Weak product recurrence and related properties

Piotr Oprocha

AGH University of Science and Technology
Faculty of Applied Mathematics
Kraków, Poland

and

Institute of Mathematics
Polish Academy of Sciences
Warszawa, Poland

The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Orlando, July 2012
Recurrence

1. X - compact,
2. $f : X \to X$ - continuous
3. $x \in X$ is recurrent if $x \in \omega(x, f)$.
 - or in other words, $N(x, U, f) \neq \emptyset$ for any neighborhoods U of x,
 - where $N(x, U, f) = \{ i > 0 : f^i(x) \in U \}$.

4. $x \in X$ is uniformly recurrent (or minimal) if it is recurrent and $\omega(x, f)$ is a minimal set.
 - or equivalently $N(x, U, f)$ is syndetic (has bounded gaps between its elements, i.e. any sufficiently long block of consecutive integers intersects it).
Recurrence

1. \(X \) - compact,
2. \(f : X \rightarrow X \) - continuous
3. \(x \in X \) is recurrent if \(x \in \omega(x, f) \).
 - or in other words, \(N(x, U, f) \neq \emptyset \) for any neighborhoods \(U \) of \(x \),
 - where \(N(x, U, f) = \{ i > 0 : f^i(x) \in U \} \).
4. \(x \in X \) is uniformly recurrent (or minimal) if it is recurrent and \(\omega(x, f) \) is a minimal set.
 - or equivalently \(N(x, U, f) \) is syndetic (has bounded gaps between its elements, i.e. any sufficiently long block of consecutive integers intersects it).
1. \(x \in X \) is **uniformly** recurrent if \(x \in \omega(x, f) \) (and it is a minimal set).

2. \(x \in X \) is **product recurrent** if
 - given any recurrent point \(y \) in any dynamical system \(g \)
 - and any neighborhoods \(U \) of \(x \) and \(V \) of \(y \),
 - \(N(x, U, f) \cap N(y, V, g) \neq \emptyset \).

 where \(N(x, U, f) = \{ i > 0 : f^i(x) \in U \} \).

3. \(x, z \in X \) are proximal if \(\lim \inf_{n \to \infty} d(f^n(x), f^n(z)) = 0 \)

4. \(x \) is distal if it is not proximal to any point in its orbit closure other than itself.

Theorem (Furstenberg)

A point \(x \) is product recurrent if and only if it is (uniformly recurrent) distal point.
Product recurrence

1. $x \in X$ is (uniformly) recurrent if $x \in \omega(x, f)$ (and it is a minimal set).
2. $x \in X$ is product recurrent if
 1. given any recurrent point y in any dynamical system g
 2. and any neighborhoods U of x and V of y,
 3. $N(x, U, f) \cap N(y, V, g) \neq \emptyset$.

 where $N(x, U, f) = \{i > 0 : f^i(x) \in U\}$.
3. $x, z \in X$ are proximal if $\liminf_{n \to \infty} d(f^n(x), f^n(z)) = 0$
4. x is distal if it is not proximal to any point in its orbit closure other than itself.

Theorem (Furstenberg)

A point x is product recurrent if and only if it is (uniformly recurrent) distal point.
Product recurrence

1. \(x \in X \) is (uniformly) recurrent if \(x \in \omega(x, f) \) (and it is a minimal set).

2. \(x \in X \) is product recurrent if
 1. given any recurrent point \(y \) in any dynamical system \(g \)
 2. and any neighborhoods \(U \) of \(x \) and \(V \) of \(y \),
 3. \(N(x, U, f) \cap N(y, V, g) \neq \emptyset \).

where \(N(x, U, f) = \{ i > 0 : f^i(x) \in U \} \).

3. \(x, z \in X \) are proximal if \(\lim \inf_{n \to \infty} d(f^n(x), f^n(z)) = 0 \)

4. \(x \) is distal if it is not proximal to any point in its orbit closure other than itself.

Theorem (Furstenberg)

A point \(x \) is product recurrent if and only if it is (uniformly recurrent) distal point.
Weak product recurrence

1. $x \in X$ is **weakly** product recurrent if
 1. given any **uniformly** recurrent (= almost periodic) point y in any dynamical system g
 2. and any neighborhoods U of x and V of y,
 3. $N(x, U, f) \cap N(y, V, g) \neq \emptyset$.

