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1 INTRODUCTION

Artificial neural networks (ANNs) are extremely simplified models of their biological
counterpart, the network of natural neurons known as the human brain. Consequently,
we are not interested here in the study of the brain, which is the subject of neuroscience.
Rather, we are interested to know what these networks of artificial units are, what
they can do and how. ANNs were originally developed to provide a fundamentally
new and different approach to information processing, when an algorithmic procedure
for solving a problem is not known. As opposed to programmed computing, ANNs
are capable of internally developing information processing capabilities for solving
a problem when fed with appropriate information about the problem. Thus, they are
often referred to as learning or adaptive models.

The history of ANNs dates back to the paper of McCulloch and Pitts (1943), when
simple types of neural networks were shown to be able to learn arithmetic or logical
functions. Important successes were witnessed in the late 50’s and early 60’s, with
the development of the perceptron model and the first neurocomputers (Rosenblatt,
1958). By the end of the 60’s, however, the field collapsed: a book by Minsky and
Papert (1969), demonstrating that even the simple exclusive-or logical function could
not be implemented with a perceptron, was devastating and diverted away research
funding. After a dark period, ANNs emerged again in the early 80’s with the support
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of John Hopfield, a renowned scientist, and the publication of an important book
by Rumelhart and McClelland (1986), which introduced the backpropagation neural
network model to the scientific community. This model extended the capabilities of its
ancestor, the perceptron, allowing it to learn a much larger class of functions (including
the exclusive-or logical function). Since that time, the field has continually expanded.

The first successes with ANNs were reported for the most part in pattern recognition,
classification and prediction tasks. Application of ANNs to combinatorial optimization
problems (COPs) dates back to 1985 when Hopfield and Tank solved small instances
of the Traveling Salesman Problem (TSP) with a Hopfield neural network (Hopfield
and Tank, 1985). The TSP is a classical combinatorial optimization problem, which
is simple to state but difficult to solve. Basically, the objective is to find the shortest
possible tour (or Hamiltonian cycle) through a set of N vertices so that each vertex
is visited exactly once. This problem is known to be NP-hard (Garey and Johnson,
1979; Nemhauser and Wolsey, 1988), and cannot be solved exactly in polynomial
time. Because of the simplicity of its formulation, the TSP has always been a fertile
ground for new solution ideas. Consequently, it is not surprising that many problem-
solving approaches inspired by ANNs have been applied to the TSP (Potvin, 1993).
The work of Hopfield and Tank was a first attempt in this direction and it generated
much excitement in the neural network and operations research communities alike.

Many other types of COPs have since been tackled with ANNs in different
application areas: routing and transportation, scheduling, cutting stock and packing,
timetabling, telecommunications, and many others (Burke and Ignizio, 1992). In some
cases, the results obtained are competitive with those reported with alternative tech-
niques. In other cases, the results are not yet convincing. It is clear that the computational
paradigm of ANNs, which is inherently parallel, distributed and adaptive cannot be
fully exploited on current computer hardware. Their behavior must be simulated, thus
leading to excessively large computation times. The development of suitable hardware
for these models (often called neurocomputers) would thus be an important step toward
their full recognition.

The classical backpropagation neural network model, although well suited for many
learning tasks is not really indicated for combinatorial optimization. Consequently,
ANNs applied to COPs are mostly based on three alternative models: Hopfield-Tank
(H–T) and its variants, the elastic net (EN) and the self-organizing map (SOM). H–T
provides a natural way to model many COPs and has been widely applied. EN and
SOM provide an alternative, more efficient, approach for low-dimensional geometrical
problems, like the TSP. These models are reviewed in the following.

2 HOPFIELD NEURAL NETWORKS

In his seminal paper of 1982, John Hopfield described a new way of modeling a sys-
tem of neurons capable of performing computational tasks (Hopfield, 1982). Using a
collection of binary-state neurons and a stochastic updating algorithm, these computa-
tional tasks were initially related to storage and retrieval of embedded memories. The
computational capabilities of Hopfield’s original model were expanded in Hopfield
(1984) when he proposed a continuous version, and proved convergence of the model
by demonstrating that the dynamics of the model minimized a constructed Liapunov
function over time. From here, it became clear that Hopfield networks could be used to
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minimize any function provided the network parameters were set appropriately. The fact
that the continuous version of the Hopfield network was designed to be implemented
using electrical circuits also promised rapid computational ability.

This section first presents the two Hopfield neural network models: the discrete and
stochastic model of 1982, and the continuous and deterministic model of 1984. The
method of Hopfield and Tank (1985) for mapping a combinatorial optimization problem
onto a Hopfield network is then described, using the TSP as an example. The section
continues with a discussion of the criticisms of the approach. We then briefly review
some of the many modifications and extensions that have been made to the original
model and approach in an attempt to overcome these limitations. Finally, the reported
performance of these Hopfield network models for combinatorial optimization across
a range of benchmarked problems is discussed.

