Applications of ACO

Advantages and Disadvantages Summary References

Ant colony Optimization Algorithms : Introduction and Beyond

Anirudh Shekhawat Pratik Poddar Dinesh Boswal

Indian Institute of Technology Bombay

Artificial Intelligence Seminar 2009

Introduction 0000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Outline					

Introduction

- Ant Colony Optimization
- Meta-heuristic Optimization
- History
- The ACO Metaheuristic
- 2 Main ACO Algorithms
 - Main ACO Algorithms
 - Ant System
 - Ant Colony System
 - MAX-MIN Ant System
- 3 Applications of ACO
- Advantages and Disadvantages
 - Advantages
 - Disadvanatges

Applications of ACO

Advantages and Disadvantages Sur

Summary References

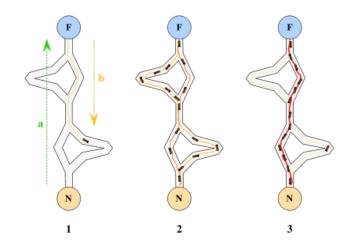
Ant Colony Optimization

What is Ant Colony Optimization?

- Probabilistic technique.
- Searching for optimal path in the graph based on behaviour of ants seeking a path between their colony and source of food.
- Meta-heuristic optimization

Introduction 000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Ant Colony Opt	imization				
	noont				

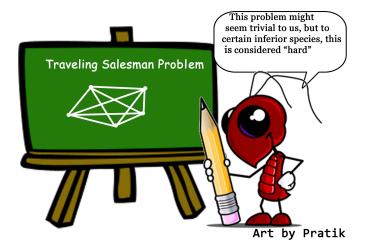
Overview of the Concept


- Ants navigate from nest to food source. Ants are blind!
- Shortest path is discovered via pheromone trails.
- Each ant moves at random
- Pheromone is deposited on path
- More pheromone on path increases probability of path being followed

Applications of ACO

Advantages and Disadvantages

Summary References


Ant Colony Optimization

Introduction	Main ACO Algorithms	Applica
0000000000		

Advantages and Disadvantages Summary References

Ant Colony Optimization

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Ant Colony Opt	imization				
ACO SV	etom				

Overview of the System

- Virtual trail accumulated on path segments
- Path selected at random based on amount of "trail" present on possible paths from starting node

Applications of ACO

Advantages and Disadvantages Sun

Summary References

Ant Colony Optimization

ACO System

Overview of the System

- Virtual trail accumulated on path segments
- Path selected at random based on amount of "trail" present on possible paths from starting node
- Ant reaches next node, selects next path
- Continues until reaches starting node

Applications of ACO

Advantages and Disadvantages Sun

Summary References

Ant Colony Optimization

ACO System

Overview of the System

- Virtual trail accumulated on path segments
- Path selected at random based on amount of "trail" present on possible paths from starting node
- Ant reaches next node, selects next path
- Continues until reaches starting node
- Finished tour is a solution.
- Tour is analyzed for optimality

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Meta-heuristic C	Optimization				
Meta-he	uristic				

 Heuristic method for solving a very general class of computational problems by combining user-given heuristics in the hope of obtaining a more efficient procedure.

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Meta-heuristic C	Optimization				
Meta-he	uristic				

- Heuristic method for solving a very general class of computational problems by combining user-given heuristics in the hope of obtaining a more efficient procedure.
- 2 ACO is meta-heuristic
- Soft computing technique for solving hard discrete optimization problems

Introduction	Main ACO Algorithms
00000000000	

Applications of ACO

Advantages and Disadvantages

Summary References

History

History

- Ant System was developed by Marco Dorigo (Italy) in his PhD thesis in 1992.
- Max-Min Ant System developed by Hoos and Stützle in 1996
- Ant Colony was developed by Gambardella Dorigo in 1997

Applications of ACO

Advantages and Disadvantages S

Summary References

The ACO Metaheuristic

The ACO Meta-heuristic

ACO

Set Parameters, Initialize pheromone trails

SCHEDULE ACTIVITIES

- Construct Ant Solutions
- 2 Daemon Actions (optional)
- Opdate Pheromones

Virtual trail accumulated on path segments

Applications of ACO

Advantages and Disadvantages

Summary References

The ACO Metaheuristic

ACO - Construct Ant Solutions

ACO - Construct Ant Solutions

An ant will move from node i to node j with probability

$$oldsymbol{p}_{i,j} = rac{(au_{i,j}^lpha)(\eta_{i,j}^eta)}{\sum (au_{i,j}^lpha)(\eta_{i,j}^eta)}$$

where

 $\tau_{i,j}$ is the amount of pheromone on edge i, j α is a parameter to control the influence of $\tau_{i,j}$ $\eta_{i,j}$ is the desirability of edge i, j (typically $1/d_{i,j}$) β is a parameter to control the influence of $\eta_{i,j}$