Question

„Another question (even for \mathbb{Z} or \mathbb{N} actions): If (x, y) is recurrent for all almost periodic points y, is x necessarily a distal point?”

2. It was first by Haddad and Ott that product recurrence and weak product recurrence are not equivalent (Answer **NO** to the above).

Theorem

A point $x \in X$ is weakly product recurrent if it has the following property:

- for every neighborhood V of x there exists n such that if $S \subset \mathbb{N}$ is any finite set satisfying $|s - t| > n$ for all distinct $s, t \in S$, then there exists $l \in \mathbb{N}$ such that $l + s \in N(x, V, f)$ for every $s \in S$.

1. the above conditions are satisfied by many points/systems (e.g. point with dense orbit in full shift on 2 symbols)
2. dynamical system satisfying above must be at least mixing
3. dynamical system satisfying above cannot be minimal
Disjointness

1. We a closed set \(\emptyset \neq J \subset X \times Y \) is a joining of \((X, f)\) and \((Y, g)\) if it is invariant (for the product map \(f \times g \)) and its projections on first and second coordinate are \(X \) and \(Y \) respectively.

2. If \(X \times Y \) is the only joining of \(f \) and \(g \) then we say that they are disjoint.

Question

How to characterize systems disjoint from any distal or minimal system?

Theorem (Petersen, 1970)

A system is disjoint with every distal system iff it is weakly mixing and minimal.
Disjointness

1. We a closed set $\emptyset \neq J \subset X \times Y$ is a joining of (X, f) and (Y, g) if it is invariant (for the product map $f \times g$) and its projections on first and second coordinate are X and Y respectively.

2. If $X \times Y$ is the only joining of f and g then we say that they are disjoint.

Question

How to characterize systems disjoint from any distal or minimal system?

Theorem (Petersen, 1970)

A system is disjoint with every distal system iff it is weakly mixing and minimal.
We a closed set $\emptyset \neq J \subset X \times Y$ is a joining of (X, f) and (Y, g) if it is invariant (for the product map $f \times g$) and its projections on first and second coordinate are X and Y respectively.

If $X \times Y$ is the only joining of f and g then we say that they are disjoint.

Question

How to characterize systems disjoint from any distal or minimal system?

Theorem (Petersen, 1970)

A system is disjoint with every distal system iff it is weakly mixing and minimal.
Only partial answers are known when a system is disjoint with all minimal systems.

Theorem (Furstenberg, 1967)

If f is weakly mixing with dense periodic points then it is disjoint from every minimal systems.

Theorem (Huang & Ye; Oprocha)

If (X, f) is disjoint from every minimal system then every transitive point in (X, f) is weakly product recurrent.
Only partial answers are known when a system is disjoint with all minimal systems.

Theorem (Furstenberg, 1967)

If f is weakly mixing with dense periodic points then it is disjoint from every minimal system.

Theorem (Huang & Ye; Oprocha)

If (X, f) is disjoint from every minimal system then every transitive point in (X, f) is weakly product recurrent.
Remark

The class of weak product recurrent points is much wider than can be detected by disjointness theorems, e.g.

- If \([0, 1], f\) is mixing and \((S^1, R)\) is irrational rotation then for any \(z \in S^1\) there is a residual set in \([0, 1] \times \{z\} \subset (S^1, R)\) in dynamical system \(([0, 1] \times S^1, f \times R)\) consisting of weakly product recurrent points.

- But \(([0, 1] \times S^1, f \times R)\) is not disjoint with \((S^1, R)\).
Product recurrence in terms of Furstenberg families (Dong, Shao, Ye)

1. \mathcal{F} - upward hereditary set of subsets of $\mathbb{N} = \text{Furstenberg family}$
2. $x \in X$ is \mathcal{F}-recurrent if $N(x, U, f) \in \mathcal{F}$ for any open neighborhood U of x,
3. recurrence $= \mathcal{F}_{\text{inf}}$-recurrence ($\mathcal{F}_{\text{inf}} = \text{infinite subsets of } \mathbb{N}$)
4. $x \in X$ is \mathcal{F}-product recurrent (\mathcal{F}-PR for short) if for any dynamical system (Y, g) and any \mathcal{F}-recurrent point $y \in Y$ the pair (x, y) is recurrent for $(X \times Y, f \times g)$.
5. \mathcal{F}-PR$_0 = \mathcal{F}$-PR but only with (Y, g) of topological entropy zero.
6. \mathcal{F}_{inf}-PR $= \text{product recurrence (as introduced by Furstenberg)}$
7. \mathcal{F}_s-PR $= \text{weak product recurrence (where } \mathcal{F}_s \text{ is the family of syndetic sets)}$
Product recurrence in terms of Furstenberg families (Dong, Shao, Ye)

