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1 Introduction

At La Banya, gulls (both Audouin’s gulls and their main competitor yellow-legged gulls) build their nest in
clumped groups (what is called a sub-colony). Censuses are performed yearly depending on the size of the
sub-colony.

The obtained data is shown in the following table:

year pop. year pop. year pop. year pop.

1981 36 1990 4300 1999 10189 2008 13031
1982 200 1991 3950 2000 10537 2009 9762
1983 546 1992 6174 2001 11666 2010 11271
1984 1200 1993 9373 2002 10122 2011 8688
1985 1200 1994 10143 2003 10355 2012 7571
1986 2200 1995 10327 2004 9168 2013 6983
1987 1850 1996 11328 2005 13988 2014 4778
1988 2861 1997 11725 2006 15329 2015 2067
1989 4266 1998 11691 2007 14177 2016 1586

2017 793

Table 1: The Andouin’s population data at La Banya from 1981 to 2017. Predators (foxes) appeared in 1997.
In 2005 there is an abrupt change (at the moment without explanation) provoked by external reasons. The
period 1981–1997 known as First Epoch is characterised by a logistic growth due to the absence of predators
and the fact that the population did not exhaust the food carrying capacity. The period 2006–2017 known as
Second Epoch is characterised by a regular behaviour with migration.

Several biotic and abiotic drivers can influence population fluctuations at the study patch. However, previ-
ous studies show that local biotic drivers explain better these fluctuations than global oceanographic indexes.
Among the these biotic drivers, interference competition with the dominant yellow-legged gull and predation
and disturbance by invasive carnivores (mainly foxes) are the main factors affecting all crucial demographic pa-
rameters, namely adult survival, fertility and dispersal (both immigration and dispersal at spatial mesoscale).
The main difference between these two drivers is that yellow-legged gulls are competitors with a long shared
evolutionary history and long-term stability occurs when the two species occur in a specific patch. On the
contrary, gulls have not developed evolutionary defences to cope with terrestrial predators like carnivores, and
this is why they select for breeding patches isolated and protected against the invasions of the predators.

Population density of yellow-legged gulls and the number of carnivores present at La Banya have been
estimated over the years, and gull carcasses and tracks in the sand have provided estimates of yearly predation
rates that varied with the individual predator and its foraging preferences. Other biotic factor is food availability,
and a proxy to assess its temporal variability is through the statistics of landings of trawlers in the harbors close
to the study site, which are highly correlated with the amounts of fish discarded. Food per capita decreased
as population density approached the carrying capacity during the mid 90’s and also because trawler catches
per unit effort have decreased in recent decades due to overharvesting of fish stocks. Adult survival, which is
the vital rate with largest elasticity for the population dynamics of the gulls, changes with bycatch mortality
at longline fisheries and by carnivore predation.

Previous studies have shown that bycatch is relatively constant over the years, whereas carnivore density
may vary with breeding season, although values were always low. Predation rate increased with the density
of carnivores, but some noise for this association occurred due to individual carnivore preferences for gull
predation. However, these predation rates did not significantly affect adult survival, whereas they increased
dispersal probabilities to other patches (either occupied or empty).
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In summary, there is no record of a decrease of food availability in absolute and per capita values (i.e.
accounting for density-dependence), nor a decrease of local survival by carnivore predation or an increase
of competition with the dominant yellow-legged gulls. Thus, these variables cannot explain the decline of
population density of Audouin’s gulls to patch collapse at La Banya since 2006, which should respond to an
increase of dispersal to other patches.

2 Mathematical model with dispersal by social copying

We introduce a mean field model using an ordinary differential equation modeling key ecological processes
expected to explain the field data. Our hypothesis is that the presence of predators triggers a social response of
the birds that start dispersing in an inverse, density-dependent manner. That is, the less individuals at the patch,
the faster the dispersal rate. The mathematical model describes the population dynamics of birds (variable x) in
the patch of study. The model can be considered as a single-patch system considering immigration and dispersal
of individuals. Other processes considered are intra-specific competition for resources and density-independent
death rates. As we thoroughly explain below, the model incorporates a function incorporating a social copying
dispersal process assumed to occur due to the presence of predators. The model will be adapted to the dynamics
and processes hypothesized for the different epochs: a first epoch before predators arrival (1981-1997) and a
second epoch comprised between 1998 and 2017, containing the full collapse of the population during years
2006-2017 since predators were removed in 2017. The model reads:

(1)
dx

dt
= γx

(
1− x

K

)
− εx− λΨ(x, µ, σ, δ),

with initial population x(0). This equation considers the following ecological processes:

(2)
dx

dt
= αx − γ

x2

K
− λΨ(x, µ, σ, δ)

with α = γ − ε (units: birds/year).

