
A Comparison of Genetic Sequencing Operators
T. Starkweather, S. McDaniel, C. WhitleyK. Mathias, D. Whitley Mechanical Engineering Dept.Computer Science Dept. Colorado State UniversityColorado State University Fort Collins, CO 80523Fort Collins, CO 80523AbstractThis work compares six sequencing operatorsthat have been developed for use with ge-netic algorithms. An improved version ofthe edge recombination operator is presented,the concepts of adjacency, order, and positionare reviewed in the context of these opera-tors, and results are compared for a 30 city\Blind" Traveling Salesman Problem and areal world warehouse/shipping scheduling ap-plication. Results indicate that the e�ective-ness of di�erent operators is dependent on theproblem domain; operators which work well inproblems where adjacency is important (e.g.,the Traveling Salesman) may not be e�ectivefor other types of sequencing problems. Oper-ators which perform poorly on the Blind Trav-eling Salesman Problem work extremely wellfor the warehouse scheduling task.1 INTRODUCTIONGil Syswerda [5] conducted a study in which \edge re-combination" (a genetic operator speci�cally designedfor the Traveling Salesman Problem) performed poorlyrelative to other operators on a job sequence schedul-ing task. While the population size used by Syswerdawas small (30 strings) and good results were obtainedon this problem using mutations alone (no recombina-tion), Syswerda's discussion of the relative importanceof position, order and adjacency for di�erent sequencingtasks raises an issue that has not been adequately ad-dressed. Researchers, including ourselves [8] [10], seemto tacitly assume that all sequencing tasks are similarand that one genetic operator should su�ce for all typesof sequencing problems.This paper compares six di�erent operators on two dif-ferent sequencing tasks. The comparisons include animproved version of \edge recombination." The prob-lems are a 30 city \Blind" Traveling Salesman Prob-

lem and a 195 element sequencing task for a real worldwarehouse/shipping scheduling application. Our exper-iments show that di�erent operators are better suited todi�erent kinds of sequencing tasks. Edge recombinationis only roughly competitive with operators such as PMXon the warehouse scheduling problem and the resultingsearch is an order of magnitude slower than operatorswhich stress relative order as opposed to adjacency.The genetic algorithm used in these experiments isGENITOR, which was developed at Colorado StateUniversity [7]; our results also suggest that GENITORis a key part of our improved performance on the Trav-eling Salesman Problem. It uses a one-at-a-time re-placement paradigm in which only one pair of stringsreproduces during any given generation and only oneo�spring is generated. The new o�spring replaces theworst string in the population rather than one of itsparents. This ensures that the best string found so farwill never be replaced in the population.We do not o�er comparative results in this paper toother approaches for the Traveling Salesman Problem.We do note, however, that GENITOR is really solvinga more di�cult version of the Traveling Salesman Prob-lem than that solved by most other algorithms. Mostalgorithms use local edge information to do local im-provements; GENITOR uses only the overall value ofthe total sequence. David Goldberg [2] points out thatgenetic algorithms are actually solving a \Blind" Trav-eling Salesman Problem. The Blind Traveling SalesmanProblem is interesting because for certain types of se-quence optimization tasks local information is not read-ily available. In a fair comparison on the \classic" Trav-eling Salesman Problem, the genetic algorithm would beallowed to also use local information about edge costs.In other words, parent and o�spring tours could be im-proved by using local information. A group of Europeanresearchers [6] have used this type of strategy and haveachieved impressive results on classic Traveling Sales-man Problems with up to 666 cities. They found thatby combining genetic operators and local search meth-ods developed by Lin/Kernigan they obtained superiorresults to 5 other approaches on 8 di�erent problems



