Chain Transitivity and Variations of the Shadowing Property

Jonathan Meddaugh
Will Brian and Brian Raines
Baylor University

The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications
July 10th, 2014
Outline

1 Preliminaries

2 Shadowing and Chain Transitivity
Outline

1 Preliminaries
 Definitions
 Variations on Shadowing

2 Shadowing and Chain Transitivity
Basic Terminology

- A *dynamical system* is a continuous map f on a compact metric space (X, d).
Basic Terminology

- A *dynamical system* is a continuous map f on a compact metric space (X, d).
- An *orbit* for f is a sequence of the form $\langle f^i(x) \rangle_{i \in \mathbb{N}}$ for some $x \in X$.
Basic Terminology

- A *dynamical system* is a continuous map f on a compact metric space (X, d).
- An *orbit* for f is a sequence of the form $\langle f^i(x) \rangle_{i \in \mathbb{N}}$ for some $x \in X$.
- For $\delta > 0$, a δ-pseudo-orbit is a sequence $\langle z_i \rangle_{i \in \mathbb{N}}$ in X satisfying $d(z_{i+1}, f(z_i)) < \delta$ for $i \in \mathbb{N}$.
A map f has shadowing provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ-pseudo-orbit $\langle z_i \rangle$ there exists $x \in X$ such that $d(z_i, f^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.
A map f has shadowing provided that for all $\epsilon > 0$ there exists a $\delta > 0$ such that for every δ-pseudo-orbit $\langle z_i \rangle$ there exists $x \in X$ such that $d(z_i, f^i(x)) < \epsilon$ for all $i \in \mathbb{N}$.

The point x is said to ϵ-shadow the pseudo-orbit $\langle z_i \rangle$.
Shadowing
Shadowing
A δ-chain from x to y is a sequence $x = z_0, z_1, \ldots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for $i < n$.
A δ-chain from x to y is a sequence $x = z_0, z_1, \ldots z_n = y$ in X which satisfies $d(z_{i+1}, f(z_i)) < \delta$ for $i < n$.

A map f is chain transitive provided that for all $\delta > 0$ and all $x, y \in X$, there exists a δ-chain from x to y.
Chain Transitivity
Chain Transitivity
Chain Transitivity
Chain Transitivity
Chain Transitivity

![Diagram showing chain transitivity with points x and y connected by a path through a region.]

Preliminaries
Definitions
Chain Transitivity
Chain Transitivity

![Diagram of Chain Transitivity]

- **Chain Transitivity**

- Preliminaries
- Definitions
Chain Transitivity

\[x \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow y \]
Chain Transitivity
Chain Transitivity
Chain Transitivity
Chain Transitivity
Terminology

- A sequence \(\langle z_i \rangle \) is a \(\delta \)-pseudo-orbit on \(A \) provided that \(A \subseteq \{ i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta \} \).
A sequence $\langle z_i \rangle$ is a δ-pseudo-orbit on A provided that $A \subseteq \{ i \in \mathbb{N} : d(z_{i+1}, f(z_i)) < \delta \}$.

A point $x \in X$ ϵ-shadows $\langle z_i \rangle$ on B provided that $B \subseteq \{ i \in \mathbb{N} : d(z_i, f^i(x)) < \epsilon \}$.
A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.
A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.

For families \mathcal{F} and \mathcal{G}, a map f has $(\mathcal{F}, \mathcal{G})$-shadowing provided that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\langle z_i \rangle$ is a δ-pseudo-orbit on a set $A \in \mathcal{F}$ then there exists a point $x \in X$ which ϵ-shadows $\langle z_i \rangle$ on a set $B \in \mathcal{G}$.

Theorem [BMR]

Suppose that $\mathcal{F} \supseteq \mathcal{F}'$ and that $\mathcal{G} \subseteq \mathcal{G}'$. Then every space with $(\mathcal{F}, \mathcal{G})$-shadowing has $(\mathcal{F}', \mathcal{G}')$-shadowing.
A family \mathcal{F} is a collection of subsets of \mathbb{N} for which $A \in \mathcal{F}$ and $A \subseteq B$ implies $B \in \mathcal{F}$.