Immigration,
growth and

death

Nonlinear
competition

term
Dispersal by social copying

Equation (1) considers an initial exponential increase of the population
proportional to parameter γ (including both the reproduction of birds and the arrival of new individuals from
other patches of the metapopulation, which is made proportional to the population present at the patch). This
population increase is constrained by a logistic function with carrying capacity K (units: birds), introducing
intra-specific competition for resources. Also, we consider density-independent death rate, proportional to
parameter ε. The competition term will be also written as βx2, with β = γ/K (units: years−1). The nonlinear
dispersal function given by

(3) Ψ(x, µ, σ, δ) :=





1−Edir(x,µ,σ,δ)
1−Edir(0,µ,σ,δ) when 0 ≤ x ≤ δ,

1−E(x,σ,δ)
1−Edir(0,µ,σ,δ) when x ≥ δ,

(4) Edir(x, µ, σ, δ) :=

(
µ

Θ + σδ

2Θ + σδ

(
1− x

δ

)
+
x

δ

)
E(x, σ, δ),

where

(5) E(x, σ, δ) :=
σ(x− δ)

Θ + σ|x− δ| ,

is an Elliot sigmoid Θ–scaled, σ–strengthened, and δ–displaced. All the model parameters are non-negative
and we have fixed Θ := 1000 (this parameter controls how stretched is the sigmoid function and it is related
with the order of magnitude of the carrying capacity K). Figure 1 shows some examples of the shape of the
function Ψ for different values of the parameters. The function Ψ is designed so that the dispersal response
of the population of birds generically increases when the population numbers at the patch diminish. Finally,
parameter λ is the dispersal rate that parameterize the impact of function Ψ (units: birds/year) in Eq. (2).

The following proposition and lemma summarize the mathematical properties of the functions Ψ(x, µ, σ, δ),
E(x, σ, δ) and Edir(x, µ, σ, δ).

Lemma 1 (On the functions E(x, σ, δ) and Edir(x, µ, σ, δ)). For all µ, σ, δ ≥ 0 and x ≥ 0 we have

(1) E(0, σ, δ) = − σδ
Θ+σδ , and Edir(0, µ, σ, δ) = −µ σδ

2Θ+σδ ,
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1. MATHEMATICAL MODEL

We build a mean field model using an ordinary differential equation modelling key ecological processes expected to
explain the field data. Our hypothesis is that the presence of predators triggers a social response of the birds that starts
emigrating in an inverse density-dependent manner. That is, the less individuals, the faster emigration rates. To do so we
model the population of the bird species with a single variable, x, denoting the population density of individuals in the
studied wetland region. The model can be considered as a single-patch system considering immigration and dispersion
of individuals. Other processes considered are intra-specific competition for resources and density-independent death
rates. As we thoroughly explain below, the model incorporates a function incorporating a social copying emigration
process assumed to occur due to the presence of predators. The model will be adapted to the dynamics and processes
hypothesised for the different epochs: a first epoch before predators arrival (1981-1997) and a second epoch comprised
between 1998 and the removal of predators carried out in 2017 (see below). The model reads:

dx

dt
= �x

⇣
1 � x

K

⌘
� "x � µ M(x, p,�, �), (1) model

with initial population x(0) and

M(x, p,�, �) :=

8
><
>:

1�El(x,p,�,�)
1�El(0,p,�,�) if x < �,

1�Er(x,�,�)
1�El(0,p,�,�) otherwise.

(2) inElliot

El(x,�, �) =

Ä
�
Ä
p ��+✓
��+2✓

�
1 � x

�

�
+ x

�

ää
�(� � x)

✓ + �(x � �)
, (3)

(4)

Er(x,�, �) =
�(x � �)

✓ + �(x � �)
. (5)
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3 Centre de Recerca Matemàtica, 4 Barcelona Graduate School of Mathematics (BGSMath),
Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain
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We build a mean field model using an ordinary differential equation modelling key ecological processes expected to
explain the field data. Our hypothesis is that the presence of predators triggers a social response of the birds that starts
emigrating in an inverse density-dependent manner. That is, the less individuals, the faster emigration rates. To do so we
model the population of the bird species with a single variable, x, denoting the population density of individuals in the
studied wetland region. The model can be considered as a single-patch system considering immigration and dispersion
of individuals. Other processes considered are intra-specific competition for resources and density-independent death
rates. As we thoroughly explain below, the model incorporates a function incorporating a social copying emigration
process assumed to occur due to the presence of predators. The model will be adapted to the dynamics and processes
hypothesised for the different epochs: a first epoch before predators arrival (1981-1997) and a second epoch comprised
between 1998 and the removal of predators carried out in 2017 (see below). The model reads:
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Figure **. (a) Population growth rate r since colonization of La Banya by Audouin’s gulls 
in 1981; dashed line shows population stability (r = 0). The inner panel shows population 
growth rate for the whole metapopulation (90% of total world population); black, green 
and red colours show the phases of exponential initial growth, dynamic stability and non-
linear decline respectively; (b) Ricker function of population density N at time t and time 
t+1, with dashed line showing stability (r = 0); colours as in panel (a); the inner panel 
show how population density varies at La Banya since colonization to 2017. 
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FIG. 8: Figure **. (a) Population growth rate r since colonization of La Banya by Audouin?s gulls in 1981; dashed line
shows population stability (r = 0). The inner panel shows population growth rate for the whole metapopulation (90% of

total world population); black, green and red colours show the phases of exponential initial growth, dynamic stability and
non-linear decline respectively; (b) Ricker function of population density N at time t and time t+1, with dashed line

showing stability (r = 0); colours as in panel (a); the inner panel show how population density varies at La Banya since
colonization to 2017.

5. FULL MODEL INCLUDING ALL DISPERSAL MODES

dx(t)

dt
= �x(t)

Å
1 � x(t)

K

ã
� "x(t) � (⇢x(t) + ⌫ + �D(x(t), µ,�, �)) , (19) diff_equation_Gen-migration

where

D(x, µ,�, �) :=

8
<
:

1�Edir(x,µ,�,�)
1�Edir(0,µ,�,�) when 0  x  �,

1�E(x,�,�)
1�Edir(0,µ,�,�) when x � �,

Edir(x, µ,�, �) :=

Å
µ(⇥ + ��)

2⇥ + ��

⇣
1 � x

�

⌘
+

x

�

ã
E(x,�, �),

E(x,�, �) :=
�(x � �)

⇥ + �|x � �| , and

is an Elliot sigmoid scaled (⇥) strengthened (�), and displaced (�).
All the model parameters are non-negative and ⇥ := 1000.

