On exotic examples of *p*-local finite groups

Albert Ruiz

Universitat Autònoma de Barcelona

Workshop on Algebraic Topology and Its Applications

Dalian

Introduction

Definition

We say that a p-local finite group $(S, \mathcal{F}, \mathcal{L})$ is exotic if there is no finite group G and an inclusion $S \subset G$ such that S is a Sylow p-subgroup in G and $(S, \mathcal{F}, \mathcal{L}) = (S, \mathcal{F}_S(G), \mathcal{L}_S(G))$.

From Reunis talk:

Furnis!

$$Z_p = Z_p$$
 $Z_p = Z_p$
 $Z_p = Z_p$

Solomon's examples

In the classification of finite simple groups Ron Solomon [8] considered the problem of classifying all finite simple groups whose Sylow 2-subgroups are isomorphic to those of the Conway group Co_3 .

In the process he had to consider groups G where all involutions are conjugated and that for any involution $x \in G$ there are subgroups $K \triangleleft H \triangleleft C_G(x)$ such that $C_G(x)/H$ has odd order and G Solomon showed that such a group G cannot exist: the 2-fusion

Solomon showed that such a group G cannot exist: the 2-fusion was consistent, but when checking the p-fusion of G, for p the odd prime of the characteristic of q, there are incompatibilities.

Solomon, Benson, Levi-Oliver's example

Later on, David Benson constructed in [1] some spaces X which have the properties of the classifying space of the non-existing Solomon's group.

Finally, Ran Levi and Bob Oliver proved in [5] that there were 2-local finite groups BSol(q) with the structure studied by Solomon and with the homotopy type of Benson's spaces.

Broto-Levi-Oliver's examples

In [3] Carles Broto, Ran Levi and Bob Oliver constructed the first exotic examples. The idea was to consider the structure of a nice p-group S, as a Sylow p-subgroup of a nice G and add some morphisms ϕ_i to some subgroups of S in a way that $(S, \langle \mathcal{F}_S(G), \{\phi_i\}_i \rangle)$ keeps being saturated.

$$(\mathbb{Z}_{pe})^{p} \underbrace{\sum_{p} \mathcal{E}_{permultip}^{permultip}}_{(a_{0},-,a_{p})} \underbrace{\sum_{p} \mathcal{E}_{permultip}^{p-1}}_{(a_{0},-,a_{p})} \underbrace{\sum_{p} \mathcal{E}_{permultip}^{p-1}}_{(permultip)} \underbrace{\sum_{p} \mathcal{E}_{permultip}^{p-1}}_{(pe$$

Broto-Levi-Oliver's examples

Exotics?

How can one prove that a given $(S, \mathcal{F}, \mathcal{L})$ is exotic?

In general, there is no answer, but if S and \mathcal{F} are nice, then, if there exists G such that realizes $(S, \mathcal{F}, \mathcal{L})$, then there exists \tilde{G} , a finite almost-simple group such that \tilde{G} realizes $(S, \mathcal{F}, \mathcal{L})$.

"nice" means

S contains no proper strongly closed subgroups and S does not factor as a product of two or more subgroups which are permuted transitively by $Aut_{\mathcal{F}}(S)$.

Strategy

Consider a small p-group S and classify all the saturated fusion systems over S.

Problem

We have to specify $Hom_{\mathcal{F}}(P,Q)$ for all $P,Q \leq S$.

Tool [Puig,BLO]

Theorem (Alperin's thm for sfs)

Let (S, \mathcal{F}) a saturated fusion system. Then for each morphism $\varphi \in Iso_{\mathcal{F}}(P, P')$ in \mathcal{F} , there exist sequences of subgroups of S:

$$P = P_0, \ldots, P_k = P'$$
 and Q_1, \ldots, Q_k

and elements $arphi_i \in \mathsf{Aut}_\mathcal{F}(\mathsf{Q}_i)$ such that

$$f(Q_i) \leq Q_i$$

- **1** Q_i is <u>fully \mathcal{F} -normalized</u>, \mathcal{F} -radical, and \mathcal{F} -centric for each i;
- $P_{i-1}, P_i \leq Q_i$ and $\varphi_i(P_{i-1}) = P_i$ for each i; and

Implications of Alperin's thm

To describe a saturated fusion system (S, \mathcal{F}) we just have to give $Aut_{\mathcal{F}}(P)$ for some $P \leq S$.

F-centre, F-reduced, fully F-numbliked

Example

If S is an abelian group, $(S, \mathcal{F}, \mathcal{L})$ is controlled by $Aut_{\mathcal{F}}(S)$.

P \neq S

P \neq O

Q

(S,F, L) is wntrolled by

the normalizer future system.

S \neq S

If S is a p-quarp s.d. \forall (S,F)

S. \neq S. (S,F) = (S, \bigvee_{s} S) = Swan

respected.