2.1 Discrete and Stochastic Hopfield Network

The original Hopfield network, as described in Hopfield (1982) comprises a fully inter-
connected system of n computational elements or neurons. In the following description,
Hopfield’s original notation has been altered where necessary for consistency. The
strength of the connection, or weight, between neuron i and neuron j is determined by

This weight may be positive or negative depending on whether the neurons act in
an excitatory or inhibitory manner (or zero if there is no interaction). Each neuron has
an internal state and an external state While the internal states are continuous
valued, the external states are binary for this discrete model. The relationship between
the internal and external states of the neurons can be shown as:

where is a constant external input to neuron i and f () is the transfer function between
internal and external states. The connection weights W are also constant, and the only
variable elements in the network are the internal and external states of the neurons that
are updated over time. From equations (1) and (2) it is clear that the internal state of
each neuron is calculated as the weighted sum of inputs from its connected neurons,
with an additional constant input. The neuron will “fire” (as evidenced by an external
state of 1), if it receives sufficient stimulation from its connecting neurons, otherwise
the neuron’s external state will be zero representing a dormant or “non-firing” state.

The neurons update themselves over time in a random sequence, thus the model
is said to be discrete and stochastic. As the network updates, and provided the weight
matrix is symmetric with non-negative diagonals, the following energy function is
guaranteed to be minimized until the system converges to one of its stable states.
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Using the terminology of operations research, the system of equations (1) and (2)
perform a gradient descent on the energy function (3), with the neuron states con-
verging to one of its local minima. If the values of the weights W and external inputs
I are fixed appropriately, this process can be used to minimize any quadratic function
of binary variables.

2.2 Continuous and Deterministic Hopfield Network

Hopfield’s subsequent modifications to the original 1982 model were driven by con-
siderations of biological plausibility. In the biological system, lags behind the
instantaneous outputs of the other neurons because of the input capacitance
of the cell membrane, the trans-membrane resistance and the finite impedance

between the output and the cell body of neuron i. The external states
of the neurons are now continuous valued between 0 and 1, rather than binary in the
earlier model, and represent an average “firing rate”. Hopfield (1984) modeled this
more biologically based system using the following resistance-capacitance differential
equation to determine the rate of change of and hence the time evolution of the
continuous Hopfield network:

where the transfer function f () is now a continuous sigmoidal function such as:

and T is a parameter used to control the slope of the transfer function. is the value
of the time constant of the amplifiers, and without loss of generality can be assigned a
value of unity, provided the time step of any discrete-time simulation of equation (4)
is considerably smaller than unity. This same set of equations represents a resistively
connected network of electronic amplifiers, and thus the system can be implemented
with electrical circuits. We refer the interested reader to (Hopfield, 1984) for details of
this implementation.

Similar to the original discrete model, the dynamics of this continuous model also
minimize an energy function over time guaranteed to converge to stable states. This
energy function is:

Hopfield (1984) showed that provided the weight matrix is symmetric, this function is
a Liapunov function for the system of equations (4) and (5). Furthermore, if the slope
of the transfer function (6) is particularly high (i.e., T is near zero), then the transfer
function (6) approximates the behavior of the discrete version given by equation (2),
and the integral term of equation (7) vanishes. Consequently, the local minima of
coincide with the local minima of and all these local minima lie at the vertices of the
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unit hypercube resulting in binary values for Thus, for T near zero, the continuous
Hopfield network converges to a 0–1 solution in  which minimizes the energy function

given by (3).
Thus, there are two Hopfield neural network models available: a discrete version and

a continuous version. The continuous version can either be implemented using electrical
circuits, or simulated on a digital computer using an approximation to the differential
equation (4) such as the Euler approximation. The accuracy of this approximation
depends on parameters like the time step of the discretization, and affects the degree to
which the discretized dynamics converge on the Liapunov energy function. Clearly, a
small time step will approximate the dynamics well, ensuring gradient descent on the
energy function. This issue is discussed further in Section 4, along with a variety of
other practical issues.

2.3 Adaptation to Solve Combinatorial Optimization Problems

In 1985, John Hopfield teamed together with David Tank to extend the applications of
his model to include solving combinatorial optimization problems (Hopfield and Tank,
1985). Hopfield and Tank (H–T) realized that networks of neurons with this basic
organization could be used to compute solutions to specific optimization problems
by selecting weights and external inputs which appropriately represent the function
to be minimized and the desired states of the problem. The updating of the neurons
according to the differential equations given by (4) and (5) (or even the discrete versions
(1) and (2)) ensures that both the energy function and the optimization problem are
simultaneously minimized over time. The analog nature of the neurons and the hardware
implementation of the updating procedure could be combined to create a rapid and
powerful solution technique.

Using the method proposed by Hopfield and Tank, the network energy function is
made equivalent to the objective function of the optimization problem needing to be
minimized, while the constraints of the problem are included in the energy function as
penalty terms.

Consider the quadratic formulation of the N-city TSP, given the binary decision
variable

and the constant distance matrix representing the distance between cities i and k:
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Apart from being a well benchmarked problem, the TSP is a useful problem to
consider since its form is that of a quadratic assignment problem. Thus the methods
used by Hopfield and Tank for mapping the optimization problem onto a Hopfield
neural network can be generalized to a wide range of problems with similar constraint
and objective types.

The first step is to construct an energy function representation of the complete
optimization problem using a penalty parameter approach, so that all objective functions
and constraints are integrated into a single function which needs to be minimized. This
is achieved by observing that a constraint of the form (9) can be enforced by ensuring
minimization of the quantity

That is, a constraint requiring a single “1” in each column can be enforced by mini-
mizing the pairwise product of elements in each column. If there is no more than one
“1” in the column, then this term will be at its minimum value of zero. If there is more
than one “1” in the column, then this term will be greater than zero. A similar term
can be constructed to enforce the row constraint (10). Naturally, these terms will also
be zero if there are no “l”s in each row or column as well. Since we need exactly one
“1” per column and row, we will also need an additional term to force N elements of
the solution matrix X to be “1”.