On the migration sigmoid

For every � � 0 and x 2 R we have E(x, 0, �) ⌘ 0 and, or every � > 0, E(�,�, �) = 0, and E(x,�, �) as a function of
x is strictly increasing. Moreover, E(x,�, �) < 1. On the other hand,

E(0,�, �) = � ��

⇥ + ��
,

Edir(�, µ,�, �) = E(�,�, �) = 0,

1 � Edir(0, µ,�, �) = 1 � µ(⇥ + ��)

2⇥ + ��
E(0,�, �) = 1 +

µ(⇥ + ��)

2⇥ + ��

��

⇥ + ��

= 1 +
µ��

2⇥ + ��
=

2⇥ + (1 + µ)��

2⇥ + ��
� 1,
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DISPERSAL BY SOCIAL COPYING IN A COLONIAL BIRD 5

yellow-legged gulls, the two more abundant and dominant species in the community. This density-dependence
index explains much of the variance in fertility (see above and Fig. 2(C)) and juvenile survival, whereas it did
not correlate with changes in recruitment and adult survival [8, 9]. Food per capita decreased as population
density approached the carrying capacity during the mid 90’s and also because trawler catches per unit e↵ort
have decreased in recent decades due to overharvesting of fish stocks (Fig. 2(D)). Adult survival, which is the
vital rate with largest elasticity for the population dynamics of the gulls, changes with bycatch mortality at
longline fisheries and by carnivore predation [10, 14].

Previous studies have shown that bycatch is relatively constant over the years [15], whereas carnivore density
may vary with breeding season, although values were always low (median number of adult carnivores since
their first arrival equal to two with range between zero and five) [11]. Predation rate increased with the
density of carnivores, but some noise for this association occurred due to individual carnivore preferences for
gull predation (Fig. 2(B)). However, these predation rates did not significantly a↵ect adult survival [4, 10],
whereas they increased dispersal probabilities to other patches (either occupied or empty) [5, 11]. The number
of colonized patches increased non-linearly since the mid 00’s (Fig. 2(E)), and metapopulation density followed
parallel population dynamics with that at La Banya, except for the last years, when the slope at the former
was slower than the slope to patch extinction at the later (Fig. 2(F)). In summary, we did not record a
decrease of food availability in absolute and per capita values (i.e. accounting for density-dependence), nor
a decrease of local survival by carnivore predation or an increase of competition with the dominant yellow-
legged gulls. Thus, these variables cannot explain the decline of population density of Audouin’s gulls to patch
collapse at La Banya since 2006, which should respond to an increase of dispersal to other patches, previously
recorded using marked individuals and their field monitoring along most of the whole western Mediterranean
metapopulation [5, 10, 11].

2. Mathematical model with dispersal by social copying

Population density at patch, x

We introduce a new mean field model using an ordinary di↵erential equation modeling key ecological
processes expected to explain the field data. Our hypothesis is that the presence of predators triggers a
social response of the birds that start dispersal in an inverse, density-dependent manner. That is, the less
individuals at the patch, the faster the dispersal rate. The mathematical model describes the population
dynamics of birds (variable x) in the patch of study. The model can be considered as a single-patch system
considering immigration and dispersal of individuals. Other processes considered are intra-specific competition
for resources and density-independent death rates. As we thoroughly explain below, the model incorporates a
function incorporating a social copying dispersal process assumed to occur due to the presence of predators.
The model will be adapted to the dynamics and processes hypothesized for the di↵erent epochs: a first epoch
before predators arrival (1981-1997) and a second epoch comprised between 1998 and 2017, containing the
full collapse of the population during years 2006-2017 since predators were removed in 2017 (see below). The
model reads.

(1)
dx

dt
= �x

⇣
1 � x

K

⌘
� "x � �D(x, µ,�, �),

with initial population x(0). This equation considers the following ecological processes:

(2)
dx

dt
= ↵x � �

x2

K
� �D(x, µ,�, �)

with ↵ = � � ✏ (units: birds/year).

Immigration,
growth and

death

Nonlinear
competition

term
Dispersal by social copying

Equation (1) considers an initial exponential increase of the population
proportional to parameter � (including both the reproduction of birds and the arrival of new individuals from
other patches of the metapopulation, which is made proportional to the population present at the patch). This
population increase is constrained by a logistic function with carrying capacity K (units: birds), introducing
intra-specific competition for resources. Also, we consider density-independent death rate, proportional to

2         10          7500
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Figure 1: Shapes of the function Ψ(x, µ, σ, δ) used to model social copying behaviour during dispersal. We
display several shapes tuning three parameters µ, σ and δ, ranging from constant dispersal (orange line below),
to exponential-like (black curve) or to sigmoid-like (e.g. red, blue or violet curves). The parameter µ determines
if the curves intersect 0 population density from below (µ > 1) or from above (0 ≤ µ < 1) Ψ(x, µ, σ, δ) = 1. The
parameter σ determines how steep is the sigmoid and δ denotes the population size at which the curve starts
bending.

(2) Edir(δ, µ, σ, δ) = E(δ, σ, δ) = 0,

(3) Edir(x, µ, 0, δ) = E(x, 0, δ) ≡ 0 for every x ≥ 0,

(4) −1 < E(x, σ, δ) < 1,

(5) d
dx E(x, σ, δ) = Θσ

(Θ+σ|x−δ|)2 > 0, and

(6) limx→+∞ E(x, σ, δ) = 1 provided that σ > 0.