R-Viruel examples [7]

By the previous argument we need S a non-abelian p-group, so the smaller ones are p_{+}^{1+2} and p_{-}^{1+2} resistant group

$$(a,b,c|a^{p}=b^{p}=c^{p}=1, [a,b]=c, [a,c]=[b,c]=1)$$

To give a s.f.s. we need to tell which one the rewheel subspurps, (and centric)

In p_{\perp}^{1+2} , the possible proper \mathcal{F} -centric are the elementary rank two *p*-subgroups, and there are exactly p+1: $V_i = \langle ab^i, c \rangle$ for

$$i=1,\ldots,p-1$$
 and $V_p=\langle b,c\rangle$.

 $P\leq p^{1+2}$ is \mathcal{F} -centric \Rightarrow $\langle c\rangle \subset P$. \leq \mathcal{F}
 $\downarrow V_i$: \mathcal{F} -null ull the properties \mathcal{F} owhere \mathcal{F} over \mathcal{F} to \mathcal{F} the properties \mathcal{F} over \mathcal{F} .

R-Viruel examples (II)

By the saturation hypothesis $p \nmid \# Out_{\mathcal{F}}(p_{+}^{1+2})$. $Out_{\mathcal{F}}(p_{+}^{1+2}) \leq Out(p_{+}^{1+2}) = GL_{2}(p)$.

Main trick

 \longrightarrow If V_i is \mathcal{F} -radical $\iff SL_2(p) \leq Out_{\mathcal{F}}(V_i)$. $\subseteq Gl_2(p)$

This implies $-Id \in Out_{\overline{F}}(V_i)$. Then, we can see that

$$N_{-Id} = p_{+}^{1+2}$$
, so there is a $\phi_i \in Out_{\mathcal{F}}(S)$.

extensión axion

Property

For any $p \ge 17$ and any subgroup $H \le GL_2(p)$ containing more than 2 o; then p #H. we will not have soturated f. s.

R-Viruel examples (III)

So we cannot have more than 2 proper \mathcal{F} -radical subgroups except for $p \in 3, 5, 7, 11, 13$.

How, many V: one \mathcal{F} -radical?

s.f.s. $\sharp \mathcal{F}^{ec}$ -rad > 2 and $p \in \{3,5\}$

Table :
$$p = 3$$
 $S = 3^3$

Out_F
$$(5_{+}^{1+2})$$
 # \mathcal{F}^{ec} -rad Aut_F (V) Group

 $4S_4$ 6 GL₂ (5) Th

Table : p = 5

R-Viruel examples (IV)

s.f.s. $\sharp \mathcal{F}^{ec}$ -rad > 2 and p = 7

$Out_{\mathcal{F}}(7^{1+2}_+)$	$\sharp \mathcal{F}^{ec} ext{-rad}$	$Aut_{\mathcal{F}}(V)$	Group
$S_3 \times 3$	3	SL ₂ (7)	Не
$S_3 \times 6$	3	SL ₂ (7) : 2	He : 2
$S_3 \times 6$	3 + 3	$SL_2(p) : 2$	Fi'_{24}
6 ² : 2	6	SL ₂ (7) : 2	Fi ₂₄
6 ² : 2	6+2	SL ₂ (7):2, GL ₂ (7)	EXOTIC
$D_8 \times 3$	2 + 2	SL ₂ (7) : 2	O'N
$D_{16} \times 3$	4	SL ₂ (7) : 2	O'N:2
<u> </u>	4+4	SL ₂ (7) : 2	EXOTIC
$^{\circ}$ $SD_{32} \times 3$	8	SL ₂ (7) : 2	FXOTIC

R-Viruel examples (V)

s.f.s.
$$\sharp \mathcal{F}^{ec}$$
-rad > 2 and $p=3$

$Out_{\mathcal{F}}(13^{1+2}_+)$	$\sharp \mathcal{F}^{ec}\operatorname{-rad}$	$Aut_{\mathcal{F}}(V)$	Group
3 × 4 <i>S</i> ₄	6	SL ₂ (13).4	М

Díaz-R-Viruel examples (I) [4]

This is the same game as in R-Viruel examples, but considering all p-rank two p-groups S for odd p.

