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Kuhn–Tucker Conditions

In this chapter, necessary conditions for optimality of solution points in mathematical
programming problems will be studied. Because of the orientation of this book to
present optimization theory as an instrument for qualitative economic analysis, the
theory to be described is not immediately concerned with computational aspects of
solution techniques, which can be found in many excellent books on mathematical
programming, e.g., [11, 12, 27, 23, 3].

The discussion begins with the extension of the Lagrange theory by Kuhn and
Tucker [18]—note the contributions by Karush [16] and John [15]—with the deriva-
tion of necessary optimality conditions for the optimization problems including in-
equality constraints.

The rationality of Kuhn–Tucker conditions and their relationship to a saddle point
of the Lagrangian function will be explored in Sections 2.2 and 2.3, respectively.

Section 2.4 deals with Kuhn–Tucker conditions for the general mathematical
programming problem, including equality and inequality constraints, as well as non-
negative and free variables. Two numerical examples are provided for illustration.

Section 2.5 is devoted to applications of Kuhn–Tucker conditions to a qualitative
economic analysis. We will show how to derive general qualitative conclusions, even
when the parameters of the involved functions are not numerically specified.

2.1 The Kuhn–Tucker Theorem

The basic mathematical programming problem (1.28), as described in Chapter 1, is
that of choosing values of n variables so as to minimize a function of those variables
subject to m inequality constraints:

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m).

This problem is a generalization of the classical optimization problem (which uses
constraints in equation form), since equality constraints are a special case of inequality
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constraints. By introducing m additional variables, called slack variables, yi(i =
1, 2, . . . , m), the mathematical programming problem (1.28) can be rewritten as a
classical optimization problem:

minimize f0(x)

subject to fi(x)+ y2
i = 0 (i = 1, 2, . . . , m).

A characterization of the solution to the mathematical programming problem (1.28)
is then analogous to the Lagrange theorem for classical optimization problems.

Under the assumption of so-called constraint qualifications (for a detailed discus-
sion, the reader is referred to [1, 26, 37]), which was designed to avoid cusps in the
feasible set, the Lagrange theory for a classical optimization problem can be extended
to problem (1.28) by the following theorem.

Theorem 2.1 (see [18]). Assume that fk(x) (k = 0, 1, . . . , m) are all differentiable.
If the function f0(x) attains at point x0 a local minimum subject to the set K =
{x|fi(x) � 0 (i = 1, 2, . . . , m)}, then there exists a vector of Lagrange multipliers
u0 such that the following conditions are satisfied:

∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
= 0 (j = 1, 2, . . . , n), (2.1)

fi(x0) � 0 (i = 1, 2, . . . , m), (2.2)

u0
i fi(x

0) = 0 (i = 1, 2, . . . , m), (2.3)

u0
i � 0 (i = 1, 2, . . . , m). (2.4)

In other words, the conditions (2.1)–(2.4) are necessary conditions for a local mini-
mum of problem (1.28). For a maximization problem, the nonnegativity condition (2.4)
is replaced by the nonpositivity condition u0 � 0. Conditions (2.1)–(2.4) are called
the Kuhn–Tucker conditions.

Proof. As in the case of the classical optimization problem, the Lagrange function
can be defined as a function of the original variables—in our case the variables x and
y—and of the Lagrange multipliers u:

L(x, y,u) = f0(x)+
m∑
i=1

ui(fi(x)+ y2
i ).

The necessary conditions for its local minimum are

∂L

∂xj
= ∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂(fi(x0)+ (y0
i )

2)

∂xj
= 0 (j = 1, 2, . . . , n), (2.5)

∂L

∂yi
= 2u0

i y
0
i = 0 (i = 1, 2, . . . , m), (2.6)
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∂L

∂ui
= fi(x0)+ (y0

i )
2 = 0 (i = 1, 2, . . . , m). (2.7)

Now it can be shown that the conditions in (2.6) correspond to the Kuhn–Tucker
conditions (2.3).

Suppose u0
i = 0. Then u0

i y
0
i = u0

i fi(x
0) = 0, and both conditions (2.6) and (2.3)

are satisfied.
If u0

i �= 0, then it follows from (2.6) that y0
i = 0 and therefore (y0

i )
2 = −fi(x0) =

0: Condition (2.3) is satisfied. On the other hand, it follows from (2.3) that fi(x0) = 0
and therefore y0

i = 0: Condition (2.6) is fulfilled.
Since the variables yi (i = 1, 2, . . . , m) are auxiliary variables, they can be

eliminated from conditions (2.5) and (2.7), and we obtain conditions (2.1) and (2.2).
It remains to show that the Lagrange multipliers must be nonnegative. For this

purpose, we consider the classical optimization problem:

minimize fo(x)

subject to fi(x) � bi (i = 1, 2, . . . , m).
(2.8)

For the Lagrange multipliers u0
i (i = 1, 2, . . . , m) of problem (2.8), the following

holds (see, e.g., [23, 1st ed., p. 231]):

∂f0(x0(b))
∂bi

= −u0
i (i = 1, 2, . . . , m), (2.9)

where x0 denotes the optimal solution of problem (2.8). Hence the Lagrange multi-
pliers u0

i (i = 1, 2, . . . , m) give us the change of the value of the objective function
due to a change of the constraint bi by a small amount. A higher value of the ith
component of the vector b implies an enlargement of the set K . Therefore, the new
optimal value of the objective function f0(x) cannot be worse:

∂f0(x
0)

∂bi
� 0 for a minimization problem (2.10)

and

∂f0(x0)

∂bi
� 0 for a maximization problem. (2.11)

The nonnegativity condition for the Lagrange multipliers (2.4) follows from (2.9)
and (2.10). Similarly, conditions in (2.9) and (2.11) imply that the Lagrange mul-
tipliers cannot be positive for problem (1.28) with the objective function to be
maximized. ��

For a geometric interpretation of the Kuhn–Tucker conditions (2.1)–(2.4), we
rewrite the conditions in (2.1) as follows:

∂f0(x0)

∂xj
= −

m∑
i=1

u0
i

∂fi(x0)

∂xj
(j = 1, 2, . . . , n),
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Fig. 2.1. Kuhn–Tucker conditions.

or

�f0(x0) = −
m∑
i=1

u0
i�fi(x0),

where �f0(x) denotes the gradient vector (the vector of first-order partial derivatives)
of the objective function, and �fi(x) is the gradient vector of the ith constraint
function (i = 1, 2, . . . , m). Thus the gradient of the objective function must, at
the optimal solution, be a nonpositive weighted combination of the gradients of the
active constraints (the constraints satisfied at the optimal solution as equalities). The
gradient vector of the objective function must therefore lie within the cone spanned by
the inward-pointing normals to the opportunity set at x0. This solution is illustrated
in Figure 2.1 for the problem in which n = 2, m = 3.

Using the Lagrange function (without slack variables) for the mathematical pro-
gramming problem (1.28),

	(x,u) = f0(x)+
m∑
i=1

uifi(x), (2.12)

the Kuhn–Tucker conditions (2.1)–(2.4) can be rewritten as follows:
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∂	(x0,u0)

∂xj
= 0 (j = 1, 2, . . . , n), (2.1′)

∂	(x0,u0)

∂ui
� 0 (i = 1, 2, . . . , m), (2.2′)

u0
i

∂	(x0,u0)

∂ui
= 0 (i = 1, 2, . . . , m), (2.3′)

u0
i � 0 (i = 1, 2, . . . , m). (2.4′)

The n conditions in (2.1′) are the same as in the classical programming case, or in
other words, as in the traditional Lagrange theory from classical differential calculus.

The m conditions in (2.2′) are the constraints of the mathematical programming
problem which permits solution at the boundary of the set of feasible solutions or at
an interior point of this set.

The m conditions in (2.3′), which are known as the complementary slackness
conditions of mathematical programming, serve essentially to determine which of the
two regimes will apply: whether the boundary or the interior minimum point occurs. If
the ith constraint is not binding (an interior point), then the corresponding Lagrange
multiplier will be zero. If the multiplier ui is positive, then the corresponding ith
constraint is binding (boundary solution). The reader should bear in mind that the
converse is not true.