When σ > 0, E and Edir are continuous as functions of x. Moreover, for µ ≥ 0 and 0 ≤ x ≤ δ,
d

dx
Edir(x, µ, σ, δ) =

σ

δ(2Θ + σδ)(Θ + σz)

(
−Γz +

(
µδ(Θ + σδ) + Γ(δ − z)

) Θ

Θ + σz

)
,

where Γ := (2− µ)Θ + (1− µ)σδ and z = δ − x.
Proposition 2 (On the function Ψ(x, µ, σ, δ)). For every µ, δ ≥ 0 and x ≥ 0 we have Ψ(x, µ, 0, δ) ≡ 1.
Moreover, for σ > 0 we have

(a) The function Ψ(x, µ, σ, δ), as a function of x, is continuous, differentiable, and strictly positive.

(b) Ψ(0, µ, σ, δ) = 1 and limx→+∞Ψ(x, µ, σ, δ) = 0. Moreover, for every σ ≥ 1 and 0 < x ≤ δ we have

Ψ(x, µ, σ, δ) < 1 +
1− µ

(1 + µ)

x

δ
.

(c) If µ ≥ 1, then Ψ(x, µ, σ, δ) is strictly decreasing as a function of x. Moreover, d
dx Ψ(x, µ, σ, δ)

∣∣
x=0

is 0 when
µ = 1 and negative when µ > 1.

(d) For 0 ≤ µ < 1 and δ > 0, Ψ(x, µ, σ, δ) is a unimodal function with a maximum at x∗ ∈ (0, δ) (that is, Ψ
is strictly increasing in [0, x∗] and strictly decreasing in [x∗,+∞)). In particular, d

dx Ψ(x, µ, σ, δ) > 0 for
every x ∈ [0, x∗). On the other hand, for every x ∈ [0, δ], Ψ(x, µ, σ, δ) ≤ Ψ(x∗, µ, σ, δ) < 2.

By using the logistic growth Model (2) (with λ = 0) for the First Epoch data (no migration) one can estimate
(as intrinsic parameters of the model):

Parameter units Range or value Meaning or description

K birds 16651.2696 Carrying Capacity.
γ birds2/year 0.406001835194 Intrinsic growth rate.
ε birds/year 0.057052426616 Death rate.

α = γ − ε birds/year 0.3489494085776018 Neat population growth rate.
β = γ

K birds2/year 0.000024382635446 Intrinsic growth rate over the carrying capacity.

3



3 The exercise

Fit the parameters of Model

(2)
dx

dt
= ϕx− βx2 − λΨ(x, µ, σ, δ)

to the Second Epoch data to check the hypothesis that Andouin’s migration occurs with social copying with a
Genetic Algorithm.

The solution of this model is denoted by x(t) = xϕ,λ,µ,σ,δ(t), and its parameters are:

Parameter Range or value Meaning or description

β 0.000024382635446
Intrinsic growth rate over the carrying capacity.
Estimated with the Fisrt Epoch Data.

ϕ = α− ρ ≤ α = 0.3489494085776018
Neat population growth rate. It includes a linear
migration term of the form ρx, where ρ is the
linear dispersal rate.

xϕ,λ,µ,σ,δ(0) [0,K] ODE’s Initial condition.

λ R+ Non-linear Dispersal Rate.

µ R+

Determines d
dx Ψ(x, µ, σ, δ)

∣∣
x=0

. It is



0 when µ = 1,
negative when µ > 1, and
positive when µ < 1.

σ R+ Determines the “slopes” of the sigmoids.
σ ≈ 600 approximates a Heaviside function.

δ R+ Point of change of concavity of Ψ(x, µ, σ, δ).

Observe that the solution x(t) depends on the initial condition x(0) ∈ [0,K], that must be considered a free
parameter as well.

4 Proposed solution strategy

The exercise is to be solved with a minimising genetic algorithm with an appropriate fitness function.
Please, be aware that the solution of the ODE has a rather strong sensitive dependence with respect to

parameters and initial condition); meaning that the genetic algorithm will have difficulties in finding the solution.

4.1 Individuals

Clearly, an individual in the population is specified by six chromosomes corresponding to the six free parameters.
As it has been explained, the proof of Holland’s Convergence Theorem works in the setting of genes or

chromosomes consisting in unsigned integers expressed in binary. Consequently the above “real numbers phe-
notype” is better encoded in the form of a discretized genotype consisting in unsigned integers. In the following
table we explain, for each parameter, the theoretical range (given in the above table), an effective (reasonable,
common sense) search range and a reasonable sensitivity (or better said precision), thus fixing the range and
discretization formula for the genotype.

Phenotype Genotype

Parameter
Theoretical

Range

Effective
Search
Range

precision or
discretization

step

Integer
Search
Range

Factor (formula) from
genotype to phenotype

x(0) [0,K] [0, 16600] 10−2 [0, 221 − 1] 16600
221−1

≈ 0.0079155006005766 · · ·

ϕ (−∞, α] [−100, 0.35] 10−8 [0, 234 − 1]
g · 100.35

234−1
− 100 ≈

g · 5.841138773 · 10−9 − 100

λ R+ [0, 3000] 10−4 [0, 225 − 1] 3000
225−1

≈ 8.940696982762 · · · 10−5

µ R+ [0, 20] 10−6 [0, 225 − 1] 20
225−1

≈ 5.960464655174 · · · 10−7

σ R+ [0, 1000] 10−2 [0, 217 − 1] 1000
217−1

≈ 0.007629452739355006 · · ·
δ R+ [0, 25000] 1 [0, 215 − 1] 25000

215−1
≈ 0.7629627368999298 · · ·

4



Observations:

� All upper limit and precision values for the phenotype have been set to “common sense reasonable values”.