ranging in size from 48 to 666 cities (median size 318).Thus, it appears likely that genetic methods could be-come a basic part of the tool kit for solving Travel-ing Salesman Problems and that the genetic algorithmcould be viewed as a structure in which to organize andapply many of the tools that already exist. The readerinterested in comparison tests on the classic TravelingSalesman Problem should consult the results of Ulderet al. [6].2 EMPHASIS OF DIFFERENTSEQUENCING OPERATORSSix genetic sequencing operators are compared in thisstudy: improved edge recombination, order crossover,variants proposed by Syswerda [5] which we shall referto as order crossover #2 and position crossover, PMXcrossover, and cycle crossover.2.1 ENHANCED EDGE RECOMBINATIONThe edge recombination operator is di�erent from othergenetic sequencing operators in that it emphasizes ad-jacency information instead of the order or position ofthe items in the sequence. The \edge table" used by theoperator is really an adjacency table listing the connec-tions into and out of a city found in the two parentsequences. The edges are then used to construct o�-spring in such a way that we avoid isolating cities orelements in the sequence.For example, the tour [b a d f g e c j h i] containsthe links [ba, ad, df, fg, ge, ec, cj, jh, hi, ib], whenone considers the tour as a hamiltonian cycle. In orderto preserve links present in the two parent sequences atable is built which contains all the links present in eachparent tour. Building the o�spring then proceeds asfollows: (1) Select a starting element. This can be oneof the starting elements from a parent, or can be chosenfrom the set of elements which have the fewest entriesin the edge table. (2) Of the elements that have linksto this previous element, choose the element which hasthe fewest number of links remaining in its edge tableentry, breaking ties randomly. (3) Repeat step 2 untilthe new o�spring sequence in complete.An example is given of edge recombination is given in�gure 1. Suppose element a is selected randomly tostart the o�spring tour. Since a has been used, all oc-currences of a are removed from the right-hand side ofthe edge table. Element a has links to elements b, f,and j. Elements b and f both have 3 links remainingin their table entries, but element j has only 2 links re-maining. Therefore, j is selected as the next element inthe o�spring, and all occurrences of j are removed fromthe right-hand side of the edge table. Element j haslinks to i and h, both of which have 3 links remaining.Therefore, one of these elements are selected at random

Parent 1: a b c d e f g h i jParent 2: c f a j h d i g b eOffspring: a j i h d c f e b gEdge table: city linksa b, f, jb a, c, g, ec b, d, e, fd d, f, b, ce d, f, b, cf e, g, c, ag f, h, i, bh g, i, j, di h, j, d, gj i, a, hFigure 1: Edge Recombination(element i in �gure 1) and the process continues untilthe child tour is complete.When the edge recombination operator was �rst imple-mented, we realized that it had no active mechanismto preserve \common subsequences" between the 2 par-ents. We have developed a simple solution to this prob-lem. When the \edge table" is constructed, if an item isalready in the edge table and we are trying to insert itagain, that element of the sequence must be a commonedge. The elements of a sequence are stored in the edgetable as integers, so if an element is already present, thevalue is inverted: if A is already in the table, change theinteger to -A. The sign acts as a ag. Consider the fol-lowing sequences and edge table: [a b c d e f] and [c de b f a].a: b, -f, c d: -c, -eb: a, c, e, f e: -d, f, bc: b, -d, a f: e, -a, bThe new edge table is the same as the old edge table, ex-cept for the agged elements. One of three cases holdsfor an edge table entry. 1) If four elements are enteredin the table as connections to a given table entry, thatentry is not part of a common subsequence. 2) If threeelements are entered as connections to a given table en-try, then one of the �rst two elements will be negativeand represents the beginning of a common subtour. 3)If only two elements are entered for a given table en-try, both must be negative and that entry is an internalelement in a common subsequence. Giving priority tonegative entries when constructing o�spring a�ects edgerecombination for case 2 only. In case 1, no connectingelements have negative values, and in case 3 both con-necting elements are negative, so edge recombinationbehaves just as before. In case 2, the negative elementwhich represents the start of a common subtour is given



