
An Overview of Genetic Algorithms:Part 2, Research TopicsDavid Beasley�Department of Computing Mathematics,University of Wales College of Cardi�, Cardi�, CF2 4YN, UKDavid R. BullyDepartment of Electrical and Electronic Engineering,University of Bristol, Bristol, BS8 1TR, UKRalph R. MartinzDepartment of Computing Mathematics,University of Wales College of Cardi�, Cardi�, CF2 4YN, UKUniversity Computing, 1993, 15(4) 170{181.c UCISA. All rights reserved.No part of this article may be reproduced for commercial purposes.1 IntroductionGenetic algorithms, and other closely related areas such as genetic programming , evolution strategies and evo-lution programs, are the subject of an increasing amount of research interest. This two-part article is intendedprovide an insight into this �eld.In the �rst part of this article [BBM93a] we described the fundamental aspects of genetic algorithms (GAs).We explained their basic principles, such as task representation, �tness functions and reproduction operators.We explained how they work, and compared them with other search techniques. We described several practicalaspects of GAs, and mentioned a number of applications.In this part of the article we shall explore various more advanced aspects of GAs, many of which are thesubject of current research.2 Crossover techniquesThe \traditional" GA, as described in Part 1 of this article, uses 1-point crossover, where the two matingchromosomes are each cut once at corresponding points, and the sections after the cuts exchanged. However,many di�erent crossover algorithms have been devised, often involvingmore than one cut point. DeJong [DeJ75]investigated the e�ectiveness of multiple-point crossover, and concluded (as reported in [Gol89a, p119]) that2-point crossover gives an improvement, but that adding further crossover points reduces the performance ofthe GA. The problem with adding additional crossover points is that building blocks are more likely to bedisrupted. However, an advantage of having more crossover points is that the problem space may be searchedmore thoroughly.2.1 2-point crossoverIn 2-point crossover, (and multi-point crossover in general), rather than linear strings, chromosomes are regardedas loops formed by joining the ends together. To exchange a segment from one loop with that from another�email: David.Beasley@cm.cf.ac.ukyemail: Dave.Bull@bristol.ac.ukzemail: Ralph.Martin@cm.cf.ac.uk 1

loop requires the selection of two cut points, as shown in Figure 1. In this view, 1-point crossover can be seen
StartFinish

Cut point 2

Cut point 1Figure 1: Chromosome Viewed as a Loopas 2-point crossover with one of the cut points �xed at the start of the string. Hence 2-point crossover performsthe same task as 1-point crossover (i.e. exchanging a single segment), but is more general. A chromosomeconsidered as a loop can contain more building blocks|since they are able to \wrap around" at the end of thestring. Researchers now agree that 2-point crossover is generally better than 1-point crossover.2.2 Uniform crossoverUniform crossover is radically di�erent to 1-point crossover. Each gene in the o�spring is created by copyingthe corresponding gene from one or the other parent, chosen according to a randomly generated crossover mask .Where there is a 1 in the crossover mask, the gene is copied from the �rst parent, and where there is a 0 inthe mask, the gene is copied from the second parent, as shown in Figure 2. The process is repeated with theparents exchanged to produce the second o�spring. A new crossover mask is randomly generated for each pairof parents.O�spring therefore contain a mixture of genes from each parent. The number of e�ective crossing points isnot �xed, but will average L=2 (where L is the chromosome length).
0 1 0 1 0 1 0 0 1 1

1 1 0 0 0 0 1 1 1 1

1 0 1 0 0 0 1 1 1 0

1 0 0 1 0 1 1 1 0 0

Parent 2

Parent 1

Crossover Mask

Offspring 1Figure 2: Uniform Crossover2.3 Which technique is best?Arguments over which is the best crossover method to use still rage on. Syswerda [Sys89] argues in favour ofuniform crossover. Under uniform crossover, schemata of a particular order1 are equally likely to be disrupted,irrespective of their de�ning length.2 With 2-point crossover, it is the de�ning length of the schemata whichdetermines its likelihood of disruption, not its order. This means that under uniform crossover, although shortde�ning length schemata are more likely to be disrupted, longer de�ning length schemata are comparativelyless likely to be disrupted. Syswerda argues that the total amount of schemata disruption is therefore lower.Uniform crossover has the advantage that the ordering of genes is entirely irrelevant. This means that re-ordering operators such as inversion (see next section) are unnecessary, and we do not have to worry aboutpositioning genes so as to promote building blocks. GA performance using 2-point crossover drops dramaticallyif the recommendations of the building block hypothesis [BBM93a] are not adhered to. Uniform crossover, on1The order of a schema is the number of bit values it speci�es.2The de�ning length is the number of bit positions between the �rst and last speci�ed bit.2

the other hand, still performs well|almost as well as 2-point crossover used on a correctly ordered chromosome.Uniform crossover therefore appears to be more robust.Eshelman et al [ECS89] did an extensive comparison of di�erent crossover operators, including 1-point,2-point, multi-point and uniform crossover. These were analysed theoretically in terms of positional and distri-butional bias, and empirically, on several problems. No overall winner emerged, and in fact there was not morethan about 20% di�erence in speed among the techniques (so perhaps we should not worry too much aboutwhich is the best method). They found that 8-point crossover was good on the problems they tried.Spears & DeJong [SD91] are very critical of multi-point and uniform crossover. They stick by the theoreticalanalyses which show 1- and 2-point crossover are optimal. They say that 2-point crossover will perform poorlywhen the population has largely converged, due to reduced crossover productivity . This is the ability of acrossover operator to produce new chromosomes which sample di�erent points in the search space. Wheretwo chromosomes are similar, the segments exchanged by 2-point crossover are likely to be identical|leadingto o�spring which are identical to their parents. This is less likely to happen with uniform crossover. Theydescribe a new 2-point crossover operator such that if identical o�spring are produced, two new cross pointsare chosen. (Booker [Boo87] introduced reduced surrogate crossover to achieve the same e�ect.) This operatorwas then found to perform better than uniform crossover on a test problem (but only slightly better).In a slightly later paper, DeJong & Spears [DS90] conclude that modi�ed 2-point crossover is best for largepopulations, but the increased disruption of uniform crossover is bene�cial if the population size is small (incomparison to the problem complexity), and so gives a more robust performance.2.4 Other crossover techniquesMany other techniques have been suggested. The idea that crossover should be more probable at some stringpositions than others has some basis in nature, and several such methods have been described [SM87, Hol87,Dav91a, Lev91, LR91]. The general principle is that the GA adaptively learns which sites should be favouredfor crossover. This information is recorded in a punctuation string , which is itself part of the chromosome, andso is crossed over and passed on to descendants. In this way, punctuation strings which lead to good o�springwill themselves be propagated through the population.Goldberg [Gol85, Gol89a] describes a rather di�erent crossover operator, partially matched crossover (PMX),for use in order-based problems. (In an order-based problem, such as the travelling salesperson problem,gene values are �xed, and the �tness depends on the order in which they appear.) In PMX it is not thevalues of the genes which are crossed, but the order in which they appear. O�spring have genes which inheritordering information from each parent. This avoids the generation of o�spring which violate problem constraints.Syswerda [Sys91] and Davis [Dav91d, p72] describe other order-based operators.The use of problem speci�c knowledge to design crossover operators for a particular type of task is discussedin Section 13.3 Inversion and ReorderingIt was stated in Part 1 of this article that the order of genes on a chromosome is critical for the building blockhypothesis to work e�ectively. Techniques for reordering the positions of genes in the chromosome during a runhave been suggested. One such technique, inversion [Hol75], works by reversing the order of genes between tworandomly chosen positions within the chromosome. (When these techniques are used, genes must carry withthem some kind of \label", so that they may be correctly identi�ed irrespective of their position within thechromosome.)The purpose of reordering is to attempt to �nd gene orderings which have better evolutionary potential[Gol89a, p166]. Many researchers have used inversion in their work, although it seems few have attempted tojustify it, or quantify its contribution. Goldberg & Bridges [GB90] analyse a reordering operator on a verysmall task, and show that it can bring advantages|although they conclude that their methods would not bringthe same advantages on larger tasks.Reordering does nothing to lower epistasis (see below), so cannot help with the other requirement of thebuilding block hypothesis. Nor does it help if the relationships among the genes do not allow a simple linearordering. If uniform crossover is used, gene order is irrelevant, so reordering is unnecessary. So, Syswerda[Sys89] argues, why bother with inversion?Reordering also greatly expands the search space. Not only is the GA trying to �nd good sets of gene values,it is simultaneously trying to discover good gene orderings too. This is a far more di�cult problem to solve.3