� All upper limit values of the genotype have been chosen to be the smallest possible powers of two that
satisfy the following condition:

genotype upper limit of the form 2n > phenotype upper limit/precision.

For example, for the initial conditions the above formula gives

221 = 2, 097, 152 > 1, 660, 000 = 16, 600/10−2.

� Observe that the number 2n− 1 when written in binary in 64 a bits representation, has a string of 64−n
consecutive zeroes at the left, and a string of n consecutive ones at the right. Moreover, the expression in
binary of all integers in the range [0, 2n − 1] has a string of at least 64− n consecutive zeroes at the left.
This is very useful, when programming crossovers and mutations, to avoid complicate feasibility tests.

� All powers of two in the above table have exponent less than or equal to 40, and there are some with
exponents larger than 32. So, the base data type for the genes to store these genotype elements must be
unsigned long int.

4.2 Fitness function

The Genetic Algorithm must identify an individual that could possibly have generated the observed data for
the Second Epoch. This is done by finding the ”fittest” individual from the point of view of generating the
observed data. In other words, the fitness function must measure how similar is the observed data to solution
of the ODE which has a given individual as parameters

More precisely, an individual Ind contains all the necessary parameters to compute the solution of Model (2)
for t = 1, 2, . . . , 11.

Two possible norms that measure the agreement between the pandemic data generated by Ind and the figured
pandemic public data are:

(6) max

{(
x(t)− z(t+ 2006)

)2

: t = 0, 1, 2, . . . , 11

}
,

and

(7)
11∑

t=0

Wt

(
x(t)− z(t+ 2006)

)2

,

where z(y) denotes the population size of Andouine seagulls at year y and W0,W1, . . . ,W11 ≥ 0 are weights.
Clearly, a value zero in the above fitness function indicates that Ind’s phenotype is the one that drives the
pandemic through Model 2.

4.3 Integrating an ODE: Computing the values of x(t) for t = 1, 2, . . . , 100

We will use the Runge-Kutta-Fehlberg method of order 7-8 with adaptive space (see the appendix to this
document).

In the file RKF78.c (also needed RKF78.h for definitions and prototypes) there is an implementation for
ODE’s and another one for systems (see the implementation notes in RKF78.c for the meaning of parameters
and how to use the procedure).

However as an example on how to use RKF78 we provide here a full programmed implementation of the
computation of the values x(t) for t = 0, 1, 2, . . . , 11.

#define ElliotSigmoidSCALE 1000

#define TwoElliotSigmoidSCALE 2000

double ElliotSigmoid(double x, double sigma, double delta) {

x = sigma*(x-delta);

return x/(ElliotSigmoidSCALE + fabs(x));

}

5



double Psi(double x, double mu, double sigma, double delta){

if(fabs(sigma) < ZeRoParsThreshold) return 1.0;

double ES = ElliotSigmoid(x, sigma, delta);

sigma *= delta; x /= delta;

if(x < delta) {

ES = ES * (x + (mu*(1.0-x)*(sigma + ElliotSigmoidSCALE)) / (sigma + TwoElliotSigmoidSCALE));

}

return ((1 - ES)*(sigma + TwoElliotSigmoidSCALE)) / (sigma*(1+mu) + TwoElliotSigmoidSCALE);

}

typedef struct {

double phi;

double beta;

double lambda;

double mu;

double sigma;

double delta;

} ODE_Parameters;

void MigrationODE(double t, double x, double *der, void *Params){

ODE_Parameters *par = (ODE_Parameters *) Params; // Pointer cast to save typing and thinking

*der = par->phi * x - par->beta*x*x - par->lambda*Psi(x, par->mu, par->sigma, par->delta);

}

#define HMAX 1.0

#define HMIN 1.e-6

#define RKTOL 1.e-8

int Generate_EDO_Prediction( double *xt, double x0,

unsigned short number_of_years,

ODE_Parameters *pars ){

register unsigned ty;

xt[0] = x0; // Storing IC x(0)

for(ty=1; ty < number_of_years; ty++) xt[ty] = 0.0;

double t = 0.0, err, h = 1.e-3;

for(ty=1; ty < number_of_years; ty++) { int status;

while(t+h < ty) {

status = RKF78(&t, &x0, &h, &err, HMIN, HMAX, RKTOL, pars, MigrationODE);

if(status) return status;

} // Adaptative stepsize h. To assure stopping at t = ty

h = ty - t;

status = RKF78(&t, &x0, &h, &err, HMIN, HMAX, RKTOL, pars, MigrationODE);

if(status) return status;

xt[ty] = x0;

}

return 0;

}
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Appendix A
Runge-Kutta Methods

The Runge-Kutta methods are an important family of iterative methods for the ap-
proximation of solutionsof ODE’s, that weredevelovedaround 1900 bythegerman
mathematiciansC. Runge(1856–1927) andM.W. Kutta(1867–1944).Westart with
the considereation of the explicit methods. Let us consider an initail value problem
(IVP)

d x
d t

= f (t, x(t)), (A.1)

x(t) = (x1(t), x2(t), . . . xn(t))T , f ∈ [a, b]×Rn → Rn, with an initial condition

x(0) = x0 . (A.2)