Them conditions in (2.4′), requiring that the Lagrange multipliers be nonnegative,
stem from the fact that the constraints in (2.2′) are written as inequalities rather than
as equalities; if a constraint is an equality, then the corresponding element of u0 is
unrestricted, as in the classical programming case.

In most of the models of mathematical programming in economics (see Chapter 1),
nonnegativity conditions are required. Obviously, it would be possible to include
nonnegativity conditions in the set of constraints fi(x) � 0 (i = 1, 2, . . . , m). But
as we will show now, the Lagrange multipliers corresponding to the nonnegativity
conditions can be eliminated. It is therefore useful to consider the nonnegativity
conditions separately.

We consider the following mathematical programming problem:

minimize f0(x)

subject to fi(x) � 0 (i = 1, 2, . . . , m), (1.28a)

−xj � 0 (j = 1, 2, . . . , n).

First, we write the Lagrange function for problem (1.28a):


(x,u,w) = f0(x)+
m∑
i=1

uifi(x)+
n∑
j=1

wj(−xj ).

Then according to Theorem 2.1, the Kuhn–Tucker conditions become

∂ψ

∂xj
= ∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
− w0

j = 0 (j = 1, 2, . . . , n),
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or, equivalently,

∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj
= w0

j (j = 1, 2, . . . , n). (2.13)

Furthermore,

∂ψ

∂ui
= fi(x0) � 0 (i = 1, 2, . . . , m), (2.14)

u0
i

∂ψ

∂ui
= u0

i fi(x
0) = 0 (i = 1, 2, . . . , m), (2.15)

∂ψ

∂wj
= −x0

j � 0 (j = 1, 2, . . . , n), (2.16)

w0
j

∂ψ

∂wj
= w0

j (−x0
j ) = 0 (j = 1, 2, . . . , n),

which, because of (2.13), can be rewritten as

x0
j

(
∂f0(x0)

∂xj
+

m∑
i=1

u0
i

∂fi(x0)

∂xj

)
= 0 (j = 1, 2, . . . , n), (2.17)

u0
i � 0 (i = 1, 2, . . . , m), (2.18)

w0
j � 0 (j = 1, 2, . . . , n). (2.19)

Using the Lagrange function (2.12), the Kuhn–Tucker conditions (2.13)–(2.19) can
be summarized symmetrically with respect to x and u as

∂	(x0,u0)

∂x
� 0, (2.20)

x0 ∂	(x
0,u0)

∂x
= 0, (2.21)

x0 � 0, (2.22)

∂	(x0,u0)

∂u
� 0, (2.23)

u0 ∂	(x
0,u0)

∂u
= 0, (2.24)

u0 � 0. (2.25)

The reader will note that in the case of nonnegativity conditions for the variables
x, condition (2.1) of the Kuhn–Tucker theorem has been replaced by two sets of
conditions (2.20)–(2.21). An intuitive explanation of this matter will be given in the
next section.
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2.2 Rationale of the Kuhn–Tucker Conditions

As already mentioned, the Kuhn–Tucker conditions are the natural generalization
of the Lagrange multiplier approach, from classical differential calculus replacing
equality constraints by inequality constraints, to take account of the possibility that
the maximum or minimum in question can occur not only at a boundary point but
also at an interior point. The calculus requirements are generally appropriate only if
the extremum (i.e., the maximum or minimum) occurs at a point at which all of the
variables (including the slack variables) take nonzero values.

Now we consider—for simplicity, but without loss of generality—the minimiza-
tion of the function f (x) subject to x � 0. In this case, the matter can be illustrated
graphically. Suppose first that we are at a point at which the value of x can either
be increased or decreased (the interior point A in Figure 2.2). By the usual logic of
marginal analysis, we must have df

dx
= 0, for otherwise either a rise or a fall in the

value of x could increase the value of f , and f would not be at its minimum.
On the other hand, suppose we are testing for the possibility of a boundary min-

imum at which x = 0. In Figure 2.2, two possibilities for local minimum of the
function f (x) subject to x � 0 can be observed. If df

dx
= 0, the point with x = 0

(point B in Figure 2.2) may be a minimum for the usual reasons, and if df
dx
> 0, it

may be a minimum point simply because it is impossible to reduce the value of x any
further (point C in Figure 2.2).

Direct generalization for the function with n variables leads to the following
conclusions. Given a differentiable function f (x1, x2, . . . , xn),

• for an interior minimum (maximum), it is necessary that ∂f
∂xj

= 0 (j = 1, 2, . . . , n);

• for a boundary minimum, it is necessary that ∂f
∂xj

� 0 (j = 1, 2, . . . , n).

The reader may check that—by the same reasoning—for a boundary maximum it is
necessary that ∂f

∂xj
� 0.

Fig. 2.2. Minimum of the function f (x) subject to x � 0.
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Similar to the interpretation of the complementary slackness conditions (2.3′) or
(2.24), the conditions in (2.21) serve to determine which solution case occurs; if
the value of xj under consideration is positive (interior minimum case), then (2.21)
requires ∂	

∂xj
= 0. If ∂	

∂xj
> 0, then we can only have a boundary minimum (xj = 0).

2.3 Kuhn–Tucker Conditions and a Saddle Point of the Lagrange
Function

We consider the Lagrange function 	(x,u) as defined in (2.12). The necessary
conditions for a local minimum of the Lagrange function (2.12), regarded as a function
of x only, subject only to the nonnegativity conditions xj � 0 (j = 1, 2, . . . , n) are
exactly the Kuhn–Tucker conditions (2.20)–(2.22) for problem (1.28a). At the same
time, the Kuhn–Tucker conditions (2.23)–(2.25) provide the necessary conditions for
a local maximum of the Lagrange function (2.12), regarded as a function of u only,
subject only to the nonnegativity conditions ui � 0 (i = 1, 2, . . . , m). A graphical
illustration of this property of the point (x0,u0) from the Kuhn–Tucker conditions
(2.20)–(2.25) is depicted in Figure 2.3. This leads to the following concept of a saddle
point.

Definition 2.1. A point (x0,u0) with x0 � 0 and u0 � 0 is said to be a saddle point
of the Lagrange function 	(x,u) if

Fig. 2.3. Saddle point of the Lagrange function.
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	(x0,u) � 	(x0,u0) � 	(x,u0)

for all x � 0, u � 0.

In other words, for a fixed u = u0, the Lagrange function is minimized at x0

(due to the second inequality of the relationship in Definition 2.1), whereas for a
fixed x = x0, the Lagrange function is maximized at u0 (which follows from the first
inequality of the relationship in Definition 2.1).

Now the relationship between the saddle point of the Lagrange function and the
optimal solution of problem (1.28a) can be established.

Theorem 2.2. If there exists a saddle point (x0,u0) of the Lagrange function	(x,u),
then x0 is an optimal solution for problem (1.28a).1

In order to obtain the converse of Theorem 2.2, we need convexity properties of
the functions fk(x) (k = 0, 1, 2, . . . , m), which will be discussed in the next chapter.

2.4 Kuhn–Tucker Conditions for the General Mathematical
Programming Problem

The real applications of mathematical programming in economics contain both types
of constraints: inequalities as well as equalities. Therefore, we define the general
mathematical programming problem as follows:

minimize f0(x, y)

subject to fi(x, y) � 0 (i = 1, 2, . . . , m),

gh(x, y) = 0 (h = m+ 1, . . . , r), (1.28b)

x � 0,

y ∈ R
l .

Obviously, problems (1.28) and (1.28a) are special cases of problem (1.28b).
Writing problem (1.28b) in the form (1.28) with 	(x, y,u, v) = f0(x, y) +∑m
i=1 uifi(x, y)+∑r

h=m+1 vhgh(x, y), the reader may verify that the Kuhn–Tucker
conditions take the symmetric form

∂	0

∂x
� 0,

∂	0

∂y
= 0,

∂	0

∂u
� 0,

∂	0

∂v
= 0,

x0 ∂	
0

∂x
= 0, u0 ∂	

∂u
= 0, x0 � 0, u0 � 0,

where 	0 = 	(x0, y0,u0, v0), (x0, y0) denotes the local minimum of the function
f0(x, y) under the constraints of problem (1.28b), and (u0, v0) are the corresponding

1 For the proof, see, e.g., [24, pp. 215–217] or [10, p. 539].
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Lagrange multipliers. It is worth noting that the Lagrange multipliers v related to the
equalities are not restricted to the nonnegativity (as in the classical Lagrange theory).