Time spent trying to �nd better gene orderings may mean time taken away from �nding good gene values.In nature, there are many mechanisms by which the arrangement of the chromosome(s) may evolve (knownas karyotypic evolution) [MS89]; inversion is only one of them. In the short term, organisms will be favouredif they evolve to become well adapted to their environment. But in the long term, species are only likely tosurvive if their karyotypic evolution is such that they can easily adapt to new conditions as the environmentchanges. Evaluation of the genotype takes place rapidly, in each generation. But evaluation of the karyotypetakes place very slowly, perhaps over thousands of generations.For the vast majority of GA applications the environment, as embodied in the �tness function, is static.Taking a hint from nature, it would seem that karyotypic evolution is therefore of little importance in thesecases. However, in applications where the �tness function varies over time, and the GA must provide a solutionwhich can adapt to the changing environment, karyotypic evolution may be worth employing.In a static environment, if we really want to determine the best gene ordering (perhaps because we have alarge number of problems, all with similar characteristics), we might try using a meta-GA, in the same way thatGrefenstette [Gre86] used a meta-GA to determine a good set of GA parameters. A meta-GA has a populationwhere each member is itself a GA. Each individual GA is con�gured to solve the same task, but using di�erentparameters (in this case, di�erent gene orderings). The �tness of each individual is determined by running theGA, and seeing how quickly it converges. Meta-GAs are obviously very computationally expensive to run, andare only likely to be worthwhile if the results they provide can be reused many times.4 EpistasisThe term epistasis has been de�ned by geneticists as meaning that the inuence of a gene on the �tness of anindividual depends on what gene values are present elsewhere. [MS89] More speci�cally, geneticists use the termepistasis in the sense of a \masking" or \switching" e�ect. \A gene is said to be epistatic when its presencesuppresses the e�ect of a gene at another locus.3 Epistatic genes are sometimes called inhibiting genes becauseof their e�ect on other genes which are described as hypostatic." [GST90].Generally, though, there will be far more subtle and complex interactions among large overlapping groups ofgenes. In particular, there are chains of inuence|one gene codes for the production of a protein, which is theninvolved with a protein produced by another gene to produce a third product, which then reacts with otherenzymes produced elsewhere : : : and so on. Many genes simply produce intermediate proteins which are usedby other processes initiated by other genes. So there is a considerable amount of \interaction" among genes inthe course of producing the phenotype, although geneticists might not refer to this as epistasis.When GA researchers use the term epistasis, they are generally referring to any kind of strong interactionamong genes, not just masking e�ects, although they avoid giving a precise de�nition. While awaiting a de�nitivede�nition of epistasis in a GA context, we o�er our own:Epistasis is the interaction between di�erent genes in a chromosome. It is the extent to which the\expression" (i.e. contribution to �tness) of one gene depends on the values of other genes. Thedegree of interaction will, in general, be di�erent for each gene in a chromosome. If a small changeis made to one gene we expect a resultant change in chromosome �tness. This resultant change mayvary according to the values of other genes. As a broad classi�cation, we distinguish three levels ofgene interaction. These depend on the extent to which the change in chromosome �tness resultingfrom a small change in one gene varies according to the values of other genes.� Level 0|No interaction. A particular change in a gene always produces the same changein �tness.� Level 1|Mild interaction. A particular change in a gene always produces a change in�tness of the same sign, or zero.� Level 2|Epistasis. A particular change in a gene produces a change in �tness which variesin sign and magnitude, depending on the values of other genes.An example of a level 0 task is the trivial \counting ones task," where �tness is proportional to the numberof 1s in the binary string. An example of a level 1 task is the \plateau function," where typically 5 bits aredecoded such that the �tness is 1 if all bits are 1, and zero otherwise.3The locus is the position within the chromosome. 4

