L) is of finite type if for any infinite chain

Pλ1 l Pλ2 l · · ·l Pλs
l · · ·

the mod p cohomology of the p pro-finite group Pλ∞ = lim←−Pλs
is of finite type

and H∗(Pλ∞) ∼= lim−→H∗(Pλs
).

Before providing some examples of system of p-groups we show how to prove
the above properties. For (A), we use the Serre spectral sequence for the extension
1 → V → P ′ → P → 1. In low dimensions it provides an exact sequence

(4) 0 → H1(P ) → H1(P ′) → H1(V ) d2−→ H2(P ) → H2(P ′) .

But the differential d2 is given by the extension class, so, in our case it is identified
with the inclusion V ∗ ⊂ H2(P ) and the exact sequence breaks to an isomorphism
H1(P ) ∼= H1(P ′) and a monomorphism H2(P )/V ∗ ½ H2(P ′). The composition
L

ρ−→ H∗(P ) → H∗(P ′) in degree 2 factors through this monomorphism and this
proves the statement.

For (B) we start with an epimorphism P ′ ³ P . If it is an isomorphism we are
done, otherwise, let K be the kernel. Using the action of P ′ on K by conjugation
we can find an elementary abelian subgroup of K, V , which is central in P ′,
and then we can form the factorization P ′ ³ P ′/V ³ P , and repeat the same
argument inductively until we obtain a sequence of epimorphisms P ′ = Pr ³
Pr−1 ³ · · · ³ P2 ³ P1 = P where each step is a central extension. We can
compose the restrictions with the 2-equivalence ρ : L → H∗(P ) and get a diagram

L

@@@R
. . .

PPPPPPPPPPP

ρ′

q
H∗(P1)

ρ
?

- H∗(P2) - · · · - H∗(Pr) .

In degree one ρ and ρ′ are isomorphisms, while the exact sequence (4) applies
to each step Vk ½ Pk ³ Pk−1 and then the morphisms in the bottom row
are all monomorphisms, hence isomorphisms. In degree two (4) now implies that
H2(Pk−1) → H2(Pk) factors as H2(Pk−1) ³ H2(Pk−1)/V ∗

k ½ H2(Pk) and
since both ρ and ρ′ are injective in degree two, it follows that at each step
V ∗

k ∩ ρk(L2) = {0} and then property (A) applies and Pk ∈ C(L).
We will now show that the central extension Q2 → P → W1 determined

by L = U(W ∗
1 )//U(Q∗2) is an initial object in C(L), thus proving property (C).

Assume that P ′ ∈ C(L). The 2-equivalence ρ : L → H∗(P ′) gives W ∗
1
∼= H1(P ′),

and then it gives an epimorphism P ′ ³ W1
∼= H1(P ′). Let K be the kernel.
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The Serre spectral sequence for the extension 1 → K → P ′ → W1 → 1 gives an
exact sequence 0 → H1(K)W1

d2−→ H2(W1) → H2(P ′). The last homomorphism
factors through L in degree 2 H2(W1) ³ L2 ½ H2(P ′) and so, therefore, Q∗2 ∼=
H1(K)W1 ⊂ H1(K). The dual of this inclusion provides an epimorphism K ³ Q2

and a map of extensions

0 - K - P ′ - W1
- 0

0 - Q2

?
- P

?
- W1

wwwww
- 0

where the middle vertical homomorphism will also be an epimorphism, thus prov-
ing P l P ′.

Finally we prove (D). Assume first that ρ(L2) ∼= H2(P ) and that P ′ is another
group in C(L) with P l P ′. According to (B) there is another group P ′′ ∈ C(L)
and a central extension V → P ′′ → P . This extension is classified by an inclusion
V ∗ ⊂ H2(P ), that according to (A) satisfies V ∗ ∩ ρ(L2) = 0. But this can only be
true if V = 0, that is P ′′ ∼= P and then, also, P ′ ∼= P .

Conversely, if ρ(L2) � H2(P ) there is a non trivial complement V ∗ of ρ(L2)
in H2(P ), defining a central extension V → P ′ → P with P ′ ∈ C(L), by (A), so
that P l P ′ with P � P ′ and P is not maximal in C(L).