A summary of the rules for the formulation of the Kuhn–Tucker conditions for
the general mathematical programming problem is as follows:

Rule 1. For a minimization (maximization) problem write all inequality constraints
in the form

fi(x) � 0 (fi(x) � 0).

Rule 2. Write the Lagrange function as the sum of the objective function and the
weighted constraints.

Rule 3. The partial derivatives of the Lagrange function
(a) with respect to the nonnegative variables are nonnegative (nonpositive)

for a minimization (maximization) problem and the complementary
slackness condition

x
∂	

∂x
= 0

is fulfilled;
(b) with respect to the free variables are equal to zero;
(c) with respect to the Lagrange multipliers corresponding to the inequality

constraints are nonpositive (nonnegative) for a minimization (maximiza-
tion) problem and the complementary slackness condition

u
∂	

∂u
= 0

is fulfilled;
(d) with respect to the Lagrange multipliers corresponding to the equality

constraints are equal to zero.

For a numerical illustration, we consider the following example:

minimize f0(x) = x2
1 − 4x1 + x2

2 − 6x2

subject to x1 + x2 � 3,

−2x1 + x2 � 2.

The Lagrange function is

	(x,u) = x2
1 − 4x1 + x2

2 − 6x2 + u1(x1 + x2 − 3)+ u2(−2x1 + x2 − 2).

Application of the Kuhn–Tucker conditions (2.1′)–(2.4′) gives

∂	

∂x1
= 2x1 − 4 + u1 − 2u2 = 0, (2.26)

∂	

∂x2
= 2x2 − 6 + u1 + u2 = 0, (2.27)



2.4 Kuhn–Tucker Conditions for the General Mathematical Programming Problem 35

∂	

∂u1
= x1 + x2 − 3 � 0, (2.28)

u1
∂	

∂u1
= u1(x1 + x2 − 3) = 0, (2.29)

∂	

∂u2
= −2x1 + x2 − 2 � 0, (2.30)

u2
∂	

∂u2
= u2(−2x1 + x2 − 2) = 0, (2.31)

u1 � 0, u2 � 0. (2.32)

There is in general no simple computational procedure for the solution of these con-
ditions. In order to show how to use the Kuhn–Tucker conditions, it is necessary to
explore various cases defined principally by reference to whether each ui is zero.

For the first case, suppose thatu1 = 0 andu2 = 0. From conditions (2.26)–(2.27),
we get x1 = 2 and x2 = 3. This vector cannot be a solution of our problem because
it violates the first constraint x1 + x2 � 3.

Second, suppose that u1 �= 0 and u2 = 0. Then equations (2.26) and (2.27) are
reduced to

2x1 + u1 = 4,

2x2 + u1 = 6.

Due to the complementary slackness condition (2.29), inequality (2.28) must be ful-
filled as the equality

x1 + x2 = 3.

The above system of equations yields the solution x1 = 1, x2 = 2, and u1 = 2, which
also satisfies the remaining conditions (2.30)–(2.31). In other words, all Kuhn–Tucker
conditions (2.26)–(2.32) are satisfied.

The third case corresponds to u1 = 0, u2 �= 0. The resulting system of equations,

2x1 − 2u2 = 4,

2x2 + u2 = 6,

−2x1 + x2 = 2,

yields the solution x1 = 4
5 , x2 = 18

5 , u2 = − 6
5 , which violates conditions (2.28)

and (2.32).
The last possibility is u1 �= 0 and u2 �= 0. Because of the complementary

slackness conditions (2.29) and (2.31), both inequality constraints (2.28) and (2.30)
must be satisfied as equalities:

x1 + x2 = 3,

−2x1 + x2 = 2.

The solution is x1 = 1
3 and x2 = 8

3 . Substituting these values in (2.26)–(2.27), we
obtain a negative value for the Lagrange multiplier u2 = − 8

9 , which is a contradiction
to condition (2.32).
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Only the values x1 = 1, x2 = 2, u1 = 2, and u2 = 0 satisfy all Kuhn–Tucker
conditions and a simple inspection of the graph of the feasible solutions illustrates
that this is indeed the optimal solution of our example.

Without further assumption about the functions fk(x) (k = 0, 1, 2, . . . , m), The-
orem 2.1 provides only necessary conditions for a local optimal solution of prob-
lem (1.28).

In order to illustrate that the Kuhn–Tucker conditions are not sufficient condi-
tions for a local minimum (maximum) of mathematical programming problems, we
consider the following very simple one-variable example:

maximize f0(x) = (x − 1)3 (2.33)

subject to x � 2, (2.34)

x � 0. (2.35)

According to Rule 1 for the formulation of the Kuhn–Tucker condition, we rewrite
the constraint as 2 − x � 0. Then the Lagrange function is

	(x, u) = (x − 1)3 + u(2 − x).

Application of the Kuhn–Tucker conditions (2.20)–(2.25) for the maximization
problem gives

∂	

∂x
= 3(x − 1)2 − u � 0, (2.36)

x
∂	

∂x
= x[3(x − 1)2 − u] = 0, (2.37)

∂	

∂u
= 2 − x � 0, (2.38)

u
∂	

∂u
= u(2 − x) = 0, (2.39)

u � 0 (because of Rule 1). (2.40)

The reader may verify that x0 = 1 and u0 = 0 satisfy the Kuhn–Tucker conditions
(2.36)–(2.40). By simple inspection, it can be shown that the maximum of function
(2.33) under the constraints (2.34)–(2.35) is at the point x = 2 and not at the point
x0 = 1.

The question of sufficiency of the Kuhn–Tucker conditions or the “second-order
conditions” for the optimal solution of mathematical programming problems will be
explored in the next chapter.

2.5 The Kuhn–Tucker Conditions and Economic Analysis

As illustrated in the previous section, the Kuhn–Tucker conditions can be helpful in the
solution of specific numerical problems. Many algorithms of quadratic programming
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are based on these conditions. For economists, the Kuhn–Tucker conditions can be
more useful for derivation of qualitative results without the necessity of specifying nu-
merically the parameters of a mathematical programming problem. The primary aim
is to characterize the optimal behavior of an economic agent under consideration. “As
a result the Kuhn–Tucker conditions may perhaps constitute the most powerful single
weapon provided to economic theory by mathematical programming” [4, p. 165].

A few examples will illustrate how the Kuhn–Tucker conditions can be used as
an instrument for qualitative economic analysis.

2.5.1 Peak Load Pricing

Many profit-maximizing firms are confronted with the situation that the demand for
a given product varies by the hour of the day so that at some times the capacity of
the firm is fully utilized (peak periods), while at other times demand is slow so that
some capacity remains underutilized (off-peak periods). As shown by Littlechild [20]
with the aid of Kuhn–Tucker analysis and previously formulated by Steiner [35] and
Williamson [38], in such situations the differential pricing is—in the sense of profit
maximization—optimal. According to [4, p. 167], the following proposition can be
formulated.

Proposition 2.1. The profit-maximizing outputs will be such that prices at off-peak
periods will merely cover marginal operating costs (raw materials, labor, etc.),while
in peak periods the prices will exceed marginal operating costs. The sum of the
excesses of these prices over marginal operating costs for all peak periods will just
add up to marginal capital cost, i.e., they will sum to the marginal cost of increasing
capacity.

Proof. We denote the quantity demanded during each of the 24 hours of the day by
x1, x2, . . . , x24 and the corresponding prices (e.g., telephone rates) byp1, p2, . . . , p24.
It is assumed that all xi > 0, i.e., that some output is sold during each hour of the
day. The hourly output capacity is denoted by y. The function C(x1, x2, . . . , x24)

describes the daily total operating cost and g(y) the daily cost of capital (capacity).
We assume that the marginal operating cost, ∂C

∂xi
, as well as the marginal capacity

cost, dg
dy

, are positive. Furthermore, it is assumed that prices are not affected by the

firm’s output, i.e., ∂pi
∂xi

= 0. (Perfect competition prevails. The prices p1, . . . , p24
can therefore be regarded as given and fixed.)