The complete set of constraints can therefore be enforced through minimization of
penalty terms, and when we add the objective function to these terms, we arrive at the
H–T energy function for the TSP:

The first two terms enforce no more than one “1” per column and row respectively,
the third term ensures that there are N elements “on” in the solution matrix, and the
final term minimizes the tour length. The penalty parameters A, B, C and D need to be
fixed at values that reflect the relative importance of these terms in the minimization
process. If A, B and C are not large enough relative to D, then the resulting solution
may be infeasible. Similarly, if D is not large enough, the solution may be feasible but
the tour length may be larger than the optimal value. Hopfield and Tank (1985) used
values of A = B = D = 500 and C = 200 to balance these terms.

Now that the energy function has been constructed, the next step is to derive the
Hopfield network weights and external inputs so that the energy function is mini-
mized by the network dynamics. For this we need to expand and rearrange the energy

<CO�N�����<CO�N��
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function (12) so that it is in the same form as the standard Hopfield energyfunction

which has been modified from (3) to reflect the fact that the neurons for our TSP
problem are two dimensional, compared to the linear array of neurons used in the
standard Hopfield network. Once the forms of these two functions (12) and (13) are
similar, the network weights W and external inputs I can be read as the coefficients of
the quadratic and linear terms respectively. To ensure equivalence of the two functions,
the summations of each term in (12) need to be extended across all relevant dimensions
(i,j,k,l for quadratic terms and i, j for linear terms). Thus the Kronecker-Delta symbol
is incorporated into each term of (12) where necessary:

Expanding (12) and rearranging the terms into quadratic, linear, and constant terms,
thus yields:

Comparing (14) to the standard Hopfield energy function (13) then, it is clear that the
network parameters are:

The constant term in equation (14) can be ignored since it merely reflects a shift upwards
and does not affect the location of the minima of the function.

Now that the network weights and external inputs are determined, the Hopfield
network can be initialized (using random values for the initial states), and updated
according to equations (4) and (5) (or equations (1) and (2) for a purely discrete version).
This updating is guaranteed to minimize the Hopfield energy function (13), and since
this function is equivalent to the TSP energy function (12) and (14), then the resulting
solution matrix X will provide a local minima of the TSP energy function. The quality
and feasibility of this solution depends on the choice of penalty parameters A, B, C
and D, as well as the initialization of the neurons, and the accuracy with which the
dynamics of the differential equation (4) can be simulated if the continuous model is
chosen.

(HCM�O���LC M�O�LC P�N����LC P�N��
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The complete procedure is summarized in pseudocode form below:

Step 0: Preliminary Tasks

0.1 Construct an energy function for the optimization
problem using a penalty parameter approach.

0.2 Expand energy function and infer network weights and

external inputs.

Step 1: Initialization Tasks

1.1 Initialize neuron states to random values.
1.2 Select A,B,C,D.
1.3 Select T, the parameter of the continuous transfer

function, and the value of the discrete time step if

simulating the continuous model.

Step 2: If energy function has converged to local minimum

proceed to Step 5, otherwise proceed to step 3
Step 3: Repeat n times:

3.1 Randomly choose a neuron i to update (if using
discrete time dynamics).

3.2 Update and using equations (l)–(2) or (3)–(4).

Step 4: Go back to Step 2.
Step 5: Examine final solution matrix and determine

feasibility and optimality.
Step 6: Adjust parameters A,B,C,D if necessary to obtain a

satisfactory solution, re-initialize neuron states,

and repeat from Step 2.

Clearly, one of the main limitations of the H–T approach to solving combinatorial
optimization is the difficulty in choosing appropriate penalty parameters. In addition
to this difficulty, the dynamics of the Hopfield network perform a gradient descent
on the energy function, and thus converge to the first local minimum they encounter.
Coupling these two issues, it seems likely that the H–T approach may yield solutions
of poor quality. Wilson and Pawley (1988) first published these findings nearly three
years after Hopfield and Tank’s original paper was published. In doing so, they raised
serious doubts as to the validity of the H–T approach to solving optimization problems,
which seemingly served to dampen the enthusiasm surrounding the field.

2.4 Extensions

Since Wilson and Pawley’s results were published, it has been widely recognized that
the H–T formulation is not ideal, even for problems other than the TSP. The problem
of optimally selecting the penalty parameters is not trivial and much work has been
done to try to facilitate this process (Hedge et al., 1988; Kamgar-Parsi, 1992; Lai and
Coghill, 1992). Many other researchers believed that the H–T energy function needed
to be modified before any progress would be made, and considerable effort has also
been spent in this area (Brandt et al., 1988; Van den Bout and Miller, 1988). One
obvious improvement to the H–T approach to solving the TSP is to reduce the number
of terms needed to represent the constraints by using the form to
represent the column constraints, for example. This eliminates the need for the third
term in equation (12), thus the penalty parameter C is also eliminated.
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Perhaps the most important breakthrough in the field, however, came from the valid
subspace approach of Aiyer et al. (1990), and the subsequent work of Gee (1993). Their
idea is to represent the constraint set as a hyperplane, and encourage the solution to
lie upon it. This is achieved by including a single term in the energy function for the
constraints which attempts to minimize the deviation between the solution matrix and
the constraint plane, or valid subspace. A single penalty parameter needs to be selected,
which if large enough, will guarantee the feasibility of the final solution.