Example 12 (The cyclic system). We call cyclic system to the system The system
attached to Λ(x), a single exterior generator of degree 1, is called the cyclic system.
Clearly, C(Λ(x)) consists of an infinite chain of cyclic groups Pi

∼= Z/pi+1 with
limit P∞ ∼= Ẑp. so, this is a system of finite type.

Example 13 (The dihedral system). The system attached to P [x, y]/(x2 + xy) at
the prime 2 is called the dihedral system. This system consists of dihedral, gener-
alized quaternion and semidihedral 2-groups. The respective cohomology rings are
described in [12, 13] (see also [20]). For dihedral groups, n ≥ 1,

H∗(D2n+2) ∼= P [x, y, w]/(x2 + xy)

with x and y of degree 1 and w of degree 2. Clearly, ρn : P [x, y]/(x2 + xy) →
H∗(D2n+2) is a 2-equivalence and has codimension 1 in degree 2. A possible com-
plement q for Im ρn in degree 2 is either w, w + y2, w + x2 or w + x2 + y2, and
the respective central extensions are either the dihedral group D2n+3 , for q = w,
or equivalently for q = w + x2 + y2, the generalized quaternion group Q2n+3 , for
q = w + y2, that gives the cohomology ring

H∗(Q2n+3) ∼= P [x, y, v]/(x2 + xy, y3)

where deg v = 4, or the semidihedral group SD2n+3 , for q = w + x2, with coho-
mology ring

H∗(SD2n+3) ∼= P [x, y, u, t]/(x2 + xy, xu, x3, u2 + (x2 + y2)t)

where deg u = 3 and deg t = 4.
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Since the given maps

ρ′n+1 : P [x, y]/(x2 + xy) → H∗(Q2n+3)

or
ρ′′n+1 : P [x, y]/(x2 + xy) → H∗(SD2n+3)

are 3-equivalences, the generalized quaternion groups and the semidihedral groups
are maximal elements in the system.

Therefore, we have only one infinite chain in the system. The one consisting
of the dihedral groups

· · · - BD2i+2
Bπi+1- BD2i+1

Bπi- · · · Bπ3- BD8.

Notice that the group D2n is a semidirect product Z/2n−1 o Z/2. We see that
lim←−D2n = Ẑp o Z/2 with action given by sign change. Let D∞ be the infinite
dihedral group D∞ = Z o Z/2 ∼= Z/2 ∗ Z/2. Notice now that the fibration BZ→
BD∞ → BZ/2 is homologically nilpotent. This implies that lim←−D2n is the p-
completion of D∞ and that BD∞ is Fp-good. Hence

H∗(lim←−D2n) ∼= H∗((BD∞)∧p ) ∼= H∗(BD∞) ∼= F2[u, v]/u2 + uv ∼= lim−→H∗(D2n).

So, C(P [x, y]/(x2 + xy)
)

is a system of finite type.

We indicate one last example. The system associated to the remaining case
of Example 9; that is L = P [x, y]/(x2) for p = 2. It is worth mentioning that,
although L splits L ∼= Λ[x]⊗P [y], the system is not only composed of products of
cyclic groups.

Example 14 (The system of L = P [x, y]/(x2) at the prime 2). For L = P [x, y]/(x2),
p = 2, the system C(L) consists of the groups Z/2n × Z/2, with

H∗(Z/2n × Z/2) ∼= P [x, y, v]/(x2) ; deg v = 2

and the non-abelian metacyclic groups M2n+2 , n ≥ 2, defined as the central ex-
tension

Z/2 → M2n+2 → Z/2n × Z/2

classified by the extension class v +xy ∈ H2(Z/2n×Z/2;Z/2). Their cohomology,
as computed by Rusin [20, Lemma 10] is

H∗(M2n+2) ∼= P [x, y, z, t]/(x2, xy2, xz, z2) ; deg(z) = 3, deg(t) = 4 .

In particular these are maximal elements in the system. Then, the possible infinite
chains are chains of products of finite cyclic 2-groups and Z/2. The limit of such
chains is Ẑ2 × Z/2, and therefore the system is of finite type.