Parent 1: a b c d e f g h i jParent 2: c f a j h d i g b eCross Pts: * *Offspring: f g a j h d i b c eFigure 2: Order Crossover #1�rst priority for being chosen. Once this common sub-sequence is started, each internal element (case 3) ofthe sequence has only one edge in and one edge out,so it is guaranteed that the common sections of the se-quence will be preserved. The implementation of thisidea (along with better mechanisms to ensure randomchoices when random choices are indicated) improvedour performance on the Blind Traveling Salesman Prob-lem. Using a single population of 1000 and a total of30,000 recombinations GENITOR with the enhancededge recombination operator �nds the optimal solutionon the 30 city problem described in Whitley et al. [8]on 30 out of 30 runs. On a 105 city problem the newoperator �nds the \best known" solution on 14/30 runswith no parameter tuning.2.2 ORDER CROSSOVERThe original order crossover operator (which we refer toas order crossover) was developed by Davis [1] (also see[4]). The o�spring inherits the elements between thetwo crossover points, inclusive, from the selected par-ent in the same order and position as they appearedin that parent. The remaining elements are inheritedfrom the alternate parent in the order in which theyappear in that parent, beginning with the �rst positionfollowing the second crossover point and skipping overall elements already present in the o�spring. Thus, al-though the purported goal is to preserve the relativeorder of elements in the sequences to be combined, partof the o�spring inherits the order, adjacency and abso-lute position of part of one parent string, and the otherpart of the o�spring inherits the relative order of theremaining elements from the other parent, with disrup-tion occurring whenever an element is present that hasalready been chosen.An example is given in �gure 2. The elements a, j, h, d,and i are inherited from P2 in the order and position inwhich they occur in P2. Then, starting from the �rstposition after the second crossover point, the child tourinherits from P1. In this example, position 8 is thisnext position. P1[8] = h, which is already present inthe o�spring, so P1 is search until an element is foundwhich is not already present in the child tour. Sinceh, i, and j are already present in the child, the searchcontinues from the beginning of the string and O�[8] =P1[2] = b, O�[9] = P1[3] = c, O�[10] = P1[4] = e, andso on until the new tour is complete.

Parent 1: a b c d e f g h i jParent 2: c f a j h d i g b eCross Pts: * * * *Offspring: a j c d e f g h i bFigure 3: Order Crossover #22.3 ORDER CROSSOVER #2The operator which was developed by Syswerda [5] dif-fers from the above order operator in that several keypositions are chosen randomly and the order in whichthese elements appear in one parent is imposed on theother parent to produce two o�spring; in our experi-ments we produce only one o�spring.In the example of �gure 3, positions 3, 4, 7, and 9 havebeen selected as the key positions. The ordering of theelements in these positions from Parent 2 will be im-posed on Parent 1. The elements (in order) from Par-ent 2 are a, j, i and b. In Parent 1 these same elementsare found in positions 1, 2, 9 and 10. In Parent 1 P1[1]= a, P1[2] = b, P1[9] = i and P1[10] = j, where P1 isParent 1 and the position is used as an index. In theo�spring the elements in these positions (i.e., 1, 2, 9, 10)are reordered to match the order of the same elementsfound in Parent 2 (i.e., a, j, i, b). Therefore O�[1] = a,O�[2] = j, O�[9] = i and O�[10] = b, where O� is theo�spring under construction. All other elements in theo�spring are copied directly from Parent 1.2.4 PARTIALLY MAPPED CROSSOVER(PMX)This operator is described in detail by Goldberg andLingle [3]. A parent and two crossover sites are selectedrandomly and the elements between the two startingpositions in one of the parents are directly inherited bythe o�spring. Each element between the two crossoverpoints in the alternate parent are mapped to the po-sition held by this element in the �rst parent. Thenthe remaining elements are inherited from the alternateparent. Just as in the order crossover operator #1, thesection of the �rst parent which is copied directly tothe o�spring preserves order, adjacency and positionfor that section. However, it seems that more disrup-tion occurs when mapping the other elements from theunselected parent. In the �rst example (�gure 4), theelements in positions 3, 4, 5 and 6 are inherited by thechild from Parent 1. Then beginning with position 3,the element in P1 (c) is located in P2 (position 7) andthis position in the o�spring is �lled with the elementin Parent 2 at position 3: O�[7] = P2[3]. Moving to po-sition 4 in Parent 1, we �nd a d and see that it occursat position 1 in Parent 2, so O�[8] = P2[5] = a and f(P1[6]) is at P2[10] so O�[10] = P2[6] = g. The remain-ing elements are inherited from P2: O�[2] = P2[2] = i,