When GA researchers use the term epistasis, they would generally be talking only about level 2. This ishow we shall use the term, unless otherwise stated.Tasks in which all genes are of type 0 or 1 can be solved e�ciently by various simple techniques, such ashillclimbing, and do not require a GA [Dav91c]. GAs can, however, outperform simple techniques on morecomplex level 2 tasks exhibiting many interactions among the parameters|that is, with signi�cant epistasis.Unfortunately, as has already been noted in Part 1 of this article, according to the building block hypothesis,one of the basic requirements for a GA to be successful is that there is low epistasis. This suggests that GAswill not be e�ective on precisely those type of problems in which they are most needed. Clearly, understandingepistasis is a key issue for GA research. We need to know whether we can either avoid it, or develop a GAwhich will work even with high epistasis. This is explored further below, but �rst we shall describe a relatedphenomenon.5 DeceptionOne of the fundamental principles of GAs is that chromosomes which include schemata which are containedin the global optimum will increase in frequency (this is especially true of short, low-order schemata, knownas building blocks). Eventually, via the process of crossover, these optimal schemata will come together, andthe globally optimum chromosome will be constructed. But if schemata which are not contained in the globaloptimum increase in frequency more rapidly than those which are, the GA will be mislead, away from the globaloptimum, instead of towards it. This is known as deception.Deception is a special case of epistasis, and it has been studied in depth by Goldberg [Gol87] [Gol89a,p46][DG91] and others. Deception is directly related to the detrimental e�ects of epistasis in a GA. Level 2epistasis is necessary (but not su�cient) for deception.Statistically, a schema will increase in frequency in the population if its �tness4 is higher than the average�tness of all schemata in the population. A problem is referred to as deceptive if the average �tness of schematawhich are not contained in the global optimum is greater than the average �tness of those which are. Further-more, a problem is referred to as fully deceptive if \all low-order schemata containing a suboptimal solution arebetter than other competing schemata" [DG91].Deceptive problems are di�cult to solve. However, Grefenstette [Gre93] cleverly demonstrates that thisis not always the case. After the �rst generation, a GA does not get an unbiassed sample of points in thesearch space. Therefore it cannot estimate the global, unbiassed average �tness of a schema. It can only geta biassed estimate of schema �tness. Sometimes this bias helps the GA to converge (even though a problemmight otherwise be highly deceptive), and other times the bias might prevent the GA converging (even thoughthe problem is not formally deceptive). Grefenstette gives examples of both situations.6 Tackling epistasisThe problems of epistasis (described above) may be tackled in two ways: as a coding problem, or as a GAtheory problem. If treated as a coding problem, the solution is to �nd a di�erent coding (representation) anddecoding method which does not exhibit epistasis. This will then allow a conventional GA to be used. If thiscannot be done, the second approach may have to be used.Vose & Liepins [VL91] show that in principle any problem can be coded in such a way as to make it assimple as the \counting ones task". Similarly, any coding can be made simple for a GA by using appropriatelydesigned crossover and mutation operators. So it is always possible to represent any problem with little or noepistasis. However, for \di�cult" problems, the e�ort involved in devising such a coding will be considerable,and will e�ectively constitute \solving" the initial problem.Traditional GA theory, based on the schema theorem, relies on low epistasis. If genes in a chromosome havehigh epistasis, a new theory may have to be developed, and new algorithms developed to cope with this. Theinspiration may once again come from natural genetics, where epistasis (in the GA sense) is very common.Davis [Dav85a] considers both these approaches. He converts a bin-packing problem, where the optimumpositions for packing rectangles into a space must be found, into an order problem, where the order of packingthe rectangles had to be found instead. A key part of this is an intelligent decoding algorithm, which usesdomain knowledge to �nd \sensible" positions for each rectangle, in the order speci�ed by the chromosome.This reduces the epistasis in the chromosome. Once the problem has been converted to an order-based one,4The �tness of a schema is the average, or expected �tness of chromosomes which contain that schema.5

a modi�ed GA theory is required. Goldberg [Gol85] describes how GA theory can be adapted to encompassorder-based problems. He introduces the idea of order-schemata (o-schemata), and the PMX crossover methodwhich processes o-schemata in an analogous way to conventional crossover and normal schemata.Davis & Coombs [DC87] point out that GAs have been made to work even in domains of high epistasis.So, although Holland's convergence proof for a GA assumed low epistasis, there may be another, perhapsweaker, convergence proof for domains of high epistasis. Even rigourous de�nitions of \low epistasis" and \highepistasis" have yet to be formulated.Davidor [Dav90] has attempted to develop a technique which allows the degree of epistasis in a problemto be measured. Unfortunately an accurate assessment of epistasis can only be made with a time complexitycomparable to an exhaustive search of the problem space. This can be reduced by sampling, but then the resultsare considerably less accurate|especially for problems with high epistasis.Davidor also points out that present-day GAs are only suitable for problems of medium epistasis. If theepistasis is very high, the GA will not be e�ective. If it is very low, the GA will be outperformed by simplertechniques, such as hillclimbing. Until such a time as we have GAs which are e�ective on problems of highepistasis, we must devise representation schemes (or crossover/mutation operators) which reduce epistasis toan acceptable level.A technique for achieving this, expansive coding, is presented by Beasley, Bull & Martin [BBM93b]. Expan-sive coding is a technique for designing reduced-epistasis representations for combinatorial problems. Ratherthan having a representation consisting of a small number of widely interacting genes, a representation is createdwith a much larger number of more weakly interacting genes. This produces a search space which is larger, yetsimpler and more easily solved. They demonstrate that this technique can design reduced complexity algorithmsfor signal processing.7 Mutation and Na��ve EvolutionMutation is traditionally seen as a \background" operator [Boo87, p63][DeJ85], responsible for re-introducinginadvertently \lost" gene values (alleles), preventing genetic drift, and providing a small element of randomsearch in the vicinity of the population when it has largely converged. It is generally held that crossover is themain force leading to a thorough search of the problem space.However, examples in nature show that asexual reproduction can evolve sophisticated creatures withoutcrossover|for example bdelloid rotifers [MS89, p239]. Indeed, biologists see mutation as the main source ofraw material for evolutionary change [Har88, p137]. Scha�er et al [SCLD89] did a large experiment to determineoptimum parameters for GAs. They found that crossover had much less e�ect on performance than previouslybelieved. They suggest that \na��ve evolution" (just selection and mutation) performs a hillclimb-like searchwhich can be powerful without crossover. They investigate this hypothesis further [SE91], and �nd that crossovergives much faster evolution than a mutation-only population. However, in the end, mutation generally �ndsbetter solutions than a crossover-only regime.This is in agreement with Davis [Dav91d], who points out that mutation becomes more productive, andcrossover less productive, as the population converges.Despite its generally low probability of use, mutation is a very important operator. Its optimum probabilityis much more critical than that for crossover [SCLD89]. Even if it is a \background operator," it should not beignored.Spears [Spe93] closely compares crossover and mutation, and argues that there are some important char-acteristics of each operator that are not captured by the other. He further suggests that a suitably modi�edmutation operator can do everything that crossover can. He concludes that \standard mutation and crossoverare simply two forms of a more general exploration operator, that can perturb alleles based on any availableinformation."Other good performances of na��ve evolution have been reported [EOR91, ES91, Esh91]. According toEshelman [Esh91], \The key to na��ve evolution's success (assuming a bit-string representation) is the use ofGray coded parameters, making search much less susceptible to Hamming cli�s. : : : I do believe that na��veevolution is a much more powerful algorithm than many people in the GA community have been willing toadmit." 6