Assume that we have a space X of finite Fp-type with H1(X) = 0 and a
map f : BV → X. If Tf (H∗(X)) is of finite type, then we have a 2-approximation
U(Q∗2) → U(W ∗

1 ) → Tf (H∗(X)). Write L = U(W ∗
1 )//U(Q∗2), and let C(L) the

associated system of finite p-groups.
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Lemma 15. There is a chain of groups in C(L), P1 lP2 l · · ·lPi · · · , and a map
of towers

g : {Es(i)} - {BPi}
such that

1. For each i, gi : Es(i) → BPi induces a commutative diagram

L
HHHHHHH

ϕ

j
H∗(Pi)

ρi

?

g∗i
- H∗(Es(i)) jsi

- Tf (H∗(X))

where ρi : L → H∗(Pi) is a 2-equivalence.
2. For each i, the epimorphism πi : Pi+1 ³ Pi satisfies π∗i (ker(jsi

◦ g∗i )) = 0.

Proof. We construct the tower {BPi} and maps gi : Es(i) → BPi inductively,
starting at g1 : Es(1) → BP1, where P1 is the initial object of C(L) and g1 is
constructed like in the proof of Theorem 6.

Assume now that gi : Es(i) → BPi has been constructed. Denote V ∗
i+1 =

ker(jsi ◦ g∗i ) ⊂ H2(BPi). Since ρi and ϕ are 2-equivalences, V ∗
i+1 ∩ ρi(L2) = 0.

Then, if we define Pi+1 by the central extension Vi+1 → Pi+1
πi−→ Pi classified

by the inclusion V ∗
i+1 ⊂ H2(BPi), Pi+1 belongs to the system C(L) by the prop-

erty (A). Furthermore, there is a larger index s(i + 1) such that the composition
V ∗

i+1 ⊂ H2(BPi) → H2(Es(i)) → H2(Es(i+1)) is trivial, so that there is a lifting
gi+1 : Es(i+1) → BPi+1

Es(i+1)
gi+1- BPi+1

Es(i)

?
gi- BPi

Bπi

?
- K(Vi+1, 2)

and, by construction, π∗i (ker(jsi ◦ g∗i )) = π∗i (V ∗
i+1) = 0.

Theorem 16. Let X be a space of finite Fp-type such that H1(X;Fp) = 0 and
f : BV → X a map. Assume that

(5) U(Q∗2)
ψ- U(W ∗

1 )
ϕ- Tf (H∗(X;Fp))

is a 2-approximation of Tf (H∗(X;Fp)) and L = U(W ∗
1 )//U(Q∗

2). If the system
C(L) is of finite type, then f : BV → X is T -representable.

Proof. According to Lemma 15 we can build a tower {BPi}, with Pi ∈ C(L) and
a map g : {Es(i)} → {BPi}.

Eventually, the tower {BPi} might become constant. This would happen at a
stage gi : Es(i) → BPi where V ∗

i+1 = ker(jsi ◦ g∗i ) = 0 (see the proof of Lemma 15);
that is, jsi ◦ g∗i : H∗(Pi) → Tf (H∗(X)) is a 2-equivalence.

Otherwise we obtain an infinite chain P1lP2l· · ·lPil· · · in C(L). We have
assumed that the system C(L) is of finite type, hence, if we write P∞ = lim←−Pi,
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then H∗(P∞) = lim−→H∗(Pi), and this is an Fp-algebra of finite type. Furthermore
we obtain an induced map

H∗(P∞) → Tf (H∗(X))

which will be an isomorphism in degree one. Also condition (2) of the tower {BPi}
stated in Lemma 15 implies that this is injective, hence a 2-equivalence.

So, in either case, the map of towers g : {Es(i)} → {BPi} is a T -representation
for f : BV → X.

Remark 17. Notice that our conditions for a finite type system of p-groups C(L)
includes already the fact that the pro-finite groups P∞ obtained as limits of infinite
chains in C(L) has finite type mod p-cohomology, so the only remaining condition
fot showing that f : BV → X is finitely T -representable is the Tor condition.
The counterexamples in the last section will show that this condition cannot be
removed.