For families \mathcal{F} and \mathcal{G}, a map f has $(\mathcal{F}, \mathcal{G})$-shadowing provided that for every $\epsilon > 0$ there exists a $\delta > 0$ such that if $\langle z_i \rangle$ is a δ-pseudo-orbit on a set $A \in \mathcal{F}$ then there exists a point $x \in X$ which ϵ-shadows $\langle z_i \rangle$ on a set $B \in \mathcal{G}$.

Theorem [BMR]

Suppose that $\mathcal{F} \supseteq \mathcal{F}'$ and that $\mathcal{G} \subseteq \mathcal{G}'$. Then every space with $(\mathcal{F}, \mathcal{G})$-shadowing has $(\mathcal{F}', \mathcal{G}')$-shadowing.
• Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.
• Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.
• Let \mathcal{T} denote the family of thick subsets of \mathbb{N}, i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.
Variations on Shadowing

- Many commonly used variations on shadowing are of this form for appropriate families \mathcal{F} and \mathcal{G}.
- Let \mathcal{T} denote the family of thick subsets of \mathbb{N}, i.e. those sets $A \subseteq \mathbb{N}$ containing arbitrarily long intervals.
- Let \mathcal{D} denote the family of subsets of \mathbb{N} with lower density equal to 1.
Variations on Shadowing

- Immediately, \((\mathbb{N}, \mathbb{N})\)-shadowing is the usual shadowing.
Variations on Shadowing

- Immediately, $({\mathbb{N}}, {\mathbb{N}})$-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
Variations on Shadowing

- Immediately, (\mathbb{N}, \mathbb{N})-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$-shadowing is ergodic shadowing [Fakhari, Gane 2010]
Variations on Shadowing

- Immediately, $(\{\mathbb{N}\}, \{\mathbb{N}\})$-shadowing is the usual shadowing.
- $(\mathcal{D}, \mathcal{T})$-shadowing is thick shadowing [Dastjerdi, Hosseini 2010]
- $(\mathcal{D}, \mathcal{D})$-shadowing is ergodic shadowing [Fakhari, Gane 2010]
- Several other shadowing subtypes fit this framework (though not all.)
Outline

1 Preliminaries

2 Shadowing and Chain Transitivity
 Lemmas
 Theorem
Lemma [Richeson, Wiseman 2008]

Let $f : X \rightarrow X$ be chain transitive and let $\delta > 0$. Then there exists $k_\delta \in \mathbb{N}$ such that for any $x \in X$, k_δ is the greatest common denominator of the lengths of δ-chains from x to x.
Chain transitivity

Lemma [Richeson, Wiseman 2008]
Let \(f : X \to X \) be chain transitive and let \(\delta > 0 \). Then there exists \(k_\delta \in \mathbb{N} \) such that for any \(x \in X \), \(k_\delta \) is the greatest common denominator of the lengths of \(\delta \)-chains from \(x \) to \(x \).

- Define the relation \(\sim_\delta \) on \(x \) by \(x \sim_\delta y \) provided that there is a \(\delta \)-chain from \(x \) to \(y \) of length a multiple of \(k_\delta \).
Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let $f : X \to X$ be chain transitive and let $\delta > 0$. Then there exists $k_\delta \in \mathbb{N}$ such that for any $x \in X$, k_δ is the greatest common denominator of the lengths of δ-chains from x to x.

- Define the relation \sim_δ on x by $x \sim_\delta y$ provided that there is a δ-chain from x to y of length a multiple of k_δ.
- There are precisely k_δ many equivalence classes of \sim_δ which are clopen and are permuted cyclicly by f.
Lemma [BMR]

Let $f : X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_\delta y$, there is a δ-chain from x to y of length exactly mk_δ.
Lemma [BMR]
Let $f : X \to X$ be chain transitive. For each $\delta > 0$ there exists $M \in \mathbb{N}$ such that for any $m \geq M$, and any $x, y \in X$ with $x \sim_\delta y$, there is a δ-chain from x to y of length exactly mk_δ.

