Homotopy properties of rank two Kac-Moody groups

Albert Ruiz (Universitat Autònoma de Barcelona)

(joint work with J. Aguadé)

ICM 2014 Satellite Conference on Algebraic Topology
August 10, 2014

http://mat.uab.cat/~albert

Motivation

Aim

- Do homotopy theory with Kac-Moody groups: understand the classifying space.
- 2 Try to generalize well known results for compact Lie groups: homotopy decompositions, mapping spaces.

Finite groups

Compact he groups

Nammal tomes (finite renk)

N(T)

Kerc-Murchy grups.

W:= T > infinite

Rank 1: 53

Definition

ab < 3

Consider a 2×2 generalized Cartan matrix:

$$\begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$$

with ab > 4: then K(a, b), the associated Kac-Moody group, is rank 2 and infinite dimensional.

The Weyl group $W(a,b) \cong \mathbb{Z}/2 * \mathbb{Z}/2$ and the action on the Lie algebra of the rank two maximal torus is induced by the matrices:

$$w_1 = \begin{pmatrix} -1 & b \\ 0 & 1 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 1 & 0 \\ a & -1 \end{pmatrix}$.

<u, w, > = Z

Main properties

Theorem (Kitchloo)

If K is an infinite dimensional Kac-Moody group, then

BR21 -> 3K(a/b) 2 and W = Zh

In the rank two case, this reduces to the following diagrams:

$$BS^{3} \times BS^{1} \stackrel{\left(\begin{array}{c} -a & 1 \\ 1 & 0 \end{array}\right)}{\longrightarrow} BT \stackrel{\left(\begin{array}{c} 1 & -b \\ 0 & 1 \end{array}\right)}{\longrightarrow} BS^{3} \times BS^{1} \quad a \equiv b \equiv 0 \mod (2)$$

$$BU(2) \stackrel{\left(\begin{array}{c} 1-a & 1 \\ \frac{1+a}{2} & -1 \end{array}\right)}{\longrightarrow} BT \stackrel{\left(\begin{array}{c} 1 & -b \\ 0 & 1 \end{array}\right)}{\longrightarrow} BS^{3} \times BS^{1} \qquad a \not\equiv b \equiv 0 \mod (2)$$

$$BU(2) \stackrel{\left(\begin{array}{c} 1-a & 1 \\ \frac{1+a}{2} & -1 \end{array}\right)}{\longrightarrow} BT \stackrel{\left(\begin{array}{c} 1 & \frac{1-b}{2} \\ -1 & \frac{1+b}{2} \end{array}\right)}{\longrightarrow} BU(2) \qquad a \equiv b \equiv 1 \mod (2)$$

Cohomology

, rank 2

Theorem (Kitchloo)

There is a class $q: BK \to K(\mathbb{Z},4)$ inducing a rational equivalence.

$$||H^{\dagger}(BT)||Z| = ||T(N, V)||$$

$$||H^{\dagger}(BT)||Z|| = ||T(N, V)||$$

The mod p cohomology $H^*(BK; \mathbb{F}_p) \cong \mathbb{F}_p[x_4, y_{2k}] \otimes E[z_{2k+1}]$ with a $\beta_r(y_{2k}) = z_{2k+1}$, where subscripts are the degrees and are explained in the following table:

k	r	Conditions	р
2	$\max_n \{2^n \gcd(a, b)\}$	$a \equiv b \equiv 0 \mod (2)$	
3	$\max_{n} \{2^{n} ab - 1\}$	$a \equiv b \equiv 1 \mod (2)$	2
4	$\max_{n} \{2^{n} ab - 2\}$	$a \not\equiv b \equiv 0 \mod (2)$	
$ W_p /2$	$\min_{n}\{ W_{p^n} < W_{p^{n+1}} \}$		<i>p</i> > 2

where W_{p^n} is the mod p^n reduction of $W \subset GL_2(\mathbb{Z})$.