Some researchers have also attempted to address the limitations of the H–T approach
by considering alternative representations of constraints, suitable values for penalty
parameters, and other modeling issues. The majority of other researchers in the field,
however, have focused on the limitation of the Hopfield network dynamics. By extend-
ing the network dynamics to include stochasticity and hill-climbing capabilities, various
methods have emerged that attempt to avoid the many local minima of the energy
function.

The variations of the Hopfield network that have been proposed can be broadly
categorized as either deterministic or stochastic. The deterministic approaches include
problem specific enhancements such as the “divide and conquer” method of Foo and
Szu (1989) for solving the TSP, deterministic hill-climbing such as the “rock and roll”
perturbation method of Lo (1992), and the use of alternative neuron models within the
Hopfield network such as the winner-take-all neurons used by Amartur et al. (1992) to
improve the feasibility of the solutions. Stochastic approaches address the problem of
poor solution quality by attempting to escape from local minima. There are basically
four main methods found in the literature to embed stochasticity into the Hopfield
network:

replace sigmoidal transfer function with a stochastic decision-type function;

add noise to the weights of the network;

add noise to the external inputs of the network;

any combination of the above methods.

1.

2.

3.

4.

The Boltzmann machine (Aarts and Korst, 1989; Hinton et al., 1984) utilizes the first
method based on a discrete Hopfield model. The inputs are fixed, but the discrete
transfer function is modified to become probabilistic. Much like simulated annealing
(Kirkpatrick et al., 1983), the consequence of modifying the binary transfer level of
each neuron is evaluated according to the criteria of the Boltzmann probability factor.
This model is able to escape from local minima, but suffers from extremely large
computation times. In order to improve the efficiency and speed of the Boltzmann
machine, Akiyama et al. (1989) proposed Gaussian machines which combine features
of continuous Hopfield networks and the Boltzmann machine. Gaussian machines have
continuous outputs with a deterministic transfer function like the Hopfield network,
but random noise is added to the external input of each neuron. This noise is normally
distributed (or Gaussian) with a mean of zero and a variance controlled by a temperature
parameter T. However, based upon Szu’s fast simulated annealing (Szu and Hartley,
1987) which uses Cauchy noise to generate new search states and requires only a

cooling schedule, the Cauchy machine (Szu, 1988; Takefuji and Szu, 1989)
was proposed as an improvement to solution quality. The Cauchy distribution is thought
to yield a better chance of convergence to the global minimum than the Gaussian
distribution. Furthermore, Cauchy noise produces both local random walks and larger
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random leaps in solution space, whereas Gaussian noise produces only local random
walks (Takefuji and Szu, 1989). The noise is incorporated into the transfer function,
while the outputs of the Cauchy machine are binary. In the high-gain limit of the
stochastic transfer function (T near zero), the Cauchy machine approaches the behavior
of the discrete and deterministic Hopfield network. Another stochastic approach which
has been very successful is mean-field annealing (Peterson and Soderberg, 1989; Van
den Bout and Miller, 1989, 1990), so named because the model computes the mean
activation levels of the stochastic binary Boltzmann machine.

2.5 Performance

Hopfield and Tank successfully applied their approach to several optimization prob-
lems including an analog-to-digital converter, a signal decision circuit, and a linear
programming model (Tank and Hopfield, 1986). It was, however, their results for the
combinatorial TSP that attracted the most attention. Hopfield and Tank (1985) sim-
ulated a network of 10 cities (100 neurons), chosen at random on the interior of a
2-dimensional unit square. Their results for small-sized problems were quite encour-
aging. For a 10 city problem, and for 20 random starts, 16 converged to valid tours.
About 50% of the trials produced one of the two known shortest tours. Hopfield and
Tank then studied a 30 city (900 neuron) problem. Since the time required to simulate
the differential equations on a computer scales worse than their results were
fragmentary. They were unable to find appropriate penalty parameters to generate valid
tours, and commented that “parameter choice seems to be a more delicate issue with
900 neurons than with 100”. In fact, their best solution was around 40% away from the
best known solution of Lin and Kernighan (1973) on the same 30 city problem.

Since then, the many modifications to the original H–T approach have seen consid-
erable improvement in these results. A recent fuzzy modification of Aiyer’s subspace
approach yielded nearest-city quality tours for up to 100 randomly generated cities
(Wolfe, 1999). Peterson and Soderberg reported solutions for 200 cities using a mean
field annealing neural network that were only slightly worse than simulated annealing
results (Peterson and Soderberg, 1993). These results are still a long way from those
that can be obtained by well known heuristics. For example, the iterated Lin-Kernighan
heuristic can routinely find solutions within 1 % of optimal for problems with thousands
of cities (Johnson, 1990). Even other neural network approaches such as the deformable
template methods discussed in the next section yield considerably better results than
the Hopfield variations seem capable of.