- This is a straightforward application of the fact that δ-chains can be concatenated and Schur’s Theorem.
Main Theorem

Theorem [BMR]

For a chain transitive dynamical system, the following are equivalent:

1. shadowing, i.e. \((\mathbb{N}, \mathbb{N})\)-shadowing,
2. \((\mathcal{T}, \mathcal{T})\)-shadowing,
3. thick shadowing, i.e. \((\mathcal{D}, \mathcal{T})\)-shadowing, and
4. \((\mathbb{N}, \mathcal{T})\)-shadowing.
First, note that $\{\mathbb{N}\} \subset D \subset T$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).
First, note that $\{\mathbb{N}\} \subset D \subset T$ so as an application of the earlier theorem, (2) implies (3) and (3) implies (4).

So, we need only establish that (1) implies (2) and (4) implies (1).
Chain Transitivity and Variations of the Shadowing Property
Shadowing and Chain Transitivity
Theorem

(4) implies (1)

- It is sufficient to show that for any $\epsilon > 0$ we can find $\delta > 0$ such that any δ-chain in X can be ϵ-shadowed.
(4) implies (1)

- It is sufficient to show that for any $\epsilon > 0$ we can find $\delta > 0$ such that any δ-chain in X can be ϵ-shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $(\{\mathbb{N}\}, T)$-shadowing.
(4) implies (1)

- It is sufficient to show that for any \(\epsilon > 0 \) we can find \(\delta > 0 \) such that any \(\delta \)-chain in \(X \) can be \(\epsilon \)-shadowed.
- Let \(\epsilon > 0 \) and let \(\delta > 0 \) be given by \((\mathbb{N}, T) \)-shadowing.
- Fix a \(\delta \)-chain \(z_0, z_1, \ldots, z_n \). Since \(f \) is chain transitive we can find a \(\delta \)-chain \(z_n, y_1, y_2, \ldots, y_m, z_0 \) from \(z_n \) to \(z_0 \).
(4) implies (1)

- It is sufficient to show that for any $\epsilon > 0$ we can find $\delta > 0$ such that any δ-chain in X can be ϵ-shadowed.
- Let $\epsilon > 0$ and let $\delta > 0$ be given by $({\mathbb N}, T)$-shadowing.
- Fix a δ-chain $z_0, z_1, \ldots z_n$. Since f is chain transitive we can find a δ-chain $z_n, y_1, y_2, \ldots y_m, z_0$ from z_n to z_0.
- Then $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ is a δ-pseudo-orbit.
(4) implies (1)

- Let \(x \in X \) shadow
 \[z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots \] on a set \(A \in \mathcal{T} \).
(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \ldots, z_n, y_1, \ldots, y_m, z_0, \ldots, z_n, y_1, \ldots, y_m, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to guarantee that x shadows the pseudo-orbit on some segment coinciding with $z_0, z_1, \ldots z_n$.
(4) implies (1)

- Let $x \in X$ shadow $z_0, z_1, \ldots z_n, y_1, \ldots y_m, z_0, \ldots z_n, y_1, \ldots y_m, \ldots$ on a set $A \in \mathcal{T}$.
- Since A is thick, it contains arbitrarily long sequences of consecutive integers.
- In particular, one long enough to guarantee that x shadows the pseudo-orbit on some segment coinciding with $z_0, z_1, \ldots z_n$.
- Then, the appropriate iterate of x shadows the δ-chain $z_0, z_1, \ldots z_n$.
(1) implies (2)

- We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ-pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.
(1) implies (2)

- We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ-pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.

- Our strategy is to construct a proper δ-pseudo-orbit $\langle q_i \rangle$ which agrees with $\langle z_i \rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.
We must show that for any $\epsilon > 0$ we can find $\delta > 0$ such that for any δ-pseudo-orbit $\langle z_i \rangle$ on a set $A \in \mathcal{T}$, there is an $x \in X$ that ϵ-shadows it on a set $B \in \mathcal{T}$.