8 Non-binary representationsA chromosome is a sequence of symbols, and, traditionally, these symbols have been binary digits, so that eachsymbol has a cardinality of 2. Higher cardinality alphabets have been used in some research, and some believethem to have advantages. Goldberg [Gol89a, p80][Gol89b] argues that theoretically, a binary representationgives the largest number of schemata, and so provides the highest degree of implicit parallelism. But Antonisse[Ant89], interprets schemata di�erently, and concludes that, on the contrary, high-cardinality alphabets containmore schemata than binary ones. (This has been the subject of more recent discussion [Ang92, Ant92].)Goldberg has now developed a theory which explains why high-cardinality representations can perform well[Gol90]. His theory of virtual alphabets says that each symbol converges within the �rst few generations, leavingonly a small number of possible values. In this way, each symbol e�ectively has only a low cardinality.Empirical studies of high-cardinality alphabets have typically used chromosomes where each symbol repre-sents an integer [Bra91], or a oating-point number [JM91, MJ91]. As Davis [Dav91d, p65] points out, problemparameters are often numeric, so representing them directly as numbers, rather than bit-strings, seems obvi-ous, and may have advantages. One advantage is that we can more easily de�ne meaningful, problem-speci�c\crossover" and \mutation" operators. A variety of real-number operators can easily be envisaged, for example:� Combination operators{ Average|take the arithmetic average of the two parent genes.{ Geometric mean|take the square-root of the product of the two values.{ Extension|take the di�erence between the two values, and add it to the higher, or subtract it fromthe lower.� Mutation operators{ Random replacement|replace the value with a random one{ Creep|add or subtract a small, randomly generated amount.{ Geometric creep|multiply by a random amount close to one.For both creep operators, the randomly generated number may have a variety of distributions; uniformwithin a given range, exponential, Gaussian, binomial, etc.Janikow & Michalewicz [JM91] made a direct comparison between binary and oating-point representations,and found that the oating-point version gave faster, more consistent, and more accurate results.However, where problem parameters are not numeric, (for example in combinatorial optimisation problems),the advantages of high-cardinality alphabets may be harder to realise.In GA-digest5 volume 6 number 32 (September 1992), the editor, Alan C. Schultz, lists various researchusing non-binary representations. These include Grefenstette's work which uses a rule-based representation tolearn reactive strategies (or behaviours) for autonomous agents [SG90, Gre91]. Koza is using a process known asgenetic programming to learn Lisp programs [Koz92]. Floating point representations have been widely explored[Whi89, JM91, MJ91, ES93], and Michalewicz has looked at a matrix as the data structure [Mic92].9 Dynamic Operator ProbabilitiesDuring the course of a run, the optimal value for each operator probability may vary. Davis [Dav85b] triedlinear variations in crossover and mutation probability, with crossover decreasing during the run, and mutationincreasing (see above). Syswerda [Sys91] also found this advantageous. However, it imposes a �xed schedule.Booker [Boo87] utilises a dynamically variable crossover rate, depending on the spread of �tnesses. When thepopulation converges, the crossover rate is reduced to give more opportunity for mutation to �nd new variations.This has a similar e�ect to Davis's linear technique, but has the advantage of being adaptive.Davis [Dav89, Dav91d] describes another adaptive technique which is based directly on the success of anoperator at producing good o�spring. Credit is given to each operator when it produces a chromosome betterthan any other in the population. A weighting �gure is allocated to each operator, based on its performanceover the past 50 matings. For each reproductive event, a single operator is selected probabilistically, according5GA-digest is distributed free by electronic mail. Contact GA-List-Request@AIC.NRL.NAVY.MIL to subscribe. Back issuesare available by anonymous ftp from: ftp.aic.nrl.navy.mil (in /pub/galist).7

to the current set of operator weightings. During the course of a run, therefore, operator probabilities vary inan adaptive, problem dependent way. A big advantage of this technique is that it allows new operators to becompared directly with existing ones. If a new operator consistently loses weight, it is probably less e�ectivethan an existing operator.This is a very interesting technique. It appears to solve a great many problems about choosing operatorprobabilities at a stroke. It also allows new representations and new techniques to be tried without worryingthat much e�ort must be expended on determining new optimum parameter values. However, a potentialdrawback of this technique which must be avoided is that it may reward operators which simply locate localoptima, rather than helping to �nd the global optimum.Going in the opposite direction, several researchers vary the mutation probability by decreasing it exponen-tially during a run [Ack87, Bra91, Fog89, MJ91]. Unfortunately, no clear analysis or reasoning is given as to whythis should lead to an improvement (although Fogarty [Fog89] provides experimental evidence). The motivationseems to be that mutation probability is analogous to temperature in simulated annealing, and so mutation rateshould be reduced to a low value to aid convergence. However, in Ackley's case [Ack87], probability is variedfrom 0.25 to 0.02, and most would say that 0.02 is still a rather high value for mutation probability. Ackleydoes not appear to have thought this through. Fogarty does not say whether he thinks that the improvementshe found would apply in other problem areas.Arguments over whether the trajectory of the mutation probability should increase, decrease, be linear orexponential, become academic if Davis's adaptive algorithm is used.10 Niche and SpeciationIn natural ecosystems, there are many di�erent ways in which animals may survive (grazing, hunting, on theground, in trees, etc.), and di�erent species evolve to �ll each ecological niche. Speciation is the process wherebya single species di�erentiates into two (or more) di�erent species occupying di�erent niches.In a GA, niches are analogous to maxima in the �tness function. Sometimes we have a �tness functionwhich is known to be multimodal, and we may want to locate all the peaks. Unfortunately a traditional GAwill not do this; the whole population will eventually converge on a single peak. Of course, we would expectthe population of a GA to converge on a peak of high �tness, but even where there are several peaks of equal�tness, the GA will still end up on a single one. This is due to genetic drift [GR87]. Several modi�cations tothe traditional GA have been proposed to solve this problem, all with some basis in natural ecosystems [GR87].The two basic techniques are to maintain diversity, or to share the payo� associated with a niche.Cavicchio [GR87] introduced a mechanism he called preselection, where o�spring replace the parent onlyif the o�spring's �tness exceeds that of the inferior parent. There is �erce competition between parents andchildren, so the payo� is not so much shared as fought over, and the winner takes all. This method helps tomaintain diversity (since strings tend to replace others which are similar to themselves), and this helps preventconvergence on a single maximum.DeJong [DeJ75] generalised preselection in his crowding scheme. In this, o�spring are compared with a few(typically 2 or 3) randomly chosen individuals from the population. The o�spring replaces the most similar onefound, using Hamming distance as the similarity measure. This again aids diversity, and indirectly encouragesspeciation. Stadnyk [Sta87] found better results using a variation on this. The sampling of individuals wasbiassed according to inverse �tness, so that new o�spring replace others which are in the same niche and havelow �tness.Booker [Boo85] uses restricted mating to encourage speciation. In this scheme, individuals are only allowedto mate if they are similar. The total reward available in any niche is �xed, and is distributed using a bucket-brigade mechanism. Booker's application is a classi�er system, where it is easy to identify which niche anindividual belongs to. In other applications, this is generally not a simple matter.Perry [GR87] solves the species membership problem using a similarity template called an external schema.However, this scheme requires advance knowledge of where the niches are, so is of limited use.Grosso [GR87] simulates partial geographical isolation in nature by using multiple subpopulations andintermediate migration rates. This shows advantages over isolated subpopulations (no migration|equivalentto simply iterating the GA), and completely mixed (panmictic) populations. This is an ideal method for useon a parallel processor system. (Fourman [Fou85] proposed a similar scheme.) However, there is no mechanismfor explicitly preventing two or more subpopulations converging on the same niche.Davidor [Dav91b] used a similar approach, but instead of multiple subpopulations, the population wasconsidered as spread evenly over a two-dimensional grid. A local mating scheme was used, achieving a similar8