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
The ACO Metal	neuristic				

ACO - Pheromone Update

ACO - Pheromone Update

Amount of pheromone is updated according to the equation

$$\tau_{i,j} = (1 - \rho)\tau_{i,j} + \Delta \tau_{i,j}$$

where

 $\tau_{i,j}$ is the amount of pheromone on a given edge i, j

 ρ is the rate of pheromone evaporation

 $\Delta \tau_{i,j}$ is the amount of pheromone deposited, typically given by

$$\Delta \tau_{i,j}^{k} = \begin{cases} 1/L_{k} & \text{if ant } k \text{ travels on edge } i, \\ 0 & \text{otherwise} \end{cases}$$

where L_k is the cost of the k^{th} ant's tour (typically length).

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Main ACO Algo	rithms				
ACO					

- Many special cases of the ACO metaheuristic have been proposed.
- The three most successful ones are: Ant System, Ant Colony System (ACS), and MAX-MIN Ant System (MMAS).
- For illustration, example problem used is Travelling Salesman Problem.

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Ant System					
	nt System				

ACO - Ant System

- First ACO algorithm to be proposed (1992)
- Pheromone values are updated by all the ants that have completed the tour.

$$au_{ij} \leftarrow (1-
ho) \cdot au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k$$

where

 ρ is the evaporation rate

m is the number of ants

 $\Delta \tau_{ij}^k$ is pheromone quantity laid on edge (i, j) by the k^{th} ant

$$\Delta \tau_{i,j}^{k} = \begin{cases} 1/L_{k} & \text{if ant } k \text{ travels on edge } i, j \\ 0 & \text{otherwise} \end{cases}$$

where L_k is the tour length of the k^{th} ant.

Applications of ACO

Advantages and Disadvantages S

Summary References

Ant Colony System

ACO - Ant Colony System

ACO - Ant Colony System

- First major improvement over Ant System
- Differences with Ant System:
 - Decision Rule Pseudorandom proportional rule
 - 2 Local Pheromone Update
 - Best only offline Pheromone Update

Applications of ACO

Advantages and Disadvantages

Summary References

Ant Colony System

ACO - Ant Colony System

ACO - Ant Colony System

- Ants in ACS use the pseudorandom proportional rule
- Probability for an ant to move from city *i* to city *j* depends on a random variable *q* uniformly distributed over [0, 1], and a parameter *q*₀.
- If $q \leq q_0$, then, among the feasible components, the component that maximizes the product $\tau_{il}\eta_{il}^{\beta}$ is chosen, otherwise the same equation as in Ant System is used.
- This rule favours exploitation of pheromone information

Applications of ACO

Advantages and Disadvantages Su

Summary References

Ant Colony System

ACO - Ant Colony System

ACO - Ant Colony System

- Diversifying component against exploitation: local pheromone update.
- The local pheromone update is performed by all ants after each step.
- Each ant applies it only to the last edge traversed:

$$\tau_{ij} = (\mathbf{1} - \varphi) \cdot \tau_{ij} + \varphi \cdot \tau_0$$

where

 $\varphi \in (0, 1]$ is the pheromone decay coefficient τ_0 is the initial value of the pheromone (value kept small *Why?*)

Applications of ACO

Advantages and Disadvantages Su

Summary References

Ant Colony System

ACO - Ant Colony System

ACO - Ant Colony System

- Best only offline pheromone update after construction
- Offline pheromone update equation

$$au_{ij} \leftarrow (1 - \rho) \cdot au_{ij} + \rho \cdot \Delta au_{ij}^{best}$$

where

$$au_{ij}^{best} = egin{cases} 1/L_{best} & ext{if best ant } k ext{ travels on edge } i, j \ 0 & ext{otherwise} \end{cases}$$

• *L*_{best} can be set to the length of the best tour found in the current iteration or the best solution found since the start of the algorithm.