Parent 1: a b c d e f g h i jCross Pts: * *Parent 2: d i j h a g c e b fOffspring: h i c d e f j a b gFigure 4: PMX Crossover Example 1Parent 1: a b c d e f g h i jCross Pts: * *Parent 2: c f a j h d i g b eOffspring: a j c d e f i g b hFigure 5: PMX Crossover Example 2and O�[9] = P2[9] = b.Since the segment of elements from the alternate parentdoes not contain any elements in the key segment ofthe �rst parent, both adjacency and relative order arepreserved.In the second example (�gure 5), the mapping proceedsas above with O�[3 to 6] = P1[3 to 6]. Next O�[1] =P2[3] = a, since P1[3] = c and P2[1] = c. Next, we notethat P1[4] = d and P2[4] = j. Since P2[6] = d, this isthe preferred position for j in the o�spring, but it hasalready been �lled. City j is skipped over temporarily.Element h maps to element e which occupies position10 in parent 2, so O�[10] = h. City d maps to elementf which occupies position 2 in parent 2, so O�[2] = d;even though this is a duplicate it is left in the o�springtemporarily. Elements i, g and b are then inheritedfrom P2 leaving a sequence with no j element and twod elements. The element d which is outside the origi-nally selected positions 3 through 6 is replaced with aj resulting in a complete and legal sequence. Note thatwhen this substitution occurs, it results in a mutationwhere neither adjacency, position, or relative order ispreserved by the substitution. Also note that PMX isinuenced by position, especially in Example 2.2.5 CYCLE CROSSOVEROriginally developed by Oliver et al. [4], this operatorpreserves the absolute position of elements in the par-ent sequence. A parent sequence and a cycle startingpoint are randomly selected. The element at the cyclestarting point of the selected parent is inherited by thechild. The element which is in the same position in theother parent cannot then be placed in this position soits position is found in the selected parent and is in-herited from that position by the child. This continuesuntil the cycle is completed by encountering the initialitem in the unselected parent. Any elements which arenot yet present in the o�spring are inherited from theunselected parent. Note that cycle crossover always pre-serves the position of elements from one parent or the

Parent 1: a b c d e f g h i jCross Pts: *Parent 2: c f a j h d i g b eOffspring: c b a d e f g h i jFigure 6: Cycle CrossoverParent 1: a b c d e f g h i jCross Pts: * * * *Parent 2: c f a j h d i g b eOffspring: a b c j h f d g i eFigure 7: Position Based Crossoverother without any disruption.In �gure 6, position four in Parent 1 is the selectedstarting position for the cycle and O�[4] = P1[4] = d.Parent 2 is then searched until the position of elementd is found (P2[6]) and the o�spring tour at this posi-tion inherits the element in this position from Parent1, O�[6] = P1[6] = f. f occurs in P2 at position 2, soO�[2] = P1[2] = b followed by O�[9] = p1[9] = i, O�[7]= P1[7] = h, O�[5] = P1[5] = e, and O�[10] = P1[10] =j. This completes a cycle, since P2[5] = j and P1[5] = d,which was the starting element in the cycle. Now anyremaining elements are inherited from Parent 2: O�[1]= P2[1] = c and O�[3] = P2[3] = a.2.6 POSITION BASED CROSSOVERThis operator, also proposed by Syswerda [5], is in-tended to preserve position information during the re-combination process. Several random locations in thesequence are selected along with one parent; the ele-ments in those positions are inherited from that par-ent. The remaining elements are inherited in the orderin which they appear in the alternate parent, skippingover all elements which have already been included inthe o�spring. Thus, the operator appears to be simi-lar to Davis' Order Crossover #1 operator except thatthe elements copied from the selected parent come fromrandom locations in the sequence and not from adjacentlocations; although designed as a \position" operator,it certainly is less e�ective at preserving position thancycle crossover and probably less e�ective at preserv-ing position than PMX. We argue this is really anotherorder operator.In �gure 7 the elements b, c, f and i are inherited fromParent 1 in positions 2, 3, 6 and 9 respectively. The re-maining elements are inherited from Parent 2 as follows:O�[1] = P2[3] since P2[1] and P2[2] have already beenincluded in the o�spring. Then going in order, O�[4] =P2[4], O�[5] = P2[5], O�[7] = P2[6], O�[8] = P2[8] andO�[10] = P2[10].