The firm seeks to maximize the total profit per day,

π =
24∑
i=1

pixi − C(x1, x2, . . . , x24)− g(y),

subject to the 24 hourly capacity constraints,

xi � y (i = 1, 2, . . . , 24),

xi � 0 (i = 1, 2, . . . , 24),
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y � 0.

The Lagrange function has the form

	(x, y,u) =
24∑
i=1

pixi − C(x1, x2, . . . , x24)− g(y)+
24∑
i=1

ui(y − xi).

Under the assumption of a perfectly competitive firm, the Kuhn–Tucker conditions
are then

∂	

∂xi
= pi − ∂C

∂xi
− ui � 0 (i = 1, 2, . . . , 24), (2.41)

xi
∂	

∂xi
= xi

(
pi − ∂C

∂xi
− ui

)
= 0 (i = 1, 2, . . . , 24), (2.42)

∂	

∂y
= −dg

dy
+

24∑
i=1

ui � 0, (2.43)

y
∂	

∂y
= y

(
−dg
dy

+
24∑
i=1

ui

)
= 0, (2.44)

∂	

∂ui
= y − xi � 0 (i = 1, 2, . . . , 24), (2.45)

ui
∂	

∂ui
= ui(y − xi) = 0 (i = 1, 2, . . . , 24), (2.46)

ui � 0 (i = 1, 2, . . . , 24). (2.47)

Since we have assumed that xi > 0 (i = 1, 2, . . . , 24), it follows from (2.45) that
y > 0 (that is, if capacity, y, were zero, nothing could be produced).

Because we are only interested in solutions in which all xi and y are positive,
(2.41) and (2.43) become the following:

pi − ∂C

∂xi
− ui = 0 (i = 1, 2, . . . , 24), (2.41′)

−∂g
∂y

+
24∑
i=1

ui = 0. (2.43′)

In any off-peak period t , there is by definition excess capacity (y > xt ). Therefore,
by the complementary slackness condition (2.46), we must have ut = 0 for off-peak
periods.

Then the first part of Proposition 2.1 follows immediately from (2.41′):

pt = ∂C

∂xt
for any off-peak period t;

that is, for any off-peak period, it is optimal to set the price equal to the marginal
operating cost, ∂C

∂xt
. Since there is excess capacity, demand should be encouraged by

charging a price as low as possible without incurring a loss on the marginal unit sold.



2.5 The Kuhn–Tucker Conditions and Economic Analysis 39

For any peak period, s, the capacity of the firm is fully utilized (xs = y). Since
we have assumed that dg

dy
> 0 (increasing output capacity requires additional capital),

it follows from (2.43′) that
dg

dy
=
∑
s

us > 0,

that is, at least for some of the peak periods, the Lagrange multipliers must be positive.
Then we obtain from (2.41′) that

ps = ∂C

∂xs
+ us for any peak period s.

The price will exceed the marginal operating cost by a supplementary amount equal
to the value of the Lagrange multiplier us . Moreover, by (2.43′) the sum of these
supplements for all peak periods together will be exactly equal to the marginal ca-
pacity cost, ∂g

∂y
. Since peak period demand presses on capacity, any increase in this

demand must require additional capital, and it must therefore cover its marginal cap-
ital cost, dg

dy
. ��

This completes the proof of Proposition 2.1 as the basic principles for the setting
of daytime and evening telephone rates, for the higher accommodation prices in the
peak season, etc. This principle can be applied in the recent discussion about the road
pricing system as well.

2.5.2 Revenue Maximization under a Profit Constraint2

Suppose that a firm produces a single product whose output is q and that its sales are
affected by its advertising expenditure a. The firm will maximize its total revenue
R(q, a) subject to a profit constraint,

� = R(q, a)− C(q)− a � m,

where C(q) indicates the cost of production and where the marginal revenue of ad-
vertising and the marginal cost of output are both positive ( ∂R

∂a
> 0, dC

dq
> 0). Then

the behavior of the firm is described by the following.

Proposition 2.2. The revenue-maximizing output will be such that the profit is equal
to the prescribed levelm, the marginal revenue ∂R

∂q
is positive, and the marginal profit

∂�
∂q

is negative.

Proof. The firm’s decision problem is

maximize R(q, a)

subject to R(q, a)− C(q)− a � m,

q � 0, a � 0.
2 Formulation of the problem by Baumol [4, p. 170].
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The Lagrange function becomes

	(q, a, u) = R(q, a)+ u(R(q, a)− C(q)− a −m),

and the Kuhn–Tucker conditions are

∂	

∂q
= ∂R

∂q
+ u

(
∂R

∂q
− dC

dq

)
� 0,

or

(1 + u)
∂R

∂q
− u

dC

dq
� 0, (2.48)

q
∂	

∂q
= q

[
(1 + u)

∂R

∂q
− u

dC

dq

]
= 0, (2.49)

∂	

∂a
= ∂R

∂a
+ u

∂R

∂a
− u � 0,

or

(1 + u)
∂R

∂a
� u,

or

∂R

∂a
� u

1 + u
, (2.50)

a
∂	

∂a
= a

[
(1 + u)

∂R

∂a
− u

]
= 0, (2.51)

∂	

∂u
= R(q, a)− C(q)− a −m � 0, (2.52)

u
∂	

∂u
= u [R(q, a)− C(q)− a −m] = 0, (2.53)

u � 0. (2.54)

Assuming q > 0 in the solution, condition (2.48) can be written as

∂R
∂q

dC
dq

= u

1 + u
. (2.48′)

Since we have assumed ∂R
∂a
> 0, it follows from (2.50) and (2.54) that u > 0. The

complementary slackness condition (2.53) then implies� = m. Taking into account
our assumption that dC

dq
> 0, it follows from (2.48′) that the marginal revenue ∂R

∂q
is

positive and smaller than the marginal cost dC
dq

. Therefore, the marginal profit with

respect to output, ∂�
∂q

= ∂R
∂q

− dC
dq

, must be negative. ��
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From the economic interpretation point of view, it is interesting to compare the
obtained results with the results for a profit-maximizing firm. The reader may verify
that the necessary condition for profit-maximizing output is that the marginal revenue
is equal to the marginal cost. In our model, at the constrained revenue-maximizing
output, the marginal revenue is lower than the marginal cost. The implication of this
result for the linear revenue function

R(q, a) = α1q + α2a with α1 > 0, α2 > 0

and the quadratic cost function

C(q) = cq2 with c > 03

is that the constrained revenue-maximizing output from our model is higher than the
profit-maximizing output. The optimal solution qπ for the profit-maximizing firm
follows directly from the condition

∂R

∂q
= α1 = dC

dq
= 2cq,

i.e.,

qπ = α1

2c
.

For the revenue-maximizing firm, the necessary condition for the optimal solution
becomes

∂R

∂q
= α1 = u

1 + u

dC

dq
= u

1 + u
2cq,

and consequently

qR = α1

2c

(
1 + u

u

)
>
α1

2c
= qπ .

2.5.3 Behavior of the Firm under Regulatory Constraint

The regulation of monopolies is an important subject in applied economic analysis.
In the sectors with network structure, such as telecommunications, electricity and
gas, and railway systems with high fixed and irreversible (sunk) costs, it is cheaper
to produce goods by a single firm than by many firms. These situations are called
natural monopolies and occur whenever the average costs of production for a single
firm are declining over a broad range of output levels. The reason lies in the so-called
“bundling advantage”: With increasing diameter of the pipe, the volume increases

3 It can be shown that in this case the second-order conditions are fulfilled.
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more rapidly than its girth, which is crucial for the costs. The average costs of
production fall as the scale of production increases; we say there are economies of
scale. A natural monopoly with ireversible costs implies a barrier to market entry
and is characterized by sustainable market power. In order to prevent this monopoly
power over the customers and to guarantee the reliability and quality of supply at
economically or politically desired prices, the regulation of monopolistic firms has
been introduced. For the regulation of interstate telephone and telegraph service and
of radio and television broadcasting in the United States, the Federal Communica-
tions Commission was created in 1934, and the Civil Aeronautics Board, which
regulated the prices charged by the interstate scheduled airlines as well as entry into
the industry, was established in 1938. The Federal Energy Regulatory Commission
was established in the United States in 1977. Independent regulatory agencies operate
now in all countries of the European Union.