The advantage of the H–T approach to combinatorial optimization however lies
in its generalization abilities. The H–T approach can be applied to any combinatorial
optimization problem that can be formulated within quadratic terms. It does not rely
on the geometry of the problem like many of the TSP heuristics or the deformable
template methods. The many variations of the Hopfield network that have emerged
over the last decade or so have been applied to a wide range of classical combina-
torial optimization problems including assignment problems, constraint satisfaction
problems, graph problems, integer programming, and scheduling problems to name
a few. We refer the interested reader to Smith (1999) for a survey of these and other
applications. Many of the results are competitive with other metaheuristic approaches.
One of the deficiencies of the literature in this area, however, is the fact that few studies
are established as comparative analyses, aimed to determine the competitiveness of
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the proposed neural network approach with the best known heuristic or metaheuristic
approaches to the same problem. This makes a true evaluation of the performance
of Hopfield-type models difficult. As Looi (1992) noted, “although there is a large
collection of operations research based and other methods for solving all of these prob-
lems, comparisons between neural network methods with existing methods have been
lacking”. Solutions to this problem in the form of guidelines for experiments have now
been published (Barr et al., 1995; Hooker, 1995) and we hope that researchers will soon
provide enough studies of this nature that an accurate evaluation of the performance
and potential of Hopfield-type neural networks on a wide variety of problems can be
established.

3 DEFORMABLE TEMPLATES

Elastic nets (EN) and Self-organizing maps (SOM), often referred to as deformable
templates, provide alternatives for solving low-dimensional problems with a geomet-
ric interpretation, like the Euclidean TSP. These models are fundamentally different
from H–T, as they evolve in a low-dimensional continuous search space. In the follow-
ing, we describe both models for solving the Euclidean TSP. We then establish some
relationships between the two models and present a few extensions.

3.1 Elastic Net

The elastic net (EN) of Durbin and Willshaw (1987), originated from a previous work
by Willshaw and von der Malsburg (1979). It is an iterative procedure where M points,
with M typically larger than the number of vertices (or cities) N, are lying on a circular
ring or “rubber band” originally located at the center of gravity of the vertices. The
rubber band is gradually elongated until it is sufficiently close to each vertex to define
a tour. During that process two forces apply: one for minimizing the length of the ring,
and the other for minimizing the distance between the vertices and the ring. These
forces are gradually adjusted as the procedure evolves.

Figure 15.1 (a)–(c) show how the elastic net typically evolves over time. In the figure,
the small black circles are the points located on the ring which are migrating towards
the vertices in the Euclidean plane. When there is a point on the ring sufficiently close
to each vertex, a solution is obtained, as shown in Figure 15.1(d). This model will now
be presented more formally, using a pseudocode notation. Let be the coordinates of
vertex i, i = 1,..., N, the coordinates of ring point j , j = 1,. . . , M, and the
Euclidean distance between i and j. We have:

Step 0: j = 1 , . . . , M ;
Step 1: Repeat rep times

1.1 Update the coordinates of ring
point j, j = 1, . . . , M ;

1.2 If min                     then STOP;

Step 2
Step 3: Go back to Step 1.

Step 0 initializes the scale parameter K (see below) and selects an initial location
for the points on the ring. In Step 1, the points migrate towards the vertices through

:
j=1,...,M
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an iterative procedure governed by parameter K. After a fixed number of iterations,
related to the size of the problem, the value of parameter K is slightly reduced and
the migration process is pursued with this new value. This is repeated until there is
a point on the ring sufficiently close to each vertex, as specified by the tolerance An
alternative or additional stopping criterion for EN is to iterate until some preset
value is reached and then, to associate each vertex with the closest ring point. Parameter
K is reminiscent of the temperature parameter in the simulated annealing algorithm, as
its value must be progressively reduced according to a prespecified “cooling schedule”
to obtain a good solution to the problem.

In Step 1.1, the coordinates of each ring point j are updated as follows:

where

where are constant parameters and is a normalized measure of the “attraction”
of vertex i on ring point j. In equation (16), the term drives the points on the ring
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towards the vertices, and the term keeps neighboring points on the ring together during
the migration process to produce a short tour (i.e., neighboring points are associated
with vertices that are close in distance). These two forces are illustrated in Figure 15.2.

In this figure, force (1) is derived from the term, and drives point j towards vertex
i. Force (2), which is derived from the term, is more easily understood by considering
the equivalence

It thus defines a tension on the ring that keeps neighboring points together. Through
parameters and the relative strength of the two forces can be regulated.

It is work noting that the update equations (16) can be expressed as the derivative
of an appropriate energy function namely

where

This algorithm thus finds a local minimum of this energy function by perform-
ing a gradient descent in a continuous two-dimensional Euclidean space. When K
approaches 0 and the ratio of M to N approaches infinity, minimizing the energy is
equivalent to minimizing the total length of the ring and, thus, the solution value. Since
the shape of the energy function and its local minima change with K, the function
is gradually modified through a slow reduction of the value of parameter K until the
minima correspond to good TSP tours.

3.2 Self-organizing Map

A self-organizing map is an instance of the so-called competitive neural networks
(Kohonen, 1982, 1988). It is composed of a layer of input units fully connected to
a layer of output units, the latter being organized according to a particular topology,
such as a ring structure. Self-organizing maps basically produce topological mappings
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from high-dimensional input spaces to low-dimensional output spaces. In the case of
a ring structure, the p-dimensional input vectors are associated with output units or
1-dimensional positions on the ring. The mapping is such that two input vectors that
are close in the input space will be associated with units that are close on the ring.

In Figure 15.3, a SOM with P = 2 white input units and M = 3 black output units
(indexed from 1 to 3) is illustrated.