Remark 18. The cases analyzed in section 4 correspond to the situation in which
a system C(L) consists of a single element. Fix an algebra L = U(W1∗)//U(Q∗2)
and let P be the initial object of the system C(L); that is, P is the extension
1 → Q2 → P → W1 → 1 determined by the homomorphism U(Q∗

2) → U(W ∗
1 ).

If the induced homomorphism ρ : L → H∗(P ) is a 3-equivalence, then P is also a
maximal element of C(L), thus P is the only element in C(L).

Corollary 19. Let X be a space of finite Fp-type such that H1(X) = 0 and f : BV →
X a map. If there is a 2-equivalence Λ(x) → Tf (H∗(X)), where deg x = 1, then
f : BV → X is T -representable.

This is the special case of T -representability that was studied in [1]

Corollary 20. Let X be a space of finite Fp-type such that H1(X) = 0 and f : BV →
X a map. If there is a 2-equivalence P [x, y]/(x2+xy) → Tf (H∗(X)), where deg x =
deg y = 1, then f : BV → X is T -representable.

The situation encountered in this corollary is significant in the investigation
of the homotopy type of the classifying spaces of rank two Kac-Moody groups ([2],
[3]).

Corollary 21. Let X be a space of finite Fp-type such that H1(X) = 0 and f : BV →
X a map. If there is a 2-equivalence P [x, y]/(x2) → Tf (H∗(X)), where deg x =
deg y = 1, then f : BV → X is T -representable.

Remark 22. As a final remark, let us note that all our above calculations assume
only very little knowledge of the structure of TfH∗X. This has the advantage
that this structure can be recognized very easily. However, in many applications
a richer structure can be successfully applied. These include the algebra structure
in higher degrees, and also Steenrod operations in low degrees. A very impor-
tant tool in many cases might be the Bockstein spectral sequence. This makes
sense, since TfH∗X inherits a Bockstein spectral sequence from the isomorphism
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TfH∗X ∼= lim−→H∗(Es). If we have information about the higher Bockstein opera-
tions in TfH∗X we can obtain finite T -representability in cases where the funda-
mental group of the mapping space Map(BV, X∧

p )f is a finite abelian p-group, not
necessarily elementary abelian.

6. A Counterexample

In this section we show a family of examples in which a particular component of
a mapping space with source BZ/p and target a 1-connected p-complete space of
finite Fp-type is not p-good, hence T does not compute its cohomology.

The idea is simple. Choose a space X which is 1-connected and of finite Fp-
type, a non trivial map f : BZ/p → X, and a finite complex B which is p-bad. The
space W = X ∧B+ will also be 1-connected and of finite Fp-type, however for the
composition w : BZ/p → X → W , the mapping space Map(BZ/p,W∧

p )w is likely
to be p-bad. We will work out the particular case X = CP∞, f : BZ/p → CP∞ a
non trivial map, and B = S1 ∨ Sm.

Define Y = CP∞×(S1∨Sm), and W as the homotopy cofibre of S1∨Sm → Y ;
that is W = CP∞ ∧ (S1 ∨ Sm)+. We can easily obtain the mod p cohomology
algebras of these spaces. We choose an odd prime p, although similar considerations
can be made for p = 2:

H∗(Y ) ∼= P [e]⊗ Λ[a, b]/(ab) , deg e = 2, deg a = 1, deg b = m

H∗(W ) ∼= P [e]⊗ Λ[x, y]/(xy) , deg x = 3 , deg y = m + 2 .

Moreover, the map g : Y → W , from Y to the homotopy cofibre, induces in coho-
mology g∗(e) = e, g∗(x) = ea, and g∗(y) = eb. It follows that P1x = xep−1 and
P1y = yep−1. Notice that W is 1-connected of finite Fp-type.

The map BZ/p×CP∞ → CP∞ induced by the multiplication Z/p×S1 → S1,
extends to a map

µ : BZ/p× CP∞ × (S1 ∨ Sm) −→ CP∞ × (S1 ∨ Sm) −→ CP∞ ∧ (S1 ∨ Sm)+ ;

that is, µ : BZ/p × Y → W . If we write H∗(BZ/p) = Λ[u] ⊗ P [v], the map in
cohomology induced by µ is µ∗ : H∗(W ) → H∗(BZ/p) ⊗ H∗(Y ), determined by
µ∗(e) = v ⊗ 1 + 1⊗ e, µ∗(x) = 1⊗ ae, and µ∗(y) = 1⊗ be.