e�ect to multiple subpopulations, but without any explicit boundaries. Davidor found that for a while awider diversity was maintained (compared with a panmictic population), but eventually the whole populationconverged to a single solution. Although Davidor describes this as \A naturally occurring niche and speciesphenomenon", we would argue that he has misused the term \niche". In nature, species only come into directcompetition with each other if they are in the same niche. Since Davidor's GA eventually converges to a singlespecies, there can only be one niche.Goldberg & Richardson [GR87] describe the advantages of sharing . Several individuals which occupy thesame niche are made to share the �tness payo� among them. Once a niche has reached its \carrying capacity,"it no longer appears rewarding in comparison with other, un�lled niches. The di�culty with sharing payo�within a niche is that the boundaries of the niche are not easily identi�ed. Goldberg uses a sharing function tode�ne how the sharing is to be done. Essentially, the payo� given to an individual is reduced according to afunction (a power law) of the \distance" of each neighbour. The distance may be measured in di�erent ways, forexample in terms of genotype Hamming distance, or parameter di�erences in the phenotype. In a 1-dimensionaltask, this method was shown to be able to distribute individuals to peaks in the �tness function in proportionto the height of the peak.In a later continuation of this work, Deb & Goldberg [DG89] show that sharing is superior to crowding.Genotypic sharing (based on some distance measure between chromosome strings) and phenotypic sharing(based on the distance between the decoded parameters) are analysed. Phenotypic sharing is shown to haveadvantages. A sharing function based on Euclidian distance between neighbours implements niches which arehyperspherical in shape. The correct operation of the sharing scheme depends on using the appropriate radiusfor the hyperspheres. (The radius is the maximum distance between two chromosomes for them still to beconsidered in the same niche.) The paper gives formulae for computing this, assuming that the number ofniches is known, and that they are evenly distributed throughout the solution space.A mating restriction scheme was also implemented to reduce the production of lethals (see Section 11). Thisonly allowed an individual to mate with another from the same (phenotypic) niche (or at random only if therewas no other individual in the niche). This showed a signi�cant improvement.A di�culty arises with niche methods if there are many local maxima with �tnesses close to the globalmaximum [GDH92]. A technique which distributes population members to peaks in proportion to the �tnessof the peak, as the methods described above do, will not be likely to �nd the global maximum if there are morepeaks than population members. Crompton & Stephens [CS91] found that on a real problem, the introductionof niche formation by crowding gave no improvement.Deb's assumption that the function maxima are evenly distributed gives the upper bound on the niche radius,and better results might be obtained using a smaller value. If all the function maxima were clumped together,we would expect the performance to be little better than a GA without sharing. One solution might be to iteratethe GA, trying di�erent values for niche radius. An optimum scheme for this could be worth investigating.A di�erent approach to sharing is described by Beasley, Bull & Martin [BBM93c]. Their sequential nichemethod involves multiple runs of a GA, each locating one peak. After a peak has been located, the �tnessfunction is modi�ed so that the peak is e�ectively \cancelled out" from the �tness function. This ensures that,on subsequent runs, the same peak will not be re-discovered. The GA is then restarted with a new population.In this way, a new peak is located on each run. This technique has many similarities with �tness sharing.However, instead of the �tness of an individual being reduced (i.e. shared) because of its proximity to othermembers of the population, individuals have their �tness reduced because of their proximity to peaks locatedin previous runs. This method has a lower time complexity than that of �tness sharing, but su�ers similarproblems with regard to choice of niche radius, etc.11 Restricted MatingThe purpose of restricted mating is to encourage speciation, and reduce the production of lethals. A lethal isa child of parents from two di�erent niches. Although each parent may be highly �t, the combination of theirchromosomes may be highly un�t if it falls in the valley between the two maxima. Nature avoids the formationof lethals by preventing mating between di�erent species, using a variety of techniques. (In fact, this is theprimary biological de�nition of a \species"|a set of individuals which may breed together to produce viableo�spring.)The general philosophy of restricted mating makes the assumption that if two similar parents (i.e. from thesame niche) are mated, then the o�spring will be similar. However, this will very much depend on the codingscheme|in particular the existence of building blocks, and low epistasis. Under conventional crossover and9