In the classification of those S, we saw that the more interesting where p_{\perp}^{1+2} and the ones which fit in the following split extension:

3- Sylve
$$\frac{\mathbb{Z}/3^k \times \mathbb{Z}/3^k}{\mathbb{Z}/3^k \times \mathbb{Z}/3^k} \xrightarrow{\mathbb{Z}/3} \mathbb{Z}/3^k \times \mathbb{Z}/3^k$$
 $\mathbb{Z}/3^k \times \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k \times \mathbb{Z}/3^k$
 $\mathbb{Z}/3^k \times \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k \times \mathbb{Z}/3^k$
 $\mathbb{Z}/3^k \times \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k \times \mathbb{Z}/3^k$
 $\mathbb{Z}/3^k \times \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k \times \mathbb{Z}/3^k \longrightarrow \mathbb{Z}/3^k$

Díaz-R-Viruel examples (II)

										- et .	- 10
24.	⊳ W	V_0	V_1	V_{-1}	E_0	E_1	E_{-1}	γ_1	Exotic?	3100	Fridal
3200					*				Yes	- 0	
7/	$\langle \omega \rangle$ يخ					*	*		Yes	€ S-f.s. Sk	ores
02					*	*	*		No	SK	
	$\langle \eta \rangle$							*	No		
	$\langle \eta \omega \rangle$	*							No		
								*	No		
						*			Yes		
								*	Yes		
0/	$\mathcal{Z}_{\underline{\zeta}}$ $\langle \eta, \omega angle$								Yes		
12	n -				*			*	No		
	$\langle \eta, \omega \rangle$				_ ^		*		No		
							^	*	Yes		
									No	teep F- it!)
		*						*		T- 17 !	
		^					*		No		
								*	Yes		

Subsystems of saturated fusion systems

Broto-Castellana-Grodal-Levi-Oliver [2] studied the saturated fusion subsystems (and extensions) of *p*-local finite groups in two special cases:

- s.f. subsystems of p-power index and
- s.f. subsystems of index prime to p.

is known?

To classify all the subsystems of index prime to p in $(S, \mathcal{F}, \mathcal{L})$ we need to control $O_*^{p'}(\mathcal{F})$ the smallest subcategory of \mathcal{F} containing all p-power automorphims in \mathcal{F} .

Reduction

 $O_*^{p'}(\mathcal{F})$ is generated by *p*-power automorphims of \mathcal{F} -centric, \mathcal{F} -radical subgroups.

Normal fusion subsystems of the grassmannians [6]

Consider $GL_n(q)$, invertible $n \times n$ matrices over \mathbb{F}_q . Alperin-Fong's work gives us the radical subgroups.

Example

Consider q a prime power, p a prime such that $p \nmid q$, e, the order of q modulo p, i.e. $p|(q^e-1)$ and p such that $p'|(q^e-1)$ and $p'^{l+1} \nmid (q^e-1)$.

Consider $(S, \mathcal{F}, \mathcal{L})$ the *p*-lfg corresponding to $GL_n(q)$ $n \ge ep$. For each divisor r of e, there is a s.f.subsystem $(S, \mathcal{F}_r, \mathcal{L}_r)$, and if $r \ge 2$, it is exotic.

$$P=S$$
 $|e=4|$ $CL_{20}(F_{+})$
 $r\in\{3,2,4\}=\}(S,F_{r},C_{r})\in S.f.$ subsystem $|V_{2}|=1$ exotic $|V_{2}|=1$ exotic $|V_{3}|=1$ exotic $|V_{3}|=1$

p-local compact groups

Consider the split extension of Diaz-R-Viruel examples:

and the exotic *p*-local finite group which has, as proper \mathcal{F} -radical subgroups $\mathbb{Z}/3^k \times \mathbb{Z}/3^k$ and $\langle Z(S_k), s \rangle = : \mathcal{V}$

p-local compact groups

Bibliography I

- David J. Benson.
 Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants.
 - In Geometry and cohomology in group theory (Durham, 1994), volume 252 of London Math. Soc. Lecture Note Ser., pages 10–23. Cambridge Univ. Press, Cambridge, 1998.
- [2] C. Broto, N. Castellana, J. Grodal, R. Levi, and B. Oliver. Extensions of p-local finite groups. Trans. Amer. Math. Soc., 359(8):3791–3858 (electronic), 2007.
- [3] Carles Broto, Ran Levi, and Bob Oliver. The homotopy theory of fusion systems. *J. Amer. Math. Soc.*, 16(4):779–856, 2003.

Bibliography II

- [4] Antonio Díaz, Albert Ruiz, and Antonio Viruel.
 All p-local finite groups of rank two for odd prime p.
 Trans. Amer. Math. Soc., 359(4):1725–1764 (electronic), 2007.
- [5] Ran Levi and Bob Oliver. Construction of 2-local finite groups of a type studied by Solomon and Benson. Geom. Topol., 6:917–990, 2002.
- [6] Albert Ruiz. Exotic normal fusion subsystems of general linear groups. J. Lond. Math. Soc. (2), 76(1):181–196, 2007.

Bibliography III

[7] Albert Ruiz and Antonio Viruel. The classification of p-local finite groups over the extraspecial group of order p^3 and exponent p.

[8] Ronald Solomon.Finite groups with Sylow 2-subgroups of type 3.J. Algebra, 28:182–198, 1974.

Math. Z., 248(1):45-65, 2004.

Thank you for your attention!