We are interested in a numerical approximation of the continuously differentiable
solution x(t) of the IVP (A.1)–(A.2) over the time interval t ∈ [a, b]. To this aim
wesubdividethe interval [a, b] into M equal subintervalsandselect the mesh points
t j [11, 8]

t j = a + j h , j = 0, 1, . . . , M, h =
b − a

M
. (A.3)

Thevalueh is called a step size.
The family of explicit Runge–Kutta (RK) methods of the m’ th stage is given

by [11, 9]

x(tn+1) := xn+1 = xn + h
m

∑
i=1

ciki , (A.4)

where

13
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k1 = f (tn, xn),

k2 = f (tn + α2h, xn + hβ21k1(tn, xn)),

k3 = f (tn + α3h, xn + h(β31k1(tn, xn)+ β32k2(tn, xn))),

...

km = f (tn + αmh, xn + h
m−1

∑
j=1

βm jk j).

To specify a particular method, we need to provide the integer m (the number of
stages), and the coefficients αi (for i = 2,3, ...,m), βi j (for 1 ≤ j < i ≤ m), and ci

(for i = 1,2, ...,m). These data are usually arranged in a co-called Butcher tableau
(after JohnC. Butcher) [11, 9]:

Table A.1 TheButcher tableau.

0
α2 β21
α3 β31 β32
...

...
...

.. .
...

...
...

αm βm1 βm2 . . . . . . βmm−1

c1 c2 . . . . . . cm−1 cm

Examples

1. Let m = 1. Then

k1 = f (tn, xn) ,

xn+1 = xn + hc1 f (tn, xn) .

On theother hand, the Taylor expansion yields

xn+1 = xn + h ẋ
∣∣
tn
+ · · · = xn + h f (tn, xn)+O(h2) ⇒ c1 = 1.

Thus, thefirst-stageRK-methodisequivalent to the explicit Euler’smethod. Note
that theEuler’smethodisof thefirst order of accuracy. Thuswe can speak about
theRK method of thefirst order.

2. Now consider the case m = 2. In this caseEq. (A.4) isequivalent to thesystem
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k1 = f (tn, xn) , (A.5)

k2 = f (tn + α2h, xn + hβ21k1) ,

xn+1 = xn + h(c1k1 + c2k2) .

Now let uswritedown theTaylor seriesexpansion of x in theneighborhood of tn
upto theh2 term, i.e.,

xn+1 = xn + h
dx
dt

∣∣∣∣
tn

+
h2

2
d2x
dt2

∣∣∣∣
tn

+O(h3) .

However, weknow that ẋ = f (t, x), so that

d2x
dt2 :=

d f (t, x)

dt
=

∂ f (t, x)

∂ t
+ f (t, x)

∂ f (t, x)

∂x
.

Hencethe Taylor seriesexpansioncan berewritten as

xn+1− xn = h f (tn, xn)+
h2

2

(
∂ f
∂ t

+ f
∂ f
∂x

)∣∣∣∣
(tn,xn)

+O(h3) . (A.6)

On the other hand, the term k2 in theproposed RK methodcan also expanded to
O(h3) as

k2 = f (tn +α2 h, xn+hβ21k1)= h f (tn,xn)+hα2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+hβ21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Now, substituting this relation for k2 into the last equation of (A.5), we achieve
the followingexpression:

xn+1−xn = h(c1+c2) f (tn, xn)+h2c2 α2
∂ f
∂ t

∣∣∣∣
(tn,xn)

+h2c2β21 f
∂ f
∂x

∣∣∣∣
(tn,xn)

+O(h3) .

Makingcomparision the last equationandEq. (A.6) we can write down the sys-
tem of algebraic equationsfor unknown coefficients

c1 + c2 = 1,

c2 α2 =
1
2

,

c2β21 =
1
2

.

The system involves four unknowns in three equations. That is, one additional
condition must be supplied to solve the system. We discusstwo useful choices,
namely

a) Let α2 = 1. Then c2 = 1/2, c1 = 1/2, β21 = 1. The corresponding Butcher
tableau reads:

9



0
1 1

1/2 1/2

Thus, in this case the two-stagesRK methodtakes the form

xn+1 = xn +
h
2

(
f (tn, xn)+ f (tn + h, xn + h f (tn, xn))

)
,

and is equivalent to the Heun’s method, so we refer the last method to as
RK-method of thesecond order.

b) Now let α2 = 1/2. In this case c2 = 1, c1 = 0, β21 = 1/2. The corresponding
Butcher tableau reads:

0
1/2 1/2

0 1

In thiscase thesecond-order RK method(A.4) can be written as

xn+1 = xn + h f
(
tn +

h
2
, xn +

h
2

f (tn, xn)
)

and iscalled the RK2 method.

RK4 Methods

Onemember of thefamily of Runge–Kuttamethods(A.4) isoften referred to asRK4
method or classical RK method andrepresentsoneof thesolutionscorrespondingto
the casem = 4. In thiscase, by matchingcoefficientswith thoseof theTaylor series
oneobtains the followingsystem of equations[8]
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c1 + c2+ c3+ c4 = 1,

β21 = α2 ,

β31+ β32 = α3 ,

c2α2 + c3α3 + c4α4 =
1
2

,

c2α2
2 + c3α2

3 + c4α2
4 =

1
3

,

c2α3
2 + c3α3

3 + c4α3
4 =

1
4

,

c3α2β32+ c4(α2β42+ α3β43) =
1
6

,

c3α2α3β32+ c4α4(α2β42+ α3β43) =
1
8

,

c3α2
2β32+ c4(α2

2β42+ α2
3β43) =

1
12

,

c4α2β32β43 =
1
24

.