In Figure 15.3, and denote the weights on the connections from the two
input units to output unit 1, and is the weight vector associated with
output unit 1. In a TSP context, each input vector corresponds to the coordinates of a
vertex. We then want vertices that are close in distance to be associated with units that
are close on the ring to produce a short tour.

This is obtained through the following iterative adjustment of the connection
weights. Let assume that we have a SOM with two input units and M output units
on a ring, each with weight vector Let

be the coordinates of vertex i, i = 1, . . . , N and the Euclidean
distance between vertex i and output unit j. Then, we have:

Step 0: Initialization. j = 1, . . . ,M;
Step 1: Competition.

1.1 mod (N + 1) ;
1.2
1.3

Step 2: Weight adjustment.

Step 3: If i =            1, . . . , N, then STOP;
Step 4: Go back to Step 1.

In Step 1, the winning output unit j* is the one with the closest weight vector
(in Euclidean distance) to the current vertex. In Step 2, function f is typically a decreas-
ing function of the lateral distance between output units j and j* on the ring (i.e., if
there are k units on the ring between the two, the lateral distance is k+1) and its range
is the interval [0,1]. Thus, the weight vector of the winning unit j* and the weight
vectors of units that are close to j* on the ring all move towards the current vertex, but
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with decreasing intensity as the lateral distance to the winning unit increases. Typically,
function f is modified as the algorithm unfolds to gradually reduce the magnitude of
the weight adjustment. At the start, all units that are close to the winning unit on the
ring “follow” that unit in order to move in the same area. At the end, only the weight
vector of the winning unit significantly moves towards the current vertex.

This iterative adjustment procedure is repeated, through multiple passes over the
set of vertices (c.f., the modulo operator in Step 1.1) until there is a weight vector
sufficiently close to each vertex. Other or additional stopping criteria may be considered
like a fixed number of passes through the vertices or a stable competition, when it is
observed that the winning unit for each vertex does not change anymore from one pass
to another. The association of each vertex with a weight vector (i.e., an output unit with
an index or position on the ring) produces a tour. If we consider the two-dimensional
weight vector of each output unit on the ring as the location of that unit in the Euclidean
space, Figure 15.1 is still a good way of visualizing the evolution of the SOM with the
output units on the ring migrating towards the vertices.

3.3 Extensions

Since both EN and SOM exploit the geometry of the problem, they have mostly been
applied to the TSP. A few extensions are reported in the literature for the mutiple TSP
(Goldstein, 1990) and vehicle routing problems (Ghaziri, 1991, 1996; Matsuyama,
1991; Vakhutinsky and Golden, 1994; Potvin and Robillard, 1995). In these applica-
tions, mutiple tours are formed through the migration in parallel of multiple rings. In the
case of the VRP, the capacity or time constraints typically break the geometrical nature
of the problem and the algorithm must be modified accordingly. The SOM described
in (Ghaziri, 1991), for example, involves competition for the current vertex at two dif-
ferent levels: one within each ring based on geometric properties and the other among
the rings to take into account the capacity constraints. Some recent papers have also
generalized the SOM for applications in non geometric contexts, like the multidimen-
sional knapsack problem and the generalized quadratic assignment problem (Glover,
1994; Smith, 1995). These approaches depart from the traditional ring structure and
exploit more complex mappings and topologies.

3.4 Performance

Both SOM and EN are closely related. They both involve migration of a ring towards
vertices, although the mechanism for updating the location of the ring points is different.
In the case of EN, the update is defined through the minimization of an appropriate
energy function. The SOM does not require such a function.

It is difficult to get an accurate picture of the performance of the two models from the
current literature. The results are scattered in different journals from different research
area. Computation times are often missing and comparisons with alternative methods
are rare. Furthermore, the problems are not taken from standard benchmarks. Overall,
the literature indicates that both EN and SOM outperform the Hopfield model on the
TSP. For problems with up to a few hundred cities, EN often ends up with slightly better
solutions than SOM (Angeniol et al., 1988). However, it is also more computationally
expensive, as it requires more iterations to converge (c.f., the slow cooling schedule
of scale parameter K). SOM scales up better and has been applied on much larger
problems. In (Favata and Walker, 1991), for example, the authors report results on
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problems with up to 10,000 vertices. The solutions obtained were about 5% worse than
those produced by a simulated annealing heuristic.

4 PRACTICAL ISSUES

While the previous sections presented a review of Hopfield neural networks, elastic
nets and self-organizing maps, this section aims to discuss some of the more practical
issues affecting their performance. These have been separated into issues affecting the
efficiency of the models, and further issues that have proven to be problematic for
researchers and need careful consideration.

4.1 Hopfield Model

4.1.1 Efficiency Issues

The efficiency of the Hopfield network for solving combinatorial optimization depends
significantly on the way in which the problem is mapped onto the network. The encoding
of the variables, constraints, and objective function into the Hopfield energy function
and the values of the penalty parameters combine to determine the complexity of the
energy surface. This, in turn, affects the degree to which the Hopfield network dynamics
are able to search for local minima.