Op Bias Trials Pop Best AvgEdge 1.5 50000 500 16/30 421.6Order #1 1.5 50000 500 8/30 429.5Order #2 1.5 50000 500 9/30 440.5Position 1.5 50000 500 11/30 431.3PMX 1.5 50000 500 437 514.6Cycle 1.5 50000 500 459 519.9Table 1: 30 City Results (untuned)Op Bias Trials Pop Best AvgEdge 1.4 30000 1000 30/30 420.0Order #1 1.1 100000 1000 25/30 420.7Order #2 1.2 100000 1000 18/30 421.4Position 1.2 120000 1000 18/30 423.2PMX 1.2 120000 1400 1/30 452.8Cycle 1.1 150000 1500 440 490.3Table 2: 30 City Results (tuned)3 THE 30 CITY BLIND TRAVELINGSALESMANEach of the above operators was used to solve the 30city Traveling Salesman Problem. In order to comparethe performance on two levels they were each run usingthe same parameters for 30 experiments and then eachwas tuned for best results. The parameters for the �rstcomparison were: selection bias of 1.5, population sizeof 500, no explicit mutation and 50,000 trials. The onlyexception to this is that the cycle crossover operatoralways mutates whenever the o�spring and the selectedparent are identical. Results appear in Table 1.We attempted to optimize the performance of each op-erator by tuning the following parameters: bias, pop-ulation size and number of trials. The results in able2 are similar to those in Table 1, although PMX andcycle showed very little improvement despite the pa-rameter tuning. The three order crossover operators(Order #1, Order #2 and Position) have similar per-formance. Using higher selection bias values in generalgave poorer results for all operators except edge recom-bination. PMX and cycle crossover in particular con-verged too quickly in most cases to �nd the optimalsolution. The improved edge recombination operatorfound the optimal solution 28 out of 30 times using apopulation of 650, bias of 1.7 and 30,000 recombina-tions. As shown, a larger population found the optimalsolution on every attempt. Our results di�er somewhatfrom the results cited by Oliver et. al.[4]. The rankingof the operators in terms of performance is the same(Order #1 is better than PMX which is better thanCycle). The main di�erence is that all of these opera-tors produced much better results in the current study.Order crossover #1 and PMX both failed to �nd theoptimal solution to this problem in the Oliver et al.

study. The main di�erence in the two studies is theuse of the GENITOR algorithm instead of the standardgenerational genetic algorithm. This strongly suggeststhat the use of GENITOR is partially responsible forthe positive results we have obtained on this problem.In a previous study we found that the old edge recombi-nation operator coupled with a distributed genetic algo-rithm found the best known solution on 30 out of 30 at-tempts using 10 subpopulations of 200 individuals each,using up to a total of 70,000 evaluations/recombinations(7,000 per subpopulation). On the 105 city problem theold edge recombination operator operator coupled witha distributed genetic algorithm matched the best knownsolution on 15 out of 30 attempts using up to 2 millionrecombinations; all results were within 1% of the bestknown solution and 29/30 were within 0.5% of the bestknown. Using the enhanced edge recombination oper-ator we found the best known solution on 14/30 runsusing a single population algorithm (popsize: 5000) andonly 1 million recombinations. These are �rst run re-sults with no parameter tuning. While these results arenot directly comparable, they do support the notionthat the enhanced edge recombination operator is moree�ective than the original implementation.3.1 DISCUSSIONThe key di�erence between the operators is the infor-mation which each attempts to preserve during recom-bination. For the Traveling Salesman Problem the im-portant information would seem to be the adjacencyinformation. The edge recombination operator explic-itly preserves adjacency information and clearly hasthe best performance on this problem. Informationabout absolute position appears to be relatively unim-portant. None of the operators use mutation (exceptcycle crossover when the o�spring is identical to one ofthe parents). We have done some experiments whichsuggest that the performance of some of the operatorscan be improved if mutation is used; resolving this issuerequires further tests. Perhaps most surprising is thedi�erence in performance between the order operatorsand among the position preserving operators. These dif-ferences can be explained by looking at how the opera-tor preserves adjacency information, relative order andposition. Adjacency information is clearly important,but the results obtained with the order operators (or-der crossover #1, order crossover #2, and the so-calledposition based crossover) suggests that order informa-tion is useful for solving this problem. PMX may pro-duce a greater emphasis on absolute position than theother order operators; the cycle operator clearly stressesabsolute position.It is important to note that the performance of these op-erators on a given problem is directly related to the na-ture of that problem. In other problems such as schedul-