Strategy and tools

X will be

- Consider BK_p^{\wedge} and study the maps $[X, BK_p^{\wedge}]$ for each prime p.
- ع $B\pi$, the classifying space of a finite p-group,
- \rightarrow b BT, the classifying space of a torus and
- \sim c BK', the classifying space of a Kac-Moody group K'.
- ② If possible, in the last two cases, obtain a map [X, BK] (Sullivan arithmetic square).

Sullivan arithmetic square

If K is a rank two Kac-Moody group we have the following pullback:

Lemma

Let X be a space such that $H^3(X; \mathbb{Q}) = 0$. Then:

- The map $I: [X, BK] \to \prod_p [X, BK_p^{\wedge}]$ is injective,
- the image of I are families $\{f_p \colon X \to BK_p^{\wedge}\}$ such that $\exists q \in H^4(X; \mathbb{Q})$ with $f_p^*(q \otimes \hat{\mathbb{Q}}_p) = x \otimes \hat{\mathbb{Q}}_p$.

Maps from BT to BK

Lemma

Let T be a rank 2 torus and $T_{p^{\infty}}$ the p-torsion subgroup.

- The map $I: [BT, BK] \to \prod_p [BT_{p^{\infty}}, BK_p^{\wedge}]$ is injective,
- the image of I are families $\{f_p \colon BT_{p^{\infty}} \to BK_p^{\wedge}\}$ such that $\mathcal{O}_p^*(q)$ lies in $H^4(BT; \mathbb{Z}) \subset H^4(BT_{p^{\infty}}; \mathbb{Z})$ and is independent of p.

Theorem (Aguadé-R)

In general, the map $Hom(T, K) \rightarrow [BT, BK]$ is not surjective.

of a quadrotic form with non-trind gens:
$$\exists q' \ q. \text{ form s.l.}$$

$$0 = \exists p \mid q' \mid a = 13 \mid f_p: 37p \rightarrow 127p \mid \text{ for come image}$$

$$1 = 2 \mid q' \mid a = 13 \mid f_p: 37p \rightarrow 127p \mid \text{ for come image}$$

$$1 = 2 \mid q' \mid a = 13 \mid f_p: 37p \rightarrow 127p \mid \text{ for come image}$$

$$1 = 2 \mid q' \mid a = 13 \mid a = 13$$

Maps from finite p-groups to BL_p^{\wedge}

Theorem (Broto-Kitchloo)

If L is a Kac-Moody group and π is a finite p-group, then there are homotopy equivalences

$$\coprod_{\rho \in \mathsf{Rep}(\pi, L)} (BC_L(\rho))^{\wedge}_{\rho} \to \mathsf{Map}(B\pi, BL^{\wedge}_{\rho}),$$

$$\left(\underset{P_{I} \textit{Lie type}}{\mathsf{hocolim}} \mathsf{Map}(B\pi, BP_{I_{p}}^{\wedge}) \right) \stackrel{\wedge}{_{p}} \to \mathsf{Map}(B\pi, BL_{p}^{\wedge}),$$

where $C_L(\rho)$ means the centralizer in L of $\rho(\pi)$.

Lemma

Let $f: BK \to BK_p^{\wedge}$. There is a homomorphism $\rho: T_{p^{\infty}} \to K$ such that $f|_{BT_{p^{\infty}}} \simeq B\rho$. If $\rho \neq 1$ then ρ has finite kernel.

Groups with the same classifying space

Lemma

 $K \cong K'$ if and only if $\{a, b\} = \{a', b'\}$.

Theorem

 $BK \simeq BK'$ if and only if

- ② One can order a', b' in such a way that aa' is a square in \mathbb{Z} and ab' is a square in $\hat{\mathbb{Z}}_p$ for all primes such that $\nu_p(a) \neq \nu_p(a')$.