Problem Representation It is interesting to note that all of the Hopfield network
applications to the TSP have been based on the formulation used by Hopfield and Tank
which uses a decision variable denoting if a city belongs to a given position in the
tour sequence. The operations research community however has based many of its TSP
methods on another formulation: here the decision variable denotes if city i follows
city j in the tour sequence. This alternative formulation results in a linear objective
function, but some complex constraints are needed to avoid sub-tours. Hopfield and
Tank’s method cannot readily be applied to the linear formulation due to the difficulty
of encoding this constraint (Smith et al., 1996). Nevertheless, this raises the issue of the
existence of alternative formulations for a given problem, and the degree to which this
impacts the efficiency of any resulting Hopfield networks. A recent study of a Hopfield
network application to school timetabling has shown that, where two formulations
exist for a problem, the chosen formulation greatly impacts the dimensionality of the
neurons, the number of constraints needed to represent the problem, and the complexity
of the energy surface (Smith et al., 1999).

Energy Function There are frequently several different ways of enforcing con-
straints in an energy function. As was shown in Section 2.4, Hopfield and Tank’s TSP
row and column constraints can be rewritten to explicitly state that each row and column
must sum to one, thus eliminating the need for their third term in the energy function
(Brandt et al., 1988). For other constraint types also, there are often several different
approaches to incorporating them into the energy function (Peterson and Soderberg,
1993). Other researchers avoid the need for representing constraints in the energy
function by modifying the network dynamics. This is the approach taken by mean field
annealing (Van den Bout and Miller, 1989), where a row constraint stating that the
neurons must sum to one is handled by normalizing the neuron states in each row.
The aim in exploring different representations of constraints is to reduce the number
of terms and parameters needed in the energy function, as well as perhaps to reduce
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the number of local minima generated by these terms. Other terms often added to the
energy function include one of the form which is designed to encour-
age convergence to binary valued neuron states. This term essentially adds a concave
term to the original energy surface, thus altering the convexity and driving the solution
towards the vertices of the unit hypercube.

Penalty Factors The choice of penalty factor values affect the contour of the
energy function surface, and thus greatly affect the ability of the Hopfield network
to find local minima of the optimization problem. For many types of constraints, the
penalty factors can be treated as equivalent (e.g., penalty factors for row and column
constraints in the TSP should be identical, since these constraints are equally important
and equally difficult to satisfy). This observation can often reduce the search space for
the optimal penalty factor combination. Many researchers have attempted to eliminate
the need for trial and error parameter selection by examining the theoretical balancing
of terms in the energy function. For the TSP, Hedge et al. (1988) showed that, while
some regions of parameter space can be identified that yield better quality results, the
size of these regions diminishes rapidly as the problem size increases. Kamgar-Parsi
and Kamgar-Parsi (1992) developed a systematic method for selecting the penalty
factors based on analyzing the dynamical stability of feasible solutions. Trial and error
searching however does not necessarily preclude a systematic method. The efficiency
of searching for optimal penalty parameter values can be improved by adopting the
following systematic approach: first find values for the penalty factors that provide
a feasible solution, holding the objective function penalty factor constant at unity.
Once a combination of penalty factors has been found that consistently yields feasible
solutions, slowly start to increase the objective function factor in an attempt to produce
less expensive feasible solutions. As soon as feasibility is lost, the bounds on this
parameter can be established. This much reduced search space can then be explored in
more detail to obtain the combination of penalty factors that yields consistently feasible
and optimal solutions.

4.1.2 Problematic Issues

There are a number of important issues that researchers should be aware of when
developing Hopfield network models for solving combinatorial optimization prob-
lems. Some of these issues are rarely addressed in the available literature, yet they
dramatically affect the degree to which the Hopfield network follows its theoretical
behavior.

Diagonal Weights A common misconception in the literature is that zero diagonals of
the weight matrix are necessary for the stable states of the continuous model
to coincide with those of the original discrete model. This belief has no doubt evolved
due to Hopfield’s original simplifying assumption that In fact, there are
no restrictive conditions on the diagonals of W for the continuous model to converge
to a minimum of If however, that minimum may lie in the interior of
the hypercube, due to the convexity of the energy function. In this case, annealing
techniques are usually employed to drive the solution trace towards the vertices.

Unlike the continuous model however, non-zero diagonal elements of the discrete
Hopfield network do not necessarily allow Liapunov descent to local minima of
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This is because the change in energy due to a change in output level is

Since results in and results in under the discrete
model, the first term on the right-hand side of (22) is always negative. The second term
is positive however for Consequently, is only negative provided

Thus, for non-negative diagonal elements, convergence of the discrete model is guar-
anteed. For negative diagonals, however, convergence may not be possible since
is large for discrete dynamics. The continuous model does not suffer from these prob-
lems if implemented using the differential equation system (4) and (5). When these
equations are simulated on a computer, however, the time discretization means that this
model too may become unstable if the changes to neuron states are too large.

Consequently, it is important to be aware that, for problems with negative diagonals
of the weight matrix (this includes many practical applications, as well as Hopfield and
Tank’s original TSP formulation), strict Liapunov descent for even the continuous
model will become harder to simulate and cannot be guaranteed during simulation in
the extreme high-gain limit (i.e., T near zero) of the continuous transfer function (which
approximates the discrete case). If the best we can do for simulation purposes
is to make sure the gain of the transfer function is not so high that we are approximating
the discrete model too effectively. We can then use an annealing technique to drive the
network towards a vertex solution. Of course, these problems are not encountered in
a hardware implementation where the differential equation (4) does not need to be
simulated.