Our strategy is to construct a proper δ-pseudo-orbit $\langle q_i \rangle$ which agrees with $\langle z_i \rangle$ on a thick set and then find a point x that shadows this modified pseudo-orbit.

The point x will then shadow the original pseudo-orbit on a thick set as desired.
(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.

Let $K = k_\delta$ and let $X_0, X_1, \ldots X_K$ be the equivalence classes of \sim_δ named so that $f(X_i) = X_{i+1} \text{ mod } K$.

(1) implies (2)
(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_\delta$ and let $X_0, X_1, \ldots X_K$ be the equivalence classes of \sim_δ named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.
(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_\delta$ and let $X_0, X_1, \ldots X_K$ be the equivalence classes of \sim_δ named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that $m(i) = m(i+1)$.
(1) implies (2)

- Let $\epsilon > 0$ and fix $\delta > 0$ as given by shadowing. Let $\langle z_i \rangle$ be a δ-pseudo-orbit on T where $T \in \mathcal{T}$.
- Let $K = k_\delta$ and let $X_0, X_1, \ldots X_K$ be the equivalence classes of \sim_δ named so that $f(X_i) = X_{i+1} \mod K$.
- Define for each $i \in \mathbb{N}$ the number $m(i) \in \mathbb{Z}_K$ to be the element of \mathbb{Z}_K such that $z_i \in X_{i+m(i)}$.
- If $d(z_{i+1}, f(z_i)) < \delta$ it follows that $m(i) = m(i + 1)$.
- Let $A = \{i \in \mathbb{N} : m(i) = m(i + 1)\}$, and notice that this contains T and is hence thick.
(1) implies (2)

- Let $A_k = \{ i \in A : m(i) = k \}$ and notice that for some k, A_k is thick. Without loss, A_0.
(1) implies (2)

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_0$ there is a δ-chain of length mK from x to y.

We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where $m(i) = 0$ as well) with δ-chains of lengths mK.

In particular, do this in such a way that we retain subintervals of A_0 of arbitrary length.

The modified sequence $\langle q_i \rangle$ is now a proper δ-pseudo-orbit and agrees with $\langle z_i \rangle$ on a thick set.
(1) implies (2)

- Let \(A_k = \{ i \in A : m(i) = k \} \) and notice that for some \(k \), \(A_k \) is thick. Without loss, \(A_0 \).
- By previous lemma, fix \(M \in \mathbb{N} \) such that for all \(m \geq M \), and any \(x, y \in X_0 \) there is a \(\delta \)-chain of length \(mK \) from \(x \) to \(y \).
- We can then leverage the thickness to replace segments of \(\langle z_i \rangle \) for which \(m(i) \neq 0 \) (and some parts where \(m(i) = 0 \) as well) with \(\delta \)-chains of lengths \(mK \).
(1) implies (2)

- Let $A_k = \{i \in A : m(i) = k\}$ and notice that for some k, A_k is thick. Without loss, A_0.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_0$ there is a δ-chain of length mK from x to y.
- We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where $m(i) = 0$ as well) with δ-chains of lengths mK.
- In particular, do this in such a way that we retain subintervals of A_0 of arbitrary length.
(1) implies (2)

- Let $A_k = \{ i \in A : m(i) = k \}$ and notice that for some k, A_k is thick. Without loss, A_0.
- By previous lemma, fix $M \in \mathbb{N}$ such that for all $m \geq M$, and any $x, y \in X_0$ there is a δ-chain of length mK from x to y.
- We can then leverage the thickness to replace segments of $\langle z_i \rangle$ for which $m(i) \neq 0$ (and some parts where $m(i) = 0$ as well) with δ-chains of lengths mK.
- In particular, do this in such a way that we retain subintervals of A_0 of arbitrary length.
- The modified sequence $\langle q_i \rangle$ is now a proper δ-pseudo-orbit and agrees with $\langle z_i \rangle$ on a thick set.
Thank you!