mutation operators, two parents with similar genotypes will always produce o�spring with similar genotypes.But in a highly epistatic chromosome, there is no guarantee that these o�spring will not be of low �tness, i.e.\lethals". Similarity of genotype does not guarantee similarity of phenotype. These e�ects limit the use ofrestricted mating.Restricted mating schemes of Booker [Boo85] and Deb & Goldberg [DG89] have been described above. Theserestrict mating on the basis of similarities between the genotypes or phenotypes. Other schemes which restrictmating using additional mating template codes (for example [Hol87, p88]) are summarised by Goldberg [Gol89a,p192].12 Diploidy and DominanceIn the higher lifeforms, chromosomes contain two sets of genes, rather than just one. This is known as diploidy .(A haploid chromosome contains only one set of genes.) Most genetics textbooks tend to concentrate on diploidchromosomes, while virtually all work on GAs concentrates on haploid chromosomes. This is primarily forsimplicity, although use of diploid chromosomes might have bene�ts.Diploid chromosomes lend advantages to individuals where the environment may change over a period oftime. Having two genes allows two di�erent \solutions" to be remembered, and passed on to o�spring. Oneof these will be dominant (that is, it will be expressed in the phenotype), while the other will be recessive. Ifenvironmental conditions change, the dominance can shift, so that the other gene is dominant. This shift cantake place much more quickly than would be possible if evolutionary mechanisms had to alter the gene. Thismechanism is ideal if the environment regularly switches between two states (e.g. ice-age, non ice-age).The primary advantage of diploidy is that it allows a wider diversity of alleles to be kept in the population,compared with haploidy. Currently harmful, but potentially useful alleles can still be maintained, but in arecessive position. Other genetic mechanisms could achieve the same e�ect. For example, a chromosome mightcontain several variants of a gene. Epistasis (in the sense of masking) could be used to ensure that only one of thevariants were expressed in any particular individual. A situation like this occurs with haemoglobin production[MS89]. Di�erent genes code for its production during di�erent stages of development. During the foetal stage,one gene is switched on to produce haemoglobin, whilst later on a di�erent gene is activated. There are a varietyof biological metaphors we can use to inspire our development of GAs.In a GA, diploidy might be useful in an on-line application where the system could switch between di�erentstates. Diploidy involves a signi�cant overhead in a GA. As well as carrying twice as much genetic information,the chromosome must also carry dominance information. There are probably other mechanisms we can use toachieve similar results (for example, keep a catalogue of the best individuals, and try reintroducing them intothe population if performance falls). Little work seems to have been done in this area|Goldberg [Gol89a, p148]provides a summary.13 Knowledge-based TechniquesWhile most research has gone into GAs using the traditional crossover and mutation operators, some haveadvocated designing new operators for each task, using domain knowledge [Dav91d]. This makes each GA moretask speci�c (less robust), but may improve performance signi�cantly. Where a GA is being designed to tacklea real-world problem, and has to compete with other search and optimisation techniques, the incorporation ofdomain knowledge often makes sense.Suh & Van Gucht [SVG87] and Grefenstette [Gre87] argue that problem-speci�c knowledge can usefullybe incorporated into the crossover operation. Domain knowledge may be used to prevent obviously un�tchromosomes, or those which would violate problem constraints, from being produced in the �rst place. Thisavoids wasting time evaluating such individuals, and avoids introducing poor performers into the population.For example, Davidor [Dav91a] designed \analogous crossover" for his task in robotic trajectory generation.This used local information in the chromosome (i.e. the values of just a few genes) to decide which crossoversites would be certain to yield un�t o�spring.Domain knowledge can also be used to design local improvement operators, which allow more e�cient explo-ration of the search space around good points [SVG87]. It can also be used to perform heuristic initialisation ofthe population, so that search begins with some reasonably good points, rather than a random set [Gre87, SG90].Goldberg [Gol89a, p201{6] describes techniques for adding knowledge-directed crossover and mutation. Healso discusses the hybridisation of GAs with other search techniques (as does Davis [Dav91d]).10

14 Redundant Value MappingA problem occurs when a gene may only have a �nite number of discrete valid values. If a binary representationis used, and the number of values is not a power of 2, then some of the binary codes are redundant|they willnot correspond to any valid gene value. For example, if a gene represents an object to be selected from a groupof 10 objects, then 4 bits will be needed to encode the gene. If codes 0000 to 1001 are used to represent the 10objects, what do the codes 1010 to 1111 represent?During crossover and mutation, we cannot guarantee that such redundant codes will not arise. The problemis, what to do about them? This problem has not been greatly studied in the literature (perhaps because mostresearch concentrates on continuous-valued functions, where the problem does not arise). A number of solutionsare briey mentioned by DeJong [DeJ85]:1. Discard the chromosome as illegal.2. Assign the chromosome low �tness.3. Map the invalid code to a valid one.Solutions 1) and 2) would be expected to give poor performance, since we may be throwing away good genevalues elsewhere in the chromosome. There are several ways of achieving 3), including �xed remapping, andrandom remapping.In �xed remapping, a particular redundant value is remapped to a speci�c valid value. (In this case,remapped means that either the actual gene bit pattern is altered, or the decoding process treats the two bitpatterns as synonymous.) This is very simple, but has the disadvantage that some values are represented bytwo bit patterns, while the others are represented by only one. (In the example above, the codes for 10 to 15may be mapped back to the values 0 to 5, so these values are doubly represented in the code set, while thevalues 6 to 9 are singly represented).In random remapping, a redundant value is remapped to a valid value at random. This avoids the represen-tational bias problem, but also causes less information to be passed on from parents to o�spring.Probabilistic remapping is a hybrid between these two techniques. Every gene value (not just the \excess"ones) is remapped to one of two valid values in a probabilistic way, such that each valid value is equally likelyto be represented.Scha�er [Sch85] encountered the simplest version of this problem|three valid states represented by 2 bits.He used �xed remapping|allowing one state to have two binary representations. He also tried using ternarycoding to avoid the problem, but performance was inferior.Belew [Bel89] also used �xed remapping to solve the three-state problem. He points out that not only doesone state have two representations (while the other two states have only one each), but also that the e�ectivemutation rate for this state is halved (since mutations to one of the bits don't change the state). \There maybe opportunities for a GA to exploit this representational redundancy," says Belew.15 SummaryThe two parts of this article have introduced the fundamental principles of GAs, and explored some of thecurrent research topics in more detail. In the past, much research has been empirical, but gradually, theoreticalinsights are being gained. In many cases it is still too early to say which techniques are robust and general-purpose, and which are special-purpose. Where special-purpose techniques have been identi�ed, work is stillrequired to determine whether these can be extended to make them more general, or further specialised to makethem more powerful. Theoretical research can greatly help progress in this area.Davis [Dav91d] describes a variety of promising ideas. Steady state replacement, �tness ranking, and 2-pointcrossover (modi�ed so that o�spring must di�er from their parents) are often good methods to use, althoughwith suitable parent selection techniques, generational replacement may be equally as good [GD91], and uniformcrossover can have advantages.Knowledge-based operators and dynamic operator probabilities are probably going to help solve real worldproblems. Niche formation still seems like a big problem to be solved|how can all the `best' maximabe located,while avoiding the not-so-good maxima, which may have only a slightly lower �tness? Ultimately, if the �tnessfunction has very many local maxima, no search technique is ever going to perform well on it. Better methods fordesigning �tness functions are needed, which can avoid such pitfalls. Similarly, the di�culties of high epistasis11