The system involvesthirteen unknownsin eleven equations. That is, two additional
conditionmust besupplied to solve thesystem. Themost useful choices is [9]

α2 =
1
2

, β31 = 0.

The correspondingButcher tableau ispresented in TableA.2. Thetableau A.2 yields

Table A.2 TheButcher tableau corresponding to theRK4 method.

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

the equivalent correspondingequationsdefining the classical RK4 method:

xn+1 = xn +
h
6

(
k1 +2k2+2k3+ k4

)
, (A.7)

where
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k1 = f (tn, xn),

k2 = f (tn +
h
2
, xn +

h
2

k1),

k3 = f (tn +
h
2
, xn +

h
2

k2),

k4 = f (tn + h, xn + hk3).

This method is reasonably simple and robust and is a good general candidate for
numerical solution of ODE’s when combined with an intelli gent adaptive step-size
routine or an embedded methods (,e.g., so-called Runge-Kutta-Fehlberg methods
(RKF45)).

Remark:

Notice that except for the classical method (A.7), one can also construct other
RK4 methods. We mention only so-called 3/8-Runge-Kutta method. The Brutcher
tableau, correspondingto thismethodispresented in TableA.3.

Table A.3 TheButcher tableau corresponding to the3/8- Runge-Kutta method.

0
1/3 1/3
2/3 -1/3 1
1 1 -1 1

1/8 3/8 3/8 1/8

Geometrical interpretation of the RK4 method

Let us consider a curve x(t), obtained by (A.7) over a single time step from tn
to tn+1. The next value of approximation xn+1 is obtained ty integrating the slope
function, i.e.,

xn+1− xn =

tn+1∫

tn

f (t,x)dt . (A.8)

Now, if the Simpson’s rule is applied, the approximation to the integral of the last
equationreads [10]

tn+1∫

tn

f (t,x)dt ≈ h
6

(
f (tn,x(tn))+4 f (tn +

h
2
,x(tn +

h
2
))+ f (tn+1,x(tn+1))

)
. (A.9)
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On the other hand, the values k1, k2, k3 and k4 are approximations for slopes of
the curvex, i.e., k1 is theslopeof the left end of the interval, k2 andk3 describe two
estimationsof theslopein themiddleof thetimeinterval, whereask4 correspondsto
theslope at the right. Hence, we can choose f (tn,x(tn)) = k1 and f (tn+1,x(tn+1)) =
k4, whereas for thevalue in themiddlewe choosethe averageof k2 andk3, i.e.,

f (tn +
h
2
,x(tn +

h
2
)) =

k2 + k3

2
.

Then Eq. (A.8) becomes

xn+1 = xn +
h
6

(
k1 +

4(k2 + k3)

2
+ k4

)
,

which isequivalent to theRK4 schema(A.7).

Stage versus Order

The local truncation error ε for the method(A.7) can be estimated from the error
term for theSimpson’s rule (A.9) andequals [10, 8]

εn+1 = −h5 x(4)

2880
.

Now we can estimatethefinal global error E, if wesupposethat only the error above
ispresented. After M steps the accumulated error for theRK4 methodreads

E(x(b), h) = −
M

∑
k=1

h5 x(4)

2880
≈ b − a

2880
x(4) h = O(h4) .

That is, the RK4 method (A.7) is of the fourth order. Now, let us compare two
appximations, obtained using the time steps h and h/2. For the step sizeh we have

E(x(b), h) ≈ K h4 ,

with K = const. Hence, for thestep h/2 weget

E(x(b),
h
2
) = K

h4

16
≈ 1

16
E(x(b), h) .

That is, if the step size in (A.7) is reduced by the factor of two, the global error of
themethodwill be reduced by the factor of 1/16.

Remark:

In general there are two ways to improvethe accuracy:
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1. One can reducethe timestep h, i.e., the amount of steps increases;
2. Themethod of thehigher convergency order can beused.

However, increasing of the convergency order p isreasonableonly upto somelimit,
given by so-called Butcher barrier [11], which says, that the amount of stages m
grows faster, as the order p. In other words, for m ≥ 5 there are no explicit RK
methods with the convergency order p = m (the corresponding system is unsolv-
able). Hence, in order to reach convergency order five one needs six stages. Notice
that further increasing of the stage m = 7 leads to the convergency order p = 5 as
well .

A.0.1 Adaptive stepsize control and embedded methods

As mentioned above, one way to guarantee accuracy in the solution of (A.1)–
(A.1) is to solve the problem twice using step sizes h and h/2. To ill ustrate this
approach, let usconsider theRK method of theorder p and denote an exact solution
at the point tn+1 = tn + h by x̃n+1, whereas x1 and x2 represent the approximate
solutions, corresponding to the step sizes h and h/2. Now let us perform one step
with the step size h and after that two steps each of size h/2. In this case the true
solutionand two numerical approximationsare related by

x̃n+1 = x1 +C hp+1+O(hp+2) ,

x̃n+1 = x2 +2C

(
h
2

)p+1

+O(hp+2) .

That is,

|x1 − x2| = C hp+1
(

1− 1
2p

)
⇔ C =

|x1− x2|
(1−2−p)hp+1 .