1. \mathcal{F} - upward hereditary set of subsets of $\mathbb{N} = $ Furstenberg family
2. $x \in X$ is \mathcal{F}-recurrent if $N(x, U, f) \in \mathcal{F}$ for any open neighborhood U of x,
3. recurrence $= \mathcal{F}_{inf}$-recurrence ($\mathcal{F}_{inf} = $ infinite subsets of \mathbb{N})
4. $x \in X$ is \mathcal{F}-product recurrent (\mathcal{F}-PR for short) if for any dynamical system (Y, g) and any \mathcal{F}-recurrent point $y \in Y$ the pair (x, y) is recurrent for $(X \times Y, f \times g)$.
5. \mathcal{F}-PR$_0 = \mathcal{F}$-PR but only with (Y, g) of topological entropy zero.
6. \mathcal{F}_{inf}-PR = product recurrence (as introduced by Furstenberg)
7. \mathcal{F}_s-PR = weak product recurrence (where \mathcal{F}_s is the family of syndetic sets)
Product recurrence in terms of Furstenberg families (Dong, Shao, Ye)

1. \mathcal{F} - upward hereditary set of subsets of $\mathbb{N} = \text{Furstenberg family}$
2. $x \in X$ is \mathcal{F}-recurrent if $N(x, U, f) \in \mathcal{F}$ for any open neighborhood U of x,
3. recurrence $= \mathcal{F}_{\text{inf}}$-recurrence ($\mathcal{F}_{\text{inf}} = \text{infinite subsets of } \mathbb{N}$)
4. $x \in X$ is \mathcal{F}-product recurrent (\mathcal{F}-PR for short) if for any dynamical system (Y, g) and any \mathcal{F}-recurrent point $y \in Y$ the pair (x, y) is recurrent for $(X \times Y, f \times g)$.
5. \mathcal{F}-PR$_0 = \mathcal{F}$-PR but only with (Y, g) of topological entropy zero.
6. \mathcal{F}_{inf}-PR = product recurrence (as introduced by Furstenberg)
7. \mathcal{F}_s-PR = weak product recurrence (where \mathcal{F}_s is the family of syndetic sets)
Product recurrence in terms of Furstenberg families (Dong, Shao, Ye)

1. \mathcal{F} - upward hereditary set of subsets of \mathbb{N} = Furstenberg family
2. $x \in X$ is \mathcal{F}-recurrent if $N(x, U, f) \in \mathcal{F}$ for any open neighborhood U of x,
3. recurrence = \mathcal{F}_{inf}-recurrence (\mathcal{F}_{inf} = infinite subsets of \mathbb{N})
4. $x \in X$ is \mathcal{F}-product recurrent (\mathcal{F}-PR for short) if for any dynamical system (Y, g) and any \mathcal{F}-recurrent point $y \in Y$ the pair (x, y) is recurrent for $(X \times Y, f \times g)$.
5. \mathcal{F}-PR$_0 = \mathcal{F}$-PR but only with (Y, g) of topological entropy zero.
6. \mathcal{F}_{inf}-PR = product recurrence (as introduced by Furstenberg)
7. \mathcal{F}_s-PR = weak product recurrence (where \mathcal{F}_s is the family of syndetic sets)
Further results on product recurrence

\[\mathcal{F}_{\text{inf}} - \text{PR} \xleftarrow{?} \mathcal{F}_{\text{pubd}} - \text{PR} \xleftarrow{?} \mathcal{F}_{\text{ps}} - \text{PR} \xleftarrow{\text{not}} \mathcal{F}_{\text{s}} - \text{PR} \]

\[\mathcal{F}_{\text{inf}} - \text{PR}_0 \xleftarrow{\text{not}} \mathcal{F}_{\text{pubd}} - \text{PR}_0 \xleftarrow{?} \mathcal{F}_{\text{ps}} - \text{PR}_0 \xleftarrow{\text{not}} \mathcal{F}_{\text{s}} - \text{PR}_0 \]

Figure: Product recurrence and product recurrence with zero entropy systems (Dong, Shao & Ye)