must be addressed. Either we must �nd ways to represent problems which minimise their epistasis, or we mustdevelop enhanced techniques which can cope even where there is high epistasis. There is no doubt that researchinto GAs will be a very active area for some time to come.References[Ack87] D.H. Ackley. An empirical study of bit vector function optimization. In L. Davis, editor, GeneticAlgorithms and Simulated Annealing, chapter 13, pages 170{204. Pitman, 1987.[Ang92] Peter J. Angeline. Antonisse's extension to schema notation. GA-Digest, 6(35):{, October 1992.[Ant89] J. Antonisse. A new interpretation of schema notation that overturns the binary encoding constraint.In J.D. Scha�er, editor, Proceedings of the Third International Conference on Genetic Algorithms,pages 86{91. Morgan Kaufmann, 1989.[Ant92] Jim Antonisse. Re: Antonisse's extension to schema notation. GA-Digest, 6(37):{, November 1992.[BBM93a] D. Beasley, D.R. Bull, and R.R. Martin. An overview of genetic algorithms: Part 1, fundamentals.University Computing, 15(2):58{69, 1993.[BBM93b] D. Beasley, D.R. Bull, and R.R. Martin. Reducing epistasis in combinatorial problems by expan-sive coding. In S. Forrest, editor, Proceedings of the Fifth International Conference on GeneticAlgorithms, pages 400{407. Morgan Kaufmann, 1993.[BBM93c] D. Beasley, D.R. Bull, and R.R. Martin. A sequential niche technique for multimodal functionoptimization. Evolutionary Computation, 1(2):101{125, 1993.[Bel89] R.K. Belew. When both individuals and popluations search: adding simple learning to the geneticalgorithm. In J.D. Scha�er, editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 34{41. Morgan Kaufmann, 1989.[Boo85] L. Booker. Improving the performance of genetic algorithms in classi�er systems. In J.J. Grefen-stette, editor, Proceedings of the First International Conference on Genetic Algorithms, pages 80{92.Lawrence Erlbaum Associates, 1985.[Boo87] L. Booker. Improving search in genetic algorithms. In L. Davis, editor, Genetic Algorithms andSimulated Annealing, chapter 5, pages 61{73. Pitman, 1987.[Bra91] M.F. Bramlette. Initialisation, mutation and selection methods in genetic algorithms for functionoptimization. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth InternationalConference on Genetic Algorithms, pages 100{107. Morgan Kaufmann, 1991.[CS91] W. Crompton and N.M. Stephens. Using genetic algorithms to search for binary sequences withlarge merit factor. In Proc. Third IMA Conf on Cryptography and Coding, pages {, 1991. Not yetpublished.[Dav85a] L. Davis. Applying adaptive algorithms to epistatic domains. In 9th Int. Joint Conf. on AI, pages162{164, 1985.[Dav85b] L. Davis. Job shop scheduling with genetic algorithms. In J.J. Grefenstette, editor, Proceedingsof the First International Conference on Genetic Algorithms, pages 136{140. Lawrence ErlbaumAssociates, 1985.[Dav89] L. Davis. Adapting operator probabilities in genetic algorithms. In J.D. Scha�er, editor, Proceedingsof the Third International Conference on Genetic Algorithms, pages 61{69. Morgan Kaufmann, 1989.[Dav90] Y. Davidor. Epistasis variance: Suitability of a representation to genetic algorithms. ComplexSystems, 4:369{383, 1990.[Dav91a] Y. Davidor. A genetic algorithmapplied to robot trajectory generation. In L. Davis, editor, Handbookof Genetic Algorithms, chapter 12, pages 144{165. Van Nostrand Reinhold, 1991.12

[Dav91b] Y. Davidor. A naturally occuring niche and species phenomenon: the model and �rst results. InR.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on GeneticAlgorithms, pages 257{263. Morgan Kaufmann, 1991.[Dav91c] L. Davis. Bit climbing, representational bias and test suite design. In R.K. Belew and L.B. Booker,editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 18{23.Morgan Kaufmann, 1991.[Dav91d] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.[DC87] L. Davis and S. Coombs. Genetic algorithms and communication link speed design: theoreticalconsiderations. In J.J. Grefenstette, editor, Proceedings of the Second International Conference onGenetic Algorithms, pages 252{256. Lawrence Erlbaum Associates, 1987.[DeJ75] K. DeJong. The Analysis and behaviour of a Class of Genetic Adaptive Systems. PhD thesis,University of Michigan, 1975.[DeJ85] K. DeJong. Genetic algorithms: A 10 year perspective. In J.J. Grefenstette, editor, Proceedingsof the First International Conference on Genetic Algorithms, pages 169{177. Lawrence ErlbaumAssociates, 1985.[DG89] K. Deb and D.E. Goldberg. An investigation of niche and species formation in genetic functionoptimization. In J.D. Scha�er, editor, Proceedings of the Third International Conference on GeneticAlgorithms, pages 42{50. Morgan Kaufmann, 1989.[DG91] K. Deb and D.E. Goldberg. Analyzing deception in trap functions. Technical Report IlliGal 91009,Illigal, December 1991.[DS90] K. DeJong and W.M. Spears. An analysis of the interacting roles of population size and crossover ingenetic algorithms. In H.-P. Schwefel and R. M�anner, editors, Parallel Problem Solving from Nature,pages 38{47. Springer-Verlag, 1990.[ECS89] L.J. Eshelman, R. Caruna, and J.D. Scha�er. Biases in the crossover landscape. In J.D. Schaf-fer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 10{19.Morgan Kaufmann, 1989.[EOR91] Christer Ericson and Ivan Ordonez-Reinoso. Dialogue on uniform crossover. GA-Digest, 5(33):{,October 1991.[ES91] Larry J. Eshelman and J. David Scha�er. GAs and very fast simulated re-annealing. GA-Digest,5(37):{, December 1991.[ES93] Larry J. Eshelman and J. David Scha�er. Real-coded genetic algorithms and interval schemata. InL. Darrell Whitley, editor, Foundations of Genetic Algorithms, 2, pages 187{202.Morgan Kaufmann,1993.[Esh91] Larry J. Eshelman. Bit-climbers and naive evolution. GA-Digest, 5(39):{, December 1991.[Fog89] T.C. Fogarty. Varying the probability of mutation in the genetic algorithm. In J.D. Scha�er, editor,Proceedings of the Third International Conference on Genetic Algorithms, pages 104{109. MorganKaufmann, 1989.[Fou85] M.P. Fourman. Compaction of symbolic layout using genetic algorithms. In J.J. Grefenstette, editor,Proceedings of the First International Conference on Genetic Algorithms, pages 141{153. LawrenceErlbaum Associates, 1985.[GB90] D.E. Goldberg and C.L. Bridges. An analysis of a reordering operator on a GA-hard problem.Biological Cybernetics, 62:397{405, 1990.[GD91] D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used in genetic algorithms.In G.J.E. Rawlins, editor, Foundations of Genetic Algorithms, pages 69{93. Morgan Kaufmann,1991. 13