ing, the important information may not be adjacency,but may have a higher correlation to the position in thestring or the relative order among the encoded elementsin the string.4 A WAREHOUSE/SHIPPINGSCHEDULERA prototype scheduling system has been developed forthe Coors brewery in Golden, Co., which uses a geneticalgorithm to optimize the allocation of beer productionand inventory to the orders at the plant. A simulatorwas constructed consisting of a representation for beerproduction, the contents of inventory, arrangement oftruck and rail loading docks, and orders for a 24 hourperiod. Preliminary tests indicated that the system isviable and subsequent tests of the system used real datafrom the plant.The objective of the Coors scheduling package is the ef-�cient allocation of orders to loading docks in the plantbased on a �xed production schedule. Beer produc-tion occurs on multiple production lines which operate24 hours a day. Each line produces di�erent producttypes. There are numerous product types which can beproduced, based on type of beer as well as various pack-ages and labels. The data which is available for each lineincludes ow-rate, start and stop times, and product-type. The scheduling simulator analyzes the productionschedule for each line and creates a time-sorted list com-posed of the product-type, amount, and time available.This time-sorted production list is then examined dur-ing an event driven simulation. An input �le to thescheduling simulator contains the contents of inventoryat the start of the time-period which is to be scheduled.New orders enter a loading dock upon completion ofa previous order; the inventory is initially checked forproduct needed by the new order. Minimizing the con-tents of inventory is an important aspect of this prob-lem. Inventory impacts the physical work of movingproduct more than once on the plant oor, the physicalspace occupied by product in storage, as well as refriger-ation costs, etc. The schedule simulation places ordersin rail and truck loading docks and attempts to �ll theorders with the product that comes out of productionand inventory. An order consists of one or more prod-uct type and an associated amount. In the actual datafor the test scheduling period 195 customer orders arepresent and waiting to be �lled. The schedule simulatorattempts an e�cient mapping between the product thatis available and these orders. A \good" schedule is onewhich minimizes the average inventory in the system,and �lls as many orders as possible. Each individual inthe population maintained by the genetic algorithm isa sequence of customer order numbers. This sequenceis mapped to the loading docks by the schedule simula-tor and orders are �lled and placed in the docks based