There is also a relationship worth noting between the diagonal elements of the
weight matrix and the shape of the energy surface. As mentioned above, adding a term
of the form to the energy function serves to encourage convergence
to the vertices of the unit hypercube. The process of hysteretic annealing proposes
starting with a negative value for and slowly increasing to positive so that the energy
surface is converted from convex to concave, driving the solutions out to the vertices.
The idea of slowly decaying away the diagonal weight elements has also been shown
to lead to chaotic dynamics, which have been useful for escaping local minima of the
energy function (Chen and Aihara, 1995).

Simulation While the continuous Hopfield network is designed to be implemented
in hardware, most researchers simulate its behavior on a computer. This involves
using a discrete-time approximation to the differential equation (4), such as the Euler
approximation:

If the time-step is too large, the dynamics of the simulated network will not
closely approximate the continuous model, and Liapunov descent cannot be guaranteed.
This can be seen also by equations (22) and (23) since a large time step produces a large
change in neuron states If the time-step is too small, convergence can be guaranteed
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but the time required to simulate the network will be increased. For a TSP with N
cities, it has been shown (Kamgar-Parsi and Kamgar-Parsi, 1987) that a time-step for
the simulation of (4) as small as is required, slowing down simulations
immensely for large problem sizes, and making the discretization of the continuous
model quite ineffective. The value chosen for the transfer function parameter T also
needs to be selected with care, since it too can produce large changes in neuron states

and result in oscillations. Kamgar-Parsi and Kamgar-Parsi (1987) have proposed
a discrete-time Hopfield network model with continuous dynamics that satisfies the
condition in (23) and produces quick convergence.

Initial States Since the Hopfield network is a gradient descent technique, the ini-
tial states of the neurons play a large role in determining the final solution quality.
Certainly, the discrete-time versions of the networks incorporate some stochasticity
since neurons are selected for updating at random (only the continuous model imple-
mented in hardware is truly deterministic). Nevertheless, this degree of stochasticity is
rarely enough to avoid the high dependence of the solution on the initial states. Most
researchers report their results based on multiple random and unbiased initializations
to avoid this dependence. Some work has been conducted to identify heuristic methods
for more effective initializations (Lai and Coghill, 1994; Naphade and Tuzun, 1995;
Schwartz et al., 1991).

Updating Mode For any discrete-time version of the Hopfield network (discrete
model or simulated continuous model), there are two ways of updating the neurons:
asynchronously (sequentially) or synchronously (in parallel). Asynchronous updating
is the method described in Section 2, whereby a neuron is chosen at random and
its internal and external states are updated before the next random neuron is chosen.
Liapunov descent is guaranteed under these conditions (provided equation (23) holds
true). For synchronous updating however, all neurons update their internal states, and
then the updated values are used to simultaneously update the external states. Under
this updating mode, convergence cannot be guaranteed and the network may become
trapped in a 2-cycle (Bruch, 1990). Most researchers use the asynchronous mode of
updating to avoid such oscillations.

Solution Integrality For combinatorial optimization problems the final solution
needs to be binary, even if the method used approaches this solution from within the
unit hypercube. Using the discrete Hopfield model is appropriate for ensuring binary
solutions, but the problems with convergence for many practical problems where

have resulted in most researchers turning to the continuous model. There
are several approaches to encouraging binary solutions within the continuous model.
Firstly, we can use a gradient of the transfer function with T near zero (which approxi-
mates the discrete transfer function (2)), but this risks producing convergence problems
like the discrete model, as discussed above. Secondly, we can add an additional term to
the energy function to drive towards the vertices. While this introduces another para-
meter to select, some additional advantages can be found due to the chaotic effect on
the dynamics and the hill-climbing this creates (Chen and Aihara, 1995). Other meth-
ods have been proposed including a variety of rounding approaches and heuristics for
interpretation of final non-integer solutions (Wolfe, 1999).

Termination Criteria One of the factors that has made it difficult for researchers
to reproduce Hopfield and Tank’s original results is that they omitted certain critical
details in their paper about the method used to simulate the differential equation, and
the termination criteria. Wilson and Pawley (1988) experimented with three different
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termination criteria in an effort to reproduce the results: the network simulation was
terminated if (i) a valid tour was found, (ii) the network had frozen as measured by no
neuron values changing by more than since the last update, and (iii) more than
1000 updating iterations had elapsed (a “time-out” test, useful for catching cyclic and
oscillatory convergence). Wilson and Pawley found that 1000 iterations were sufficient
for their experiments, and increasing the “time-out” range to 10,000 iterations did not
produce any improvement in results. It is important to be aware, however, that the
quality of the reported results is usually affected greatly by the termination criteria
selected, and researchers need to be sure to report these accurately.

4.2 Elastic Net

4.2.1 Efficiency Issues

In the EN algorithm, updating the position of the ring points is computationally expen-
sive, as the update of a single point depends on the position of every vertex, through
the attraction coefficients Furthermore, these coefficients must be recomputed at
each iteration. For the complexity of each iteration is thus Different
approaches have been proposed to reduce this burden.

Filtering A natural way of addressing the problem without degrading too much solu-
tion quality is to consider only vertices that have a significant impact on the ring points
(Boeres et al., 1992; Vakhutinsky and Golden, 1995). In other words, attraction coef-
ficients that are not of sufficient magnitude, because their vertices are too far from
the corresponding ring points, are filtered out. A large number of coefficients may be
eliminated in this way because the function decreases quickly as the square of
the distance grows.

Hierarchical EN The