[GDH92] D.E. Goldberg, K. Deb, and J. Horn. Massive multimodality, deception, and genetic algorithms.In R. M�anner and B. Manderick, editors, Parallel Problem Solving from Nature, 2, pages 37{46.North-Holland, 1992.[Gol85] D.E. Goldberg. Alleles, loci, and the TSP. In J.J. Grefenstette, editor, Proceedings of the FirstInternational Conference on Genetic Algorithms, pages 154{159. Lawrence Erlbaum Associates,1985.[Gol87] D.E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In L. Davis, editor,Genetic Algorithms and Simulated Annealing, chapter 6, pages 74{88. Pitman, 1987.[Gol89a] D.E. Goldberg. Genetic Algorithms in search, optimization and machine learning. Addison-Wesley,1989.[Gol89b] D.E. Goldberg. Zen and the art of genetic algorithms. In J.D. Scha�er, editor, Proceedings of theThird International Conference on Genetic Algorithms, pages 80{85. Morgan Kaufmann, 1989.[Gol90] D.E. Goldberg. The theory of virtual alphabets. In H.-P. Schwefel and R. M�anner, editors, ParallelProblem Solving from Nature, pages 13{22. Springer-Verlag, 1990.[GR87] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function opti-mization. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on GeneticAlgorithms, pages 41{49. Lawrence Erlbaum Associates, 1987.[Gre86] J.J. Grefenstette. Optimization of control parameters for genetic algorithms. IEEE Trans SMC,16:122{128, 1986.[Gre87] J.J. Grefenstette. Incorporating problem speci�c knowledge into genetic algorithms. In L. Davis,editor, Genetic Algorithms and Simulated Annealing, chapter 4, pages 42{60. Pitman, 1987.[Gre91] J.J. Grefenstette. Strategy acquisition with genetic algorithms. In L. Davis, editor, Handbook ofGenetic Algorithms, chapter 14, pages 186{201. Van Nostrand Reinhold, 1991.[Gre93] John J. Grefenstette. Deception considered harmful. In L. Darrell Whitley, editor, Foundations ofGenetic Algorithms, 2, pages 75{91. Morgan Kaufmann, 1993.[GST90] N.P.O. Green, G.W. Stout, and D.J. Taylor. Biological Science 1 & 2. Cambridge University Press,1990.[Har88] D.L. Hartl. A primer of population genetics. Sinauer Associates Inc., 1988.[Hol75] J.H. Holland. Adaptation in Natural and Arti�cial Systems. MIT Press, 1975.[Hol87] J.H. Holland. Genetic algorithms and classi�er systems: foundations and future directions. In J.J.Grefenstette, editor, Proceedings of the Second International Conference on Genetic Algorithms,pages 82{89. Lawrence Erlbaum Associates, 1987.[JM91] C.Z. Janikow and Z. Michalewicz. An experimental comparison of binary and oating point repre-sentations in genetic algorithms. In R.K. Belew and L.B. Booker, editors, Proceedings of the FourthInternational Conference on Genetic Algorithms, pages 31{36. Morgan Kaufmann, 1991.[Koz92] John R. Koza. Genetic Programming: On The Programming Of Computers By Means Of NaturalSelection. MIT Press, 1992.[Lev91] J. Levenick. Inserting introns improves genetic algorithm success rate: taking a cue from biology. InR.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference on GeneticAlgorithms, pages 123{127. Morgan Kaufmann, 1991.[LR91] S.J. Louis and G.J.E. Rawlins. Designer genetic algorithms: Genetic algorithms in structure design.In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth International Conference onGenetic Algorithms, pages 53{60. Morgan Kaufmann, 1991.[Mic92] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag,1992. 14

[MJ91] Z. Michalewicz and C.Z. Janikow. Handling constraints in genetic algorithms. In R.K. Belew andL.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms,pages 151{157. Morgan Kaufmann, 1991.[MS89] J. Maynard Smith. Evolutionary Genetics. Oxford University Press, 1989.[Sch85] J.D. Scha�er. Learning multiclass pattern discrimination. In J.J. Grefenstette, editor, Proceed-ings of the First International Conference on Genetic Algorithms, pages 74{79. Lawrence ErlbaumAssociates, 1985.[SCLD89] J.D. Scha�er, R.A. Caruna, Eshelman L.J., and R. Das. A study of control parameters a�ectingonline performance of genetic algorithms for function optimization. In J.D. Scha�er, editor, Proceed-ings of the Third International Conference on Genetic Algorithms, pages 51{60. Morgan Kaufmann,1989.[SD91] W.M. Spears and K. DeJong. An analysis of multi-point crossover. In G.J.E. Rawlins, editor,Foundations of Genetic Algorithms, pages 301{315. Morgan Kaufmann, 1991.[SE91] J.D. Scha�er and L.J. Eshelman. On crossover as an evolutionarily viable strategy. In R.K. Belewand L.B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms,pages 61{68. Morgan Kaufmann, 1991.[SG90] A.C. Schultz and J.J. Grefenstette. Improving tactical plans with genetic algorithms. In Proc. IEEEConf. Tools for AI, pages 328{344. IEEE Society Press, 1990.[SM87] J.D. Scha�er and A. Morishma. An adaptive crossover distribution mechanism for genetic algo-rithms. In J.J. Grefenstette, editor, Proceedings of the Second International Conference on GeneticAlgorithms, pages 36{40. Lawrence Erlbaum Associates, 1987.[Spe93] William M. Spears. Crossover or mutation? In L. Darrell Whitley, editor, Foundations of GeneticAlgorithms, 2, pages 221{237. Morgan Kaufmann, 1993.[Sta87] I. Stadnyk. Schema recombination in a pattern recognition problem. In J.J. Grefenstette, editor,Proceedings of the Second International Conference on Genetic Algorithms, pages 27{35. LawrenceErlbaum Associates, 1987.[SVG87] J.Y. Suh and D. Van Gucht. Incorporating heuristic information into genetic search. In J.J. Grefen-stette, editor, Proceedings of the Second International Conference on Genetic Algorithms, pages100{107. Lawrence Erlbaum Associates, 1987.[Sys89] G. Syswerda. Uniform crossover in genetic algorithms. In J.D. Scha�er, editor, Proceedings of theThird International Conference on Genetic Algorithms, pages 2{9. Morgan Kaufmann, 1989.[Sys91] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, editor, Handbook ofGenetic Algorithms, chapter 21, pages 332{349. Van Nostrand Reinhold, 1991.[VL91] M. Vose and G. Liepins. Schema disruption. In R.K. Belew and L.B. Booker, editors, Proceedingsof the Fourth International Conference on Genetic Algorithms, pages 237{242. Morgan Kaufmann,1991.[Whi89] D. Whitley. The GENITOR algorithm and selection pressure: why rank-based allocation of repro-ductive trials is best. In J.D. Scha�er, editor, Proceedings of the Third International Conference onGenetic Algorithms, pages 116{121. Morgan Kaufmann, 1989.
15