strictly on this sequence. Initially these sequences arerandomly created, and as genetic search progresses newsequences are created by the process of genetic recom-bination. For the genetic algorithm to work, an evalu-ation for the sequence is needed. The evaluation of thesequence of orders is obtained using a scheduling simu-lator, which models operation of the plant and createsa shipping schedule based on the sequence.Our results indicate that for this sequencing problem,relative order of the items which make up the sequenceis more important than adjacency. This is not surpris-ing given the nature of the problem: the relative order inwhich product is used will clearly a�ect inventory morethan adjacency. Adjacency would appear to be almostirrelevant in this domain. This means that genetic re-combination operators which perform well on the Trav-eling Salesman because they stress adjacency will bepoor for sequencing tasks where relative order is critical.Experiments with the same 6 recombination operatorstested on the 30 city Blind Traveling Salesman Problemwere conducted on this warehouse/shipping sequencingtask.Figure 8 gives two graphs comparing the six operatorson both the Blind Traveling Salesman Problem and thewarehouse/shipping scheduler. As the graphs show, theresults of schedule optimization with the six operatorsare almost the opposite of the results for the TravelingSalesman Problem.The graph of the warehouse/shipping scheduler showsthe comparative results for the 6 operators with up to30,000 recombinations. (The population size is 200, theselective bias is 1.7, the number of runs is 15; no param-eter tuning was used.) Both of Syswerda's operators didextremely well on this problem; they also did relativelywell on the Traveling Salesman Problem. When we useedge recombination with up to 200,000 recombinationsit �nds solutions comparable to those found by PMX in20,000 recombinations; both results are inferior to ordercrossover #2 and the position based operator.The di�erence in search speed displayed by the oper-ators coupled with increased performance in worksta-tions has allowed us to achieve 2 orders of magnitudeimprovement in execution speed on the scheduling ap-plication. We are currently using a 15 MIP workstation.This means that our scheduler now executes in minutesrather than hours. (e.g., 6 hours becomes 3.6 minutesgiven 100 times faster execution). Scheduling 195 jobsin under 5 minutes is close to real time in the contextof this warehouse/shipping problem. This allows quickrescheduling in the event of line breakages, shortfalls inproduction, and other unforeseen circumstances. Ourexecution times are, of course, dependent on the com-plexity of the evaluation function.



Figure 8: Graphs of 6 Operators for the Blind 30 City Traveling Salesman Problem (top) and the Ware-house/Shipping Scheduler (bottom).



ACKNOWLEDGEMENTSThis research was supported in part by a grant from theColorado Institute of Arti�cial Intelligence (CIAI). CIAI issponsored in part by the Colorado Advanced TechnologyInstitute (CATI), an agency of the State of Colorado.References[1] L. Davis. (1985) \Applying Adaptive Algorithmsto Epistatic Domains." In Proc. International JointConference on Arti�cial Intelligence.[2] D. Goldberg. (1989) Genetic Algorithms in Search,Optimization and Machine Learning. AddisonWesley, Reading, MA.[3] D. Goldberg and R. Lingle. (1985) \Alleles, loci,and the Traveling Salesman Problem." In Proc. In-ternational Conference on Genetic Algorithms andtheir Applications.[4] I. Oliver, D. Smith, and J. Holland. (1987) \AStudy of Permutation Crossover Operators on theTraveling Salesman Problem." In Proc. Second In-ternational Conference on Genetic Algorithms andtheir Applications.[5] G. Syswerda. (1990) \Schedule Optimization Us-ing Genetic Algorithms." In Handbook of GeneticAlgorithms. l. Davis, ed. Van Nostrand Reinhold,New York.[6] N. Ulder, E. Pesch, P. van Laarhoven, H. Ban-delt, E. Aarts. (1990) \Improving TSP ExchangeHeuristics by Population Genetics." In ParallelProblem Solving In Nature. Springer/Verlag.[7] D. Whitley and J. Kauth (1988) \GENITOR:A Di�erent Genetic Algorithm" In Proc. RockyMountain Conf. on Arti�cial Intelligence.[8] D. Whitley, T. Starkweather, and D. Fuquay.(1989) \Scheduling Problems and Traveling Sales-man: The Genetic Edge Recombination Opera-tor." In Proc. Third Int'l. Conference on GeneticAlgorithms and their Applications. J. D. Shae�er,ed. Morgan Kaufmann.[9] D. Whitley and T. Starkweather. (1990) \GENI-TOR II: A Distributed Genetic Algorithm." Jour-nal of Experimental and Theoretical Arti�cial In-telligence. 2:189-214.[10] D. Whitley, T. Starkweather, and D. Shaner.(1990) \Traveling Salesman and SequenceScheduling: Quality Solutions Using Genetic EdgeRecombination." In Handbook of Genetic Algo-rithms. L. Davis, ed. Van Nostrand Reinhold, NewYork.