The monopoly profit-maximizing level of output is that one for which marginal
revenue equals marginal cost. At this output level, price will exceed marginal cost.
The profitability of the monopolist will depend on the relationship between price and
average cost.

One approach to devising monopoly pricing schemes that is followed in many
regulatory situations is to permit the monopoly to charge a price above average cost
that is sufficient to earn a “fair” rate of return on investment. From an economic
point of view, the interesting question concerns the impact of regulation on the firm’s
input choices. In the most frequently quoted paper in regulatory economics Averch
and Johnson [2] showed that under the rate of return constraint the profit-maximizing
firm chooses an inefficient input mix in the sense “that (social) cost” is not minimized
at the output it selects [2, p. 1052].

Let us start the analysis considering a basic model of the monopoly firm producing
a single output using two inputs, capital and labor, where the respective quantities are
denoted q, x1 and x2; the production function permits inputs to be employed in any
proportion. The unit price of the firm’s output is denoted p. Suppose that it can buy
as much as it wants of the two inputs at constant unit prices of c1 and c2, respectively,
so that its profit function is

� = pq − c1x1 − c2x2. (2.55)

Assuming that x1 > 0 and x2 > 0 (in other words, both production factors are
essential), the profit maximization requires that

∂�

∂x1
= ∂pq

∂x1
− c1 = 0, (2.56)

∂�

∂x2
= ∂pq

∂x2
− c2 = 0, (2.57)

and consequently,
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∂pq

∂x1
∂pq

∂x2

= c1

c2
. (2.58)

The ratio of marginal revenue products will equal the ratio of the input prices. The
marginal revenue product ∂pq

∂xi
describes the extra revenue that accrues to a firm when

it sells the output that is produced by one more unit of input i (i = 1, 2). The marginal
revenue product of factor i (MRi ) is given by the multiplication of marginal revenue
(MR) by the marginal physical product (MPi ) of factor i: MRi = MR · MPi . The
marginal revenue is the additional revenue obtained by a firm when it is able to sell one
more unit of output. The marginal physical product describes the additional output
that can be produced by one more unit of a particular input while holding all other
inputs constant. According to (2.58), the firm uses an efficient mix of capital and
labor in the sense that cost is minimized at the output it selects. Rewriting (2.58) as

∂pq

∂x1

c1
=
∂pq

∂x2

c2
, (2.58′)

every additional Euro given to any input yields the same revenue.
Now, following [2], suppose that the firm is regulated by government, which im-

poses a constraint on its rate of return. The introduction of such regulatory constraint
is motivated by the following argument: “In judging the level of prices charged by
firms for services subject to public control, government regulatory agencies com-
monly employ a ‘fair rate of return’ criterion: After the firm subtracts its operating
expenses from gross revenues, the remaining net revenue should be just sufficient to
compensate the firm for its investment in plant and equipment. If the rate of return,
computed as the ratio of net revenue to the value of plant and equipment (the rate base),
is judged to be excessive, pressure is brought to bear on the firm to reduce prices. If the
rate is considered to be too low the firm is permitted to increase prices” [2, p. 1052].
The profit-maximizing behavior of the firm under such a regulatory constraint can
then be described by the following.

Proposition 2.3. The firm does not equate the marginal rate of factor substitution to
the ratio of the input prices. The firm has an incentive to increase its investment: The
amount of capital used with the regulatory constraint is not less than the amount used
without a constraint.

Proof. We define the firm’s production function as

q = f (x1, x2), where f1 = ∂f

∂x1
> 0, f2 = ∂f

∂x2
> 0,

f (0, x2) = f (x1, 0) = 0.

That is, marginal products are positive, and production requires both inputs.
The inverse demand function can be written
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p = p(q), where p′(q) = dp

dq
< 0.

The profit � is defined by (2.55).
Let x1 denote the physical quantity of plant and equipment in the rate base, b1

the acquisition cost per unit of plant and equipment in the rate base, β1 the value
of depreciation of plant and equipment during a time period in question, and B1 the
cumulative value of depreciation.

The regulatory constraint of [2] is

pq − c2x2 − β1

b1x1 − B1
� s, (2.59)

where the profit net of labor cost and capital depreciation constitutes a percentage of
the rate base (net depreciation) no greater than a specified maximum s.

For simplicity, in [2] it was assumed that depreciation (β1 and B1) is zero and the
acquisition cost b1 is equal to 1 (i.e., the value of the rate base is equal to the physical
quantity of capital). The price, or the “cost of capital,” c1 is the interest cost involved
in holding plant and equipment (to be distinguished from the acquisition cost b1).
The regulatory constraint (2.59) can then be rewritten as

pq − c2x2

x1
� s,

or

pq − sx1 − c2x2 � 0. (2.60)

The “fair rate of return” s is the rate of return allowed by the regulatory agency on
plant and equipment in order to compensate the firm for the cost of capital.

If s < c1, the allowable rate of return is less than the actual cost of capital and the
firm would withdraw from the market. Therefore, we shall assume that s � c1; the
allowable rate of return must at least cover the actual cost of capital.

The problem of the firm is to maximize the profit described by function (2.55)
subject to (2.60) and x1 � 0, x2 � 0. The Lagrange function is defined as

	(x1, x2, u) = p(q)q − c1x1 − c2x2 − u(p(q)q − sx1 − c2x2),

where q = f (x1, x2).
The Kuhn–Tucker necessary conditions for a maximum at x0

1 , x
0
2 , u

0 are

∂	

∂x1
= (1 − u)[p + p′q]f1 − c1 + us � 0, (a)

x1
∂	

∂x1
= x1{(1 − u)[p + p′q]f1 − c1 + us} = 0, (b)

∂	

∂x2
= (1 − u)[p + p′q]f2 − (1 − u)c2 � 0, (c)
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x2
∂	

∂x2
= x2{(1 − u)[p + p′q]f2 − (1 − u)c2} = 0, (d)

∂	

∂u
= −(p(q)q − sx1 − c2x2) � 0, (e)

u
∂	

∂u
= u(p(q)q − sx1 − c2x2) = 0, (f)

u � 0. (g)

Because the production requires both inputs x0
1 > 0, x0

2 > 0, and assuming u0 > 0
(i.e., the regulatory constraint (2.60) is binding at (x0

1 , x
0
2 )), conditions (a), (c), and (e)

can be rewritten as the following equalities:

(1 − u)[p + p′q]f1 + us = c1, (2.61)

[p + p′q]f2 = c2, (2.62)

pq − sx1 − c2x2 = 0. (2.63)

The expression (p + p′q) describes the marginal revenue and f1, f2 denote the
marginal physical products of capital and labor, respectively. Note that (2.61)–(2.63)
will determine the values of x0

1 , x0
2 , and u0.

If there is no regulatory constraint (2.60) so that the constraint is not active (u = 0),
(2.61) and (2.62) reduce to (2.56)–(2.57) with the familiar rule that the marginal
revenue product of each factor is equal to its price.

It follows from (2.61) that u0 > 0 (the binding regulatory constraint (2.60)) will
distort the equality of the marginal revenue product of capital (p + p′q)f1 with its
actual cost c1. Consequently, the relative proportions of capital and labor used by the
firm will be changed. The marginal rate of factor substitution f1

f2
is no longer equal

to the ratio of the input prices. The first part of Proposition 2.3 is proved.
Assuming that u > 0, it is clear from (2.61) that u = 1 implies c1 = s. On the

other hand, if c1 = s, (2.61) reduces to (2.56), which corresponds to the behavior of
unregulated monopoly. Therefore, we sharpen our assumption s � c1 to s > c1 and
get u0 �= 1.