(Integral) Adams maps

Definition

- An Adams map ψ^{λ} is a map extending the homomorphism of the torus induced by $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$
- ② A twisted Adams map $\psi^{\lambda,\mu}$ is a map extending the homomorphism of the torus induced by $\begin{pmatrix} 0 & \lambda \\ \mu & 0 \end{pmatrix}$

$\mathsf{Theorem}$

- **1** There is an Adams map $\underline{\psi}^{\lambda} \colon BK \to BK$ if and only if $\lambda = 0$ or $\lambda \equiv 1 \mod (2)$.
- There is a <u>non-trivial twisted Adams</u> map $\psi^{\lambda,\mu} \colon BK \to BK$ if and only if $\lambda \equiv \mu \equiv 1 \mod (2)$ and $a\lambda = b\mu$.

Generic Adams maps

We can also construct ψ^{λ} , $\psi^{\lambda,\mu} \colon \mathcal{BK}_{p}^{\wedge} \to \mathcal{BK}_{p}^{\wedge}$, with $\lambda, \mu \in \mathbb{Z}_{p}^{\wedge}$ (the only restriction is that $\lambda \equiv \mu \equiv 1$ when p = 2).

And, if they are rationally compatible, we can glue all together to define a generic Adams map: such a map will be codified by

$$\{\underbrace{(\varepsilon_{p},\lambda_{p})}_{p}\} \in \prod_{p} (\{0,1\} \times \hat{\mathbb{Z}}_{p})$$

$$\{\varepsilon_{p} = 0 \Rightarrow \begin{pmatrix} \lambda_{p} & 0 \\ 0 & \lambda_{p} \end{pmatrix}$$

$$\{\varepsilon_{p} = 0 \Rightarrow \begin{pmatrix} 0 & \lambda_{p} \\ \mu_{p} & 0 \end{pmatrix}$$

$$\lambda_{p} = \frac{\lambda_{p} \cdot \alpha}{b}$$

Theorem

Let $f: BK \to BK$ be a map. Then f is a generic Adams map., $\{\cdot\}$

Kac-Moody groups over finite fields

Tits defined, in a functorial way, Kac-Moody groups over fields k. Fixed a Cartan matrix, lets denote K(k) the corresponding Kac-Moody group.

Till now, we have been talking about $K(\mathbb{C})$.

Consider now \mathbb{F}_q a finite field of characteristic different to p, and $K(\mathbb{F}_q)$ the <u>Tits construction</u> of the rank two Kac-Moody group

$$-\mathbf{V}$$
 $\begin{pmatrix} 2 & -a \\ -b & 2 \end{pmatrix}$

corresponding to the generalized Cartan matrix

Cohomology of rank two $BK(\mathbb{F}_q)$

Theorem (Agua<u>dé-R)</u>

Let p such that $p \nmid ab(ab - 4)$, then:

- If $q \not\equiv \pm 1 \mod p$, then $H^*(BK(\mathbb{F}_q), \mathbb{F}_p) \cong \mathbb{F}_p$
- If $q \equiv -1 \mod p$, then
 - $H^*(BK(\mathbb{F}_q),\mathbb{F}_p)\cong (\mathbb{F}_p[x_4]\otimes E(y_3))\oplus (\mathbb{F}_p[x_4']\otimes E(y_3')).$
- If $q \equiv 1 \mod p$, then $H^*(BK(\mathbb{F}_q), \mathbb{F}_p)$ is an $\mathbb{F}_p[x_4, x_{2m}] \otimes E(y_3, y_{2m-1})$ -module with generators 1, α_3 , α_4 , $\nearrow J_{2m}$, J_{2m+1} subject to some relations.

Kac-Moody groups over finite fields and fixed points

For G a compact connected Lie group, Friedlander proved that if p, ℓ are different primes, $q = \ell^r$ and $G(\mathbb{F}_q)$ the Chevalley group over \mathbb{F}_q of type G. Then $BG(\mathbb{F}_q)^{\wedge}_p \simeq BG^{h\psi^q}$, where $BG^{h\psi^q}$ is defined as the pullback:

Kac-Moody groups over finite fields and fixed points

Theorem (Aguadé-R, Foley)

In general $BK(\mathbb{F}_q)^{\wedge}_p \not\simeq BK^{h\psi^q}$.

Thank you for your attention!