Substituing the relation for C in the secondestimate for the truesolutionwe get

x̃n+1 = x2 + ε +O(hp+2) ,

where

ε =
|x1 − x2|
2p −1

can be considered asa convenient indicator of the truncationerror. That is, wehave
improved our estimate to theorder p +1. For example, for p = 4 weget

x̃n+1 = x2 +
|x1 − x2|

15
+O(h6) .

This estimate is accurate to fifth order, one order higter than with the original step
h. However, thismethodis not efficient. First of all , it requiresa significant amount
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of computation (we should solve the equation threetimes at each time step). The
second point is, that we have no possibilit y to control the truncation error of the
method(higher order meansnot alwayshigher accuracy).
However we can use an estimateε for the step size control, namely we can compare
ε with some desired accuracy ε0 (seeFig A.1).

Input t j, x j, ε0, h j, j = 0

Calculate x(t j +h j, h j), x(t j +h j,
h j
2 ) and ε

ε ≪ ε0 Doublestep size: h j+1 := 2h j

ε > ε0 t j+1 = t j +h j, j := j +1

Halvestep size: h j+1 :=
h j
2 ; Reiterate thestep

no
no

yes

yes

Fig. A.1 Flow diagramm of thestep size control by use of thestep doubling method.

Alternatively, using the estimateε , we can try to formulate the following problem of theadap-
tive step size control, namely: Using the given values x j and t j, find the largest possible step size
hnew, so that thetruncationerror after thestep with this step sizeremainsbelow somegiven desired
accuracy ε0, i.e,

C hp+1
new ≤ ε0 ⇔

(
hnew

h

)p+1 |x1 −x2|
1−2−p ≤ ε0 .

That is,

hnew = h

(
ε0

ε

)1/p+1

.

Then if the two answers are in close agreement, the approximation is accepted. If ε > ε0 the step
sizehas to be decreased, whereas the relation ε < ε0 means, that the step sizehas to be increased
in thenext step.

Notice that because our estimate of error is not exact, we should put some ”safety” factor
β ≃ 1 [11, 9]. Usually, β = 0.8, 0.9. The flow diagramm, corresponding to the the adaptive step
size control is shown onFig. A.2

Noticeone additional technical point. The choise of the desired error ε0 depends on the IVP
we are interested in. In some applications it i sconvinient to set ε0 propotional to h [9]. In thiscase
the exponent 1/p+1 in the estimateof thenew timestep isno longer correct (if h is reduced from
a too-large value, thenew predicted value hnew will fail to meet thedesired accuracy, so instead of
1/p + 1 we should scale with 1/p (see[9] for details)). That is, the optimal new step size can be
written as

hnew =





β h

(
ε0
ε

)1/p+1

, ε ≥ ε0,

β h

(
ε0
ε

)1/p

, ε < ε0,

(A.10)
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Input t0, x0, ε0, h, j = 0

Calculate x(t j +h, h), x(t j +h, h
2) and ε

ε < ε0 Thestep isaccepted; hnew := β h

(
ε0
ε

)1/p+1

, t j+1 = t j +hnew, j := j +1

hnew := β h

(
ε0
ε

)1/p

Reiterate thestep

yes

no

Fig. A.2 Flow diagramm of the adaptivestep size control by use of thestep doubling method.

where β is a ”safety” factor.

Runge-Kutta-Fehlberg method

The alternative stepsize adjustment algorithm is based on the embedded Runge-Kutta formulas,
originally invented byFehlberg andiscalled the Runge-Kutta-Fehlberg methods (RKF45) [11, 10].
At each step, two different approximations for the solution are made and compared. Usually an
fourth-order method with five stages is used together with an fifth-order method with six stages,
that uses all of the points of the first one. The general form of a fifth-order Runge-Kutta with six
stages is

k1 = f (t, x),

k2 = f (t +α2h, x+hβ21k1),

...

k6 = f (t +α6h, x+h
5

∑
j=1

β6 jk j) .

The embedded fourth-order formula is

xn+1 = xn +h
6

∑
i=1

ci ki +O(h5) .

Andabetter value for thesolution isdetermined using aRunge-Kutta method of fifth-order:

x∗
n+1 = xn +h

6

∑
i=1

c∗
i ki +O(h6)

The two particlular choises of unknown parametrs of themethodare given in Tables A.4–A.5.
The error estimate is

ε = |xn+1 −x∗
n+1| =

6

∑
i=1

(ci − c∗
i )ki.
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Table A.4 Fehlberg parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5
16/135 0 6656/12825 28561/56430 -9/50 2/55

Table A.5 Cash-Karp parameters of theRunge-Kutta-Fehlberg 4(5) method.

1/5 1/5
3/10 3/40 9/40
3/5 3/10 -9/10 6/5
1 -11/54 5/2 -70/27 35/27

7/8 1631/55296 175/512 575/13828 44275/110592 253/4096
37/378 0 250/621 125/594 512/1771

2825/27648 0 18575/48384 13525/55296 277/14336 1/4

As was mentioned above, if we take the current step h and produce an error ε , the corresponding
”optimal” step hopt is estimated as

hopt = β h

(
εtol

ε

)0.2

,

where εtol is a desired accuracy and β is a ”safety” factor, β ≃ 1. Then if the two answers are
in close agreement, the approximation is accepted. If ε > εtol the step size has to be decreased,
whereas the relation ε < εtol means, that thestep size are to be increased in thenext step.
UsingEq. (A.10), theoptimal step can be often written as

hopt =





β h

(
εtol
ε

)0.2

, ε ≥ εtol,

β h

(
εtol
ε

)0.25

, ε < εtol,
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