Let the superscript 0 denote the solution of the optimization problem for the regu-
lated monopoly and asterisk the solution for the unregulated monopoly. Furthermore,
denote the expression [p + p′q]f1 for the marginal revenue product of capital and
the expression [p + p′q]f2 for the marginal revenue of labor by MR1 and MR2,
respectively.

Adding c1u
0 to both sides of (2.61) and rearranging terms yields

MR0
1 = c1 − (s − c1)

1 − u0 u
0. (2.64)

Under the assumption that s > c1 andu0 < 1 (as claimed in [2]), it follows from (2.64)
that MR0 < c1.

If the revenue function G ≡ pf (x1, x2) is concave (this assumption is not men-
tioned in [2]; it was introduced by Takayama [36]), then the marginal revenue prod-
uct of capital MR1 is a nonincreasing function of capital used, and consequently the
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amount of capital used under the regulatory constraint (x0
1 ) is not less than the amount

used without a constraint (x∗
1 ). IfG is assumed to be strictly concave, then ∂ MR1

∂x1
< 0;

hence x0
1 > x∗

1 . Furthermore, it follows from (2.61) and (2.62) that

MR1

MR2
= c1

c2
− (s − c1)

c2

u0

(1 − u0)
<
c1

c2
.

The marginal rate of substitution between inputs (MR1
MR2

) is lower than the ratio of
input prices. Each output is produced with more capital and less labor as compared
to the unregulated optimum. This effect of overcapitalization contained in the second
part of Proposition 2.3 is known as the Averch–Johnson effect. In their own words,
“If the rate of return allowed by the regulatory agency is greater than the cost of
capital but is less than the rate of return that would be enjoyed by the firm were it
free to maximize profit without regulatory constraint, then the firm will substitute
capital for the other factor of production and operate at an output where cost is not
minimized” [2, p. 1053]. ��

This inefficiency derives from the fact that the net return of the monopolist on
every unit of capital is s−c1, and this creates an incentive to substitute capital for labor.
Under regulatory constraint�0+c1x

0
1 −sx0

1 = 0, and consequently�0 = (s−c1)x
0
1 .

An important question in theAverch–Johnson analysis is whether u0 is indeed less
than one. The argument by Averch–Johnson roughly goes as follows: Since s > c1,
u0 cannot be equal to one, as shown before, for the unconstrained rate of return is
u0 = 0. Because of the continuity of u0 with respect to s, u0 should always be less
than one.

But the continuity of u0 is not intuitively obvious. The value of the Lagrange
multiplier may jump from zero to some nonzero value as the constraint moves from
a nonactive to an active stage. Takayama [36] showed that the continuity of u0 in the
Averch–Johnson model depends on the continuity of x0

1 and x0
2 with respect to s.

Another way to obtain the condition u0 < 1 uses the optimality conditions (2.61)–
(2.63). As already mentioned, under the assumptions x0

1 > 0, x0
2 > 0, and u0 > 0,

these equations determine the values of x0
1 , x0

2 , and u0. The value of u0 can be
obtained explicitly from (2.64), assuming that s − MR0

1 > 0:

u0 = c1 − MR0
1

s − MR0
1

> 0. (2.65)

Under our assumption that s > c1 and the new condition s > MR0
1, it follows directly

from (2.65) that u0 < 1.
If u0 = 1, then due to (2.61), s = c1, which contradicts the assumption of s > c1.
A condition similar to our condition s > MR0

1 is used by El-Hodiri and
Takayama [9]. Assuming that G is concave, the Averch–Johnson effect, x0

1 � x∗
1 ,

occurs if and only if MR0
1 −c1 � 0. They assert that u0 < 1 if and only if MR0

1 � c1
(i.e., if and only if x0

1 � x∗
1 ). They can prove the Averch–Johnson effect without

assuming anything about u0 but with the requirement that MR0
1 � c1.
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Averch and Johnson applied the model to one particular regulated industry—the
domestic telephone and telegraph industry. They found that “the model does raise
issues relevant to evaluating market behavior” [2, p. 1052]. The scientific discussion
as well as the real applications of the rate-of-return regulation has been initiated.

In the 1980s, the discussion—connected with privatization and deregulation poli-
cies in several countries—began to concentrate on the question of how a regulating
agency could give the best incentives for efficient production in the regulated firm.
The way to increase the efficiency is based on the promotion of the competition.
Internal subsidization was increasingly considered undesirable and this view has led
to reconsideration of the internal organization of firms which claimed to be natural
monopolies. Because in the utilities like telecommunications, electricity, and gas, it
is only the distributive grid which has the properties of a natural monopoly, vertical
desintegration or unbundling has been proposed. The electricity generation must be
separated from the transmission and distribution activities. With respect to these grids,
economies of scale are still predominant, maybe even increasing in recent decades.
With unbundling a market entry in those parts where no natural monopoly properties
prevail can ensure and a presupposition for effective competition is created. Compe-
tition is effective when each firm cannot appreciably raise the price above that of its
rivals for fear of losing its market share, and can only increase profit by cutting costs.
Regulation of networks which remain natural monopolies is needed in order to make
the entry possible for different providers and in this way to promote a competition.
How to design regulation to fulfill the above requirements and so provide incentives
for grid companies to reduce the costs and consequently the prices? The main draw-
back of the rate of return regulation is the lack of incentives for cost reduction and
technological innovation. “A profit maximizing firm subject to a fair return on in-
vestment regulation will overcapitalize and select those technical changes which will
allow to continue to do so—namely labor augmenting innovations” [34, p. 630].4 We
speak about costs based regulation, in which firms’ allowed rate of return is based
directly on the reported costs of the individual firm.

During the privatization of British Telecom, Littlechild [21], Director of the Office
for Electricity Regulation, proposed a new type of regulation, the so-called price-cap
regulation.5 The basic idea is that the price index of the monopolistically supplied
goods (or services) must not exceed the retail price index minus an exogenously
fixed productivity factor. The customer must be able to buy at the prices of given
period the same basket of goods (or services) as in the base period without increasing
expenditures. The retail price index (RPI) measuring the inflation rate is the consumer
price index, which is a Laspeyers index of the usual type:

RPI =
∑
i piq

0
i∑

i p
0
i q

0
i

.

The superscript 0 defines variables of the base period in which the fixed commodity

4 For further reading, see [13].
5 For further reading on price-cap regulation, see [7, 19, 17], and for a survey comparing rate

of return and price-cap regulation, see [22].
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basket of the index was empirically determined. We denote the price of commodity
i by pi and the quantity by qi (i = 1, 2, . . . , n).

The profit-maximizing firm is regulated by the following constraint:

n∑
i=1

piq
0
i �

n∑
i=1

p0
i q

0
i (1 + RPI −X), (2.66)

where X describes the productivity factor of the sector.
Because both the consumer price index (RPI) as well as the expenditures of the

base period (
∑n
i=1 p

0
i q

0
i ) are for the regulator exogenously given, the only control

variable for him remains the productivity factor (X). From the regulatory point of
view the relevant question therefore concerns the impact of X on the behavior of the
regulated firm.

For this purpose, we consider the following optimization problem:

maximize �(q) = p(q)q − C(q)

subject to p(q)q0 � b0,
(2.67)

where �(q) describes the profit function, C(q) is the cost function, and p(q) is the
inverse demand function. b0 denotes the right side of the regulatory constraint (2.66):

b0 = p0q0(1 + RPI −X).
The price cap (b0) can be faced as a function of the expenditures in the base period
(p0q0), of the retail price index (RPI), and of the productivity factor (X):

b0 = b

(
R0

(+),RPI
(+) , X(−)

)
,

where R0 = p0q0. With increasing expenditures (R0) and increasing consumer
price index (RPI), the price cap (b0) rises. The increasing productivity (X) makes
the constraint (2.66) tighter. In other words, the increasing productivity implies lower
prices for the consumers.

Furthermore, we postulate positive marginal cost and a declining demand func-
tion:

dC

dq
= MC > 0,

dp

dq
< 0.

The Lagrange function for the maximization problem (2.67) is

	(q, u) = p(q)q − C(q)+ u(b0 − p(q)q0).

Application of the Kuhn–Tucker conditions (2.20)–(2.21) yields

p − dC

dq
= −dp

dq
(q − uq0). (2.68)

Multiplying both sides of (2.68) by 1
p

, we obtain
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p − MC

p
= −dp

dq

q

p
+ u

q0

p

dp

dq
.

Using the notion of the price elasticity of demand ε = pdq
qdp

< 0, the following
optimality condition results:

p − MC

p
= −

(
1 − u

q0

q

)
1

ε
. (2.69)

For the unregulated monopolistic firm with the Lagrange multiplier u = 0, the
form (2.69) reduces to the well-known Lerner index (see, e.g., [5, p. 26]):

p − MC

p
= −1

ε
.

The Lerner index measures the market power of monopoly.
For a perfectly competitive firm, price equals marginal cost, so the Lerner index

equals 0. The higher the Lerner index is, the higher is the degree of monopoly power.
For the profit-maximizing firm, the Lerner index is equal to the reciprocal value of
the price elasticity of demand for the firm’s product. The lower the price elasticity of
demand for the firm’s product is, the higher is the degree of monopoly power.

Under the price-cap regulation the Lerner index is modified by the expression

1 − u · q0

q
.

From the Kuhn–Tucker condition (2.25) follows the nonnegativity of the Lagrange
multiplier u. According to (2.9), this multiplier describes the change of the monopoly
profit due to a change of the price cap:

u = ∂�

∂b0 � 0.

Moreover, it can be shown [33, pp. 166–168] that under the assumption of concavity
of � and convexity of p(q)q0,

∂u

∂b0 � 0.

The lower price cap—due to the stronger regulation by setting the productivity factor
(X) higher—implies higher Lagrange multiplier, and according to (2.69) the lower
the degree of monopoly power. In this way, price-cap regulation is an appropriate
instrument to reduce the market power of natural monopolies. The form (2.69) reveals
the central problem of price-cap regulation for the regulatory agency, the determi-
nation of the productivity factor (X). “Too high a price ceiling makes the firm an
unregulated monopolist, too low cap conflicts with viability, and in between the ‘right’
price level is difficult to compute” [19, p. 17]. One possibility of how to calculate
the X-factor in order to provide incentives for cost reduction and technological in-
novation and consequently for reduction of network tariffs in the electricity sector is
described by [25].

An application of regulatory constraints for environmental economics and policy
will be discussed in the next section.
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2.5.4 Environmental Regulation: The Effects of Different Restrictions

The forms of standards used in current environmental regulation vary tremendously.
The most frequently discussed forms are systems of permits which determine a fixed
amount of emission allowed for each emission source independent of the production
level of this source. The deficiencies of such a source-based system of permits are
investigated and summarized in [31, Chapter VIII] or [32]. Another form of environ-
mental regulation relates to restrictions on pollution per unit of output or input [8]. In
an economic sense, restrictions that are based on a unit of output or input are equiva-
lent to a productivity or intensity regulation, well known from the literature, beginning
with the Averch–Johnson model [2], and are discussed in the previous section.

In the paper by Helfand [14], the effects of five different forms of pollution
standards on input decisions, the level of production, and firm profits are examined
using a graphical approach. In this section, we analyze the effects of different kinds
of pollution control standards in a more general way using Kuhn–Tucker conditions.

The model used in [14] involves one firm, facing a horizontal output demand curve
and using two inputs, x1 and x2, with horizontal supply curves. The assumption that
there are only two inputs is only for simplicity but without loss of generality. The
assumption of a horizontal output demand curve is more limiting and is realistic
only for a good whose price is unaffected by production of the firm. In [14], this
assumption makes the problem tractable and permits a graphical presentation.

Assume that the firm produces a single output in the quantity q according to the
production function f (x1, x2) with the usual properties:

f1 = ∂f

∂x1
> 0, f2 = ∂f

∂x2
> 0,

f11 = ∂2f

∂x2
1

< 0, f22 = ∂2f

∂x2
2

< 0.
(2.70)

In other words, the marginal products of both inputs are positive but declining.
The firm also causes pollution, the level of which depends on the level of produc-

tion and the technology. In order to reduce the level of pollution, the firm can use an
abatement activity or invest in new technology. The resulting level of pollution (or
net pollution) can be described as follows:

P = G(f (x1, x2))− Ab(x3),

where Ab(x3) denotes the abatement activity as a function of abatement expenditure
x3 (or expenditure for development of a new technology). It is assumed that dAb

dx3
> 0,

that is, more abatement equipment (or higher expenditure for development of a new
technology) reduces the level of pollution. More generally, we describe the level of
net pollution as follows:

P = P(x1, x2, x3)

with P1 = ∂P
∂x1

> 0, P2 = ∂P
∂x2

> 0, and P3 = ∂P
∂x3

< 0.6

6 In this formulation of the net pollution function P , we differ slightly from the model in [14].
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The firm is assumed to maximize profits while facing an output price p and input
prices c1 and c2 as well as the price of abatement equipment c3 as given.

The necessary conditions for a profit-maximizing firm without regulatory con-
straint (i.e., pollution restrictions) are given by (2.56)–(2.57) in the previous section.
In economic terms, the value of the marginal product of input i (i = 1, 2) must be
equal to its price, i.e., the ratio of marginal revenue products will equal the ratio of
the input prices.

Now, similar to the regulatory constraint by [2], pollution restrictions in the form
of different kinds of pollution-control standards will be taken into account. What are
the effects for the level of production and the firm’s profit?

2.5.4.1 Standard as a Set Level of Emissions

Let Zp be the amount of total pollution permissible in a certain period of time. It can
be represented as a constraint in the form P(x) � Zp. The optimization problem of
the profit-maximizing firm is

maximize
x1,x2,x3

� = pf (x1, x2)− c1x1 − c2x2 − c3x3

subject to P(x1, x2, x3) � Zp,

x1 � 0, x2 � 0, x3 � 0.

We write the Lagrange function

	(x, u) = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(Zp − P(x1, x2, x3))

and the resulting Kuhn–Tucker conditions

∂	

∂x1
= pf1 − c1 − uP1 � 0, (2.71)

or

pf1 � c1 + uP1,

x1
∂	

∂x1
= x1(pf1 − c1 − uP1) = 0. (2.72)

Assuming that x1 > 0, it follows from (2.72) that

pf1 = c1 + uP1. (2.73)

Furthermore,

∂	

∂x2
= pf2 − c2 − uP2 � 0, (2.74)

or
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pf2 � c2 + uP2,

x2
∂	

∂x2
= x2(pf2 − c2 − uP2) = 0. (2.75)

Assuming that x2 > 0, (2.75) implies that

pf2 = c2 + uP2. (2.76)

We conclude that the value of the marginal product of the input i (i = 1, 2) is equal

to the marginal input costs, plus the pollution cost, uPi , where u = u0 = ∂�(x0(Zp))

∂Zp

and Pi = ∂P
∂xi

(i = 1, 2).

The Lagrange multiplier u0 describes the effect of a change of the environmental
standards for the profit of the firm and Pi expresses the increase of pollution caused
by increasing the ith input by a small unit (i.e., the marginal pollution with respect to
the input i):

∂	

∂x3
= −c3 − uP3 � 0,

x3
∂	

∂x3
= x3(−c3 − uP3) = 0.

x3 > 0 implies that c3 = −uP3, where P3 < 0. Therefore, the value of the pollution
reduction caused by one additional unit of abatement equipment is equal to its cost.

Finally, we obtain

∂	

∂u
= Zp − P(x1, x2, x3) � 0,

u
∂	

∂u
= u(Zp − P(x1, x2, x3)) = 0,

u � 0.

We conclude that P(x1, x2, x3) < Zp implies that u = 0. In this case, equali-
ties (2.73) and (2.76) reduce to pf1 = c1, pf2 = c2, and c3 > 0 implies that x3 = 0.
The economic interpretation of this result is straightforward: If the net pollution is
below the given level of emissions, no abatement will be necessary, and we get the
same solution as in the unregulated case.

For u > 0, we obtain P(x1, x2, x3) = Zp, and in the case of essential production
factors (x1 > 0, x2 > 0), conditions (2.73) and (2.76). Because u > 0 and P1 > 0,
P2 > 0, the value of marginal product of the input i (i = 1, 2) under regulation
must be higher than in the unregulated case (see conditions (2.56)–(2.57), (2.73),
and (2.76)).

Under the assumption (2.70) on the production function f (x1, x2) that the
marginal products are decreasing, we can conclude

pf I
1 > pf 0

1 implies xI
1 < x0

1 ,

pf I
2 > pf 0

2 implies xI
2 < x0

2 ,
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where the superscript I denotes the model with environmental constraint expressed
as a permissible amount of total pollution and 0 denotes the model without regula-
tion. The effect of this type of environmental regulation is obvious: Both inputs are
decreasing, and therefore the level of production also decreases. This is the only way
the firm can meet the environmental constraint.

2.5.4.2 Standard as Emissions per Unit of Output

Let ZPF be the emission standard expressed as a set level of pollution per unit of
output. This amount of emission may be discharged into the environment at a zero
price. The regulatory constraint then becomes

P(x1, x2, x3)

f (x1, x2)
� ZPF,

and the objective function of the firm is the profit maximization as in the previous
model.

The Lagrange function is

	 = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(ZPFf (x1, x2)− P(x1, x2, x3)),

and the Kuhn–Tucker conditions are

∂	

∂x1
= pf1 − c1 + u(ZPFf1 − P1) � 0, (2.77)

x1
∂	

∂x1
= x1[pf1 − c1 + u(ZPFf1 − P1)] = 0, (2.78)

∂	

∂x2
= pf2 − c2 + u(ZPFf2 − P2) � 0, (2.79)

x2
∂	

∂x2
= x2[pf2 − c2 + u(ZPFf2 − P2)] = 0, (2.80)

∂	

∂x3
= −c3 − uP3 � 0, (2.81)

x3
∂	

∂x3
= x3(−c3 − uP3) = 0, (2.82)

∂	

∂u
= ZPFf (x1, x2)− P(x1, x2, x3) � 0, (2.83)

u
∂	

∂u
= u[ZPFf (x1, x2)− P(x1, x2, x3)] = 0, (2.84)

u � 0. (2.85)

If ZPFf (x1, x2) > P (x1, x2, x3), then u = 0, and because c3 > 0, it follows
from (2.82) that x3 = 0.

If the price of abatement equipment c3 is higher than the value of the pollution
reduced by one additional unit of abatement equipment −uP3, then the abatement
expenditure x3 will be zero.



54 2 Kuhn–Tucker Conditions

Assuming essential production factors (x1 > 0, x2 > 0), the Kuhn–Tucker con-
ditions (2.77) and (2.79) become equalities:

pf1 − c1 + u(ZPFf1 − P1) = 0,

pf2 − c2 + u(ZPFf2 − P2) = 0,

or

f1 = c1 + uP1

p + uZPF
, (2.86)

f2 = c2 + uP2

p + uZPF
, (2.87)

and therefore

f1

f2
= c1 + uP1

c2 + uP2
. (2.88)

We can see that foru > 0 (the pollution constraint is binding), the ratio of marginal
products cannot equal the ratio of the input prices, as was the case in the absence of
the regulatory constraint.

In order to show the effect of the environmental constraint (2.83) for the behavior
of the firm, we compare the optimality conditions (2.86)–(2.87) with the optimality
conditions without environmental standard (2.56)–(2.57).

Let the superscript II denote the solution of the model with environmental con-
straint expressed as the maximum amount of emissions per unit of output, i.e., the
model in this section.

Recall the first-order optimality conditions for the unregulated firm:

f 0
1 = c1

p
and f 0

2 = c2

p
(2.89)

for a given price p of the output.
Comparison of (2.89) with (2.86)–(2.87) reveals that the effect of the environ-

mental regulatory constraint (2.83) on the production of the firm is ambiguous. It
depends on the relation between the expressions on the right side of (2.86)–(2.87)

and (2.89), respectively. If P II
i <

ciZPF
p

, then
ci+uP II

i

p+uZPF
<

ci
p

; therefore, f II
i < f 0

i ,

and consequently, due to the assumption (2.70), xII
i > x0

i (i = 1, 2). If the marginal
pollution with respect to the input i is lower than the exogenously given constant
ki = ciZPF

p
, then the amount of input i used in production will—compared with the

basic model—increase.
In the opposite case, if the marginal pollution with respect to the input i is relatively

high (higher than the parameter ki), the amount of input i used in production will—in
order to fulfill the environmental standard—decrease.

The effects on production, and therefore (taking into account the possible abate-
ment activity) on the level of pollution, remain ambiguous. To summarize, the effect
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of the standard defined as emissions per unit of output can lead to similar results as
in the Averch–Johnson model: Pollution increases with the imposition of an environ-
mental regulatory constraint. If production increases more rapidly than pollution, the
environmental standard can be achieved in spite of increasing pollution.

2.5.4.3 Standard as Emissions per Unit of a Specified Input

Another way in which individual stack policy can be effected is to fix an upper bound
for the emissions per unit of specified input, such as restricting the amount of sulfur
dioxide emissions per ton of coal used for electricity. Such a type of limitation is
referred to in [8] as intensity regulation and can be formalized as

P(x1, x2, x3)

xi
� ZPi, for i = 1, 2.

Without loss of generality we suppose that the intensity regulation is imposed for the
second production factor. Then the firm will face the following optimization problem:

maximize � = pf (x1, x2)− c1, x1 − c2x2 − c3x3

subject to P(x1, x2, x3) � ZP2x2,

x1 � 0, x2 � 0, x3 � 0.

Using the Lagrange function,

	(x, u) = pf (x1, x2)− c1x1 − c2x2 − c3x3 + u(ZP2x2 − P(x1, x2, x3)),

the Kuhn–Tucker conditions are

∂	

∂x1
= pf1 − c1 − uP1 � 0,

x1
∂	

∂x1
= x1(pf1 − c1 − uP1) = 0, (2.90)

∂	

∂x2
= pf2 − c2 + u(ZP2 − P2) � 0,

x2
∂	

∂x2
= x2[pf2 − c2 + u(ZP2 − P2)] = 0, (2.91)

∂	

∂x3
= −c3 − uP3 � 0,

x3
∂	

∂x3
= x3(−c3 − uP3) = 0,

∂	

∂u
= ZP2x2 − P(x1, x2, x3) � 0,

u
∂	

∂u
= u[ZP2x2 − P(x1, x2, x3)] = 0,

u � 0.
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Let the superscript III denote the solution of the model with intensity regulation.
Again assuming essential production factors (x1 > 0, x2 > 0) and u > 0 (the

environmental standard is binding), the Kuhn–Tucker condition (2.90) yields

f III
1 = c1

p
+ u

p
P1 >

c1

p
= f 0

1 .

Due to the assumption (2.70), we have xIII
1 < x0

1 ; the firm decreases the amount of
the first input used.

For the reaction with respect to the regulated input, we look at the Kuhn–Tucker
condition (2.91). It provides

f III
2 = c2

p
+ u

p
(P2 − ZP2).

If the marginal pollution with respect to the second input (P2) is higher than the
allowable amount of emissions per unit of this input, then the marginal product f III

2 is
higher than the marginal product f 0

2 (= c2
p
) in the absence of the regulatory constraint.

Therefore, due to the declining marginal product, the amount of the regulated input
used under the intensity regulation xIII

2 is lower than without such regulation x0
2 . The

firm will decrease the level of production. If the marginal pollutionP2 is lower than the
tolerated amount of emissions per unit of the second input, we get the opposite result.
Because in this case the marginal product f III

2 is lower than the marginal product f 0
2 ,

the amount of the regulated input used in the optimal solution xIII
2 is higher than the

amount x0
2 used without the regulatory constraint. We have theAverch–Johnson effect

with respect to the second input; the substitution of the first input by the second one.
More than fifty years after their formulation, the Kuhn–Tucker conditions became

a standard instrument of the analysis used in the textbooks of microeconomic theory
(e.g., [28, 33]) and in the monographs devoted to various fields of economics like the
theory of money [29], public economics [7], or industrial economics [6, 13]. More-
over, they provide the foundation for the development of more complex optimization
models dealing with multiple objectives or with dynamical economic systems.
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