Lemma 23. Let w : BZ/p → W the restriction of µ to BZ/p at the base point of
Y . The adjoint of µ∗ is an isomorphism µ̃∗ : Tw(H∗(W )) → H∗(Y ).

Proof. We sketch the proof. It follows the methods of [1, §3]. H∗(W ) fits in an exact
sequence of unstable H∗(W )-U-modules that can also be seen as P [e]-U-modules

0 −→ xP [e]⊗ yP [e] −→ H∗(W ) −→ P [e] −→ 0 .

Since xP [e] ∼= yP [e] ∼= ΣeP [e] as unstable P [e]-U-modules, where Σ de-
notes the suspension functor, we obtain Tw(xP [e]) ∼= Tw(yP [e]) ∼= ΣTw(eP [e]) ∼=
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ΣP [e] = zP [e], with trivial Steenrod algebra action on z. Hence, there is an exact
sequence

0 −→ aP [e]⊗ bP [e] −→ Tw(H∗(W )) −→ P [e] −→ 0
and the induced homomorphism ε : H∗(W ) → Tw(H∗(W )) maps ε(e) = e, ε(x) =

ae, and ε(y) = be. Since the composition H∗(W ) ε−→ Tw(H∗(W ))
µ̃∗−→ H∗(Y )

should coincide with g∗, it turns out that µ̃∗ : Tw(H∗(W )) → H∗(Y ) is an isomor-
phism.

Corollary 24. µ induces a homotopy equivalence Y ∧
p

'−→ Map(BZ/p,W∧
p )w.

Proof. It follows directly from Lemma 23 above and [15, 3.3.2].

According to [6], S1 ∨ Sm is Fp-bad, hence, so is Y = CP∞ × (S1 ∨ Sm).
More precisely, Bousfield shows that, for m ≥ 2, H2m((S1∨Sm)∧p ) is uncountable,
and this implies that H2m(Y ∧

p ) is uncountable, as well. Also, in the case m = 1,
either H2((S1 ∨ S1)∧p ) or H3((S1 ∨ S1)∧p ) is uncountable, and the same will be
true for H∗(Y ∧

p ). This means that, definitely, Tw(H∗(W )) is not isomorphic to
H∗(Map(BZ/p,W∧

p )w).
For m = 1, Tw(H∗(W )) is not T -representable. Λ[a, b]/(ab) → Tw(H∗(W ))

is a 2-approximation, but the possible towers of groups {Gs} associated to this
2-approximation would give G∞ = lim←−Gs = (Z∗Z)∧p , the p-profinite completion of
Z∗Z, which is the fundamental group of (S1∨S1)∧p , but in this case lim−→H∗(Gs) 6=
H∗(G∞).

For m ≥ 2, Tw(H∗(W )) is T -representable according to Example 12, but it is
not finitely T -representable because Tor∗,∗Λ(a)(Tw(H∗(W )),Fp) is not finite dimen-
sional in each total degree. We can decompose

Tw(H∗(W )) ∼= P [e]⊗ Λ[a, b]/(ab) ∼= (P [e]⊗ Λ[a])⊕ bP [e]

as Λ[a]-modules, and then

Tor∗,∗Λ(a)

(
Tw(H∗(W ),Fp

) ∼= Tor∗,∗Λ(a)

(
(P [e]⊗ Λ[a])⊕ bP [e],Fp

)

∼= Tor∗,∗Λ(a)

(
P [e]⊗ Λ[a],Fp

)⊕ Tor∗,∗Λ(a)

(
bP [e],Fp

) ∼= P [e]⊕ (Γ[γ0]⊗ bP [e])

where Γ[γ0] is an algebra of divided powers on a generator of total degree zero,
thus making Tor∗,∗Λ(a)(Tw(H∗(W )),Fp) infinite dimensional in total degree zero.

This last example shows also that the condition on Tor cannot be removed
from the hypothesis of the main theorem.
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