- \(\mathcal{F}_{ps} = \) piecewise syndetic, i.e. intersections of syndetic and thick set
- \(\mathcal{F}_{pubd} = \) sets with positive upper Banach densitity

\[
0 < D(A) = \lim_{n \to \infty} \sup_{n} \frac{1}{n} \sup_{i \geq 0} \#(A \cap [i, i + n])
\]
Results on PR obtained by results on disjointness

1. If \((X, f)\) is a minimal flow (i.e. homeomorphism) such that any of its invariant measures is a \(K\)-measure, then it is disjoint from any transitive zero entropy \(E\)-system.
 - If \((X, f)\) is a strictly ergodic flow with its unique invariant measure being a \(K\)-measure, then every point \(x \in X\) is \(\mathcal{F}_{\text{pubd}}\)-PR\(_0\).
 - But it has positive topological entropy, so also asymptotic pairs...
 - So there are points in \(X\) which are not recurrent in pair with minimal points.
 - Hence we have an example \(\mathcal{F}_{\text{pubd}} - \text{PR}_0 \not\iff \mathcal{F}_s - \text{PR}\).

2. If \(x\) is \(\mathcal{F}_{\text{ps}}\)-PR\(_0\) then it is a minimal point.
 - Hence we have an example \(\mathcal{F}_s - \text{PR} \not\iff \mathcal{F}_{ps} - \text{PR}_0\).

Further results on product recurrence (cont.)

\[\mathcal{F}_{\text{inf}} \rightarrow \text{PR} \quad \mathcal{F}_{\text{pubd}} \rightarrow \text{PR} \quad \mathcal{F}_{\text{ps}} \rightarrow \text{PR} \quad \mathcal{F}_{s} \rightarrow \text{PR} \]

\[\mathcal{F}_{\text{inf}} \rightarrow \text{PR}_0 \quad \mathcal{F}_{\text{pubd}} \rightarrow \text{PR}_0 \quad \mathcal{F}_{\text{ps}} \rightarrow \text{PR}_0 \quad \mathcal{F}_{s} \rightarrow \text{PR}_0 \]

Figure: Product recurrence and product recurrence with zero entropy systems (Dong, Shao & Ye)

- \(\mathcal{F}_{ps} \) = piecewise syndetic, i.e. intersections of syndetic and thick set
- \(\mathcal{F}_{pubd} \) = sets with positive upper Banach density
Further results on product recurrence (cont.)

\[\mathcal{F}_{\text{inf}} - \text{PR} \leftrightarrow \mathcal{F}_{\text{pubd}} - \text{PR} \leftrightarrow \mathcal{F}_{\text{ps}} - \text{PR} \leftrightarrow \mathcal{F}_{s} - \text{PR} \]

\[\mathcal{F}_{\text{inf}} - \text{PR}_0 \leftrightarrow \mathcal{F}_{\text{pubd}} - \text{PR}_0 \leftrightarrow \mathcal{F}_{\text{ps}} - \text{PR}_0 \leftrightarrow \mathcal{F}_{s} - \text{PR}_0 \]

Figure: Product recurrence and product recurrence with zero entropy systems (Dong, Shao & Ye) + work of Oprocha and G.H. Zhang

- \(\mathcal{F}_{\text{ps}} = \) piecewise syndetic, i.e. intersections of syndetic and thick set
- \(\mathcal{F}_{\text{pubd}} = \) sets with positive upper Banach density
Theorem

If \(x \) is \(\mathcal{F}_{ps}\)-PR then it is distal.

Theorem

The following statements are equivalent:

1. \(x \) is distal,
2. \((x, y) \) is recurrent for any recurrent point \(y \) of any system \((Y, g)\),
3. \((x, y) \) is \(\mathcal{F}_{pubd}\)-recurrent for any \(\mathcal{F}_{pubd}\)-recurrent point \(y \) of any system \((Y, g)\),
4. \((x, y) \) is \(\mathcal{F}_{ps}\)-recurrent for any \(\mathcal{F}_{ps}\)-recurrent point \(y \) of any system \((Y, g)\),
5. \((x, y) \) is minimal for any minimal point \(y \) of any system \((Y, g)\).
Open problems

1. $\mathcal{F}_{ps} - PR_0 \iff \mathcal{F}_{pubd} - PR_0$?
2. $\mathcal{F}_s - PR + \text{minimal} \implies \text{distal}$?