Applications of ACO

Advantages and Disadvantages

Summary References

MAX-MIN Ant System

ACO - MAX-MIN Ant System

ACO - MAX-MIN Ant System

Differences with Ant System:

- Best only offline Pheromone Update
- 2 Min and Max values of the pheromone are explicitly limited
 - τ_{ij} is constrained between τ_{min} and τ_{max} (explicitly set by algorithm designer).
 - After pheromone update, τ_{ij} is set to τ_{max} if $\tau_{ij} > \tau_{max}$ and to τ_{min} if $\tau_{ij} < \tau_{min}$

Applications of ACO

Advantages and Disadvantages Su

Summary References

Applications of ACO

- Routing in telecommunication networks
- Traveling Salesman
- Graph Coloring
- Scheduling
- Constraint Satisfaction

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages ●○	Summary	References		
Advantages							
Advanta	Advantages of ACO						

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages ●○	Summary	References		
Advantages							
Advanta	Advantages of ACO						

ACO

• Inherent parallelism

Applications of ACO

Advantages and Disadvantages

Summary References

Advantages

Advantages of ACO

- Inherent parallelism
- Positive Feedback accounts for rapid discovery of good solutions

Applications of ACO

Advantages and Disadvantages

Summary References

Advantages

Advantages of ACO

- Inherent parallelism
- Positive Feedback accounts for rapid discovery of good solutions
- Efficient for Traveling Salesman Problem and similar problems

Advantages

Advantages of ACO

- Inherent parallelism
- Positive Feedback accounts for rapid discovery of good solutions
- Efficient for Traveling Salesman Problem and similar problems
- Can be used in dynamic applications (adapts to changes such as new distances, etc)

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages ○●	Summary	References			
Disadvanatges								
Disadva	Disadvantages of ACO							

Introduction Main ACO Algo	rithms Applications of ACO	Advantages and Disadvantages ○●	Summary	References
Disadvanatges				
Disadvantages o	of ACO			

ACO

• Theoretical analysis is difficult

Advantages and Disadvantages $_{\odot} \bullet$

Summary References

Disadvanatges

Disadvantages of ACO

- Theoretical analysis is difficult
- Sequences of random decisions (not independent)

Applications of ACO

Advantages and Disadvantages

Summary References

Disadvanatges

Disadvantages of ACO

- Theoretical analysis is difficult
- Sequences of random decisions (not independent)
- Probability distribution changes by iteration

Applications of ACO

Advantages and Disadvantages

Summary References

Disadvanatges

Disadvantages of ACO

- Theoretical analysis is difficult
- Sequences of random decisions (not independent)
- Probability distribution changes by iteration
- Research is experimental rather than theoretical

Applications of ACO

Advantages and Disadvantages

Summary References

Disadvanatges

Disadvantages of ACO

- Theoretical analysis is difficult
- Sequences of random decisions (not independent)
- Probability distribution changes by iteration
- Research is experimental rather than theoretical
- Time to convergence uncertain (but convergence is gauranteed!)

Introduction	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Summa	r y				

Introduction 0000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Summai	r y				

 Artificial Intelligence technique used to develop a new method to solve problems unsolvable since last many years

Introduction 0000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Summa	ry				

- Artificial Intelligence technique used to develop a new method to solve problems unsolvable since last many years
- ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems.

Introduction 0000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Summa	ry				

- Artificial Intelligence technique used to develop a new method to solve problems unsolvable since last many years
- ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems.
- Artificial ants implement a randomized construction heuristic which makes probabilistic decisions

Introduction 0000000000	Main ACO Algorithms	Applications of ACO	Advantages and Disadvantages	Summary	References
Summa	ry				

- Artificial Intelligence technique used to develop a new method to solve problems unsolvable since last many years
- ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems.
- Artificial ants implement a randomized construction heuristic which makes probabilistic decisions
- ACO shows great performance with the "ill-structured" problems like network routing

- M. Dorigo, M. Birattari, T. Stützle, "Ant Colony Optimization – Artificial Ants as a Computational Intelligence Technique", *IEEE Computational Intelligence Magazine*, 2006
- M. Dorigo K. Socha, "An Introduction to Ant Colony Optimization", *T. F. Gonzalez, Approximation Algorithms and Metaheuristics*, CRC Press, 2007
- M. Dorigo T. Stützle, "The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances", Handbook of Metaheuristics, 2002

Applications of ACO

Advantages and Disadvantages Summary

References

Thank You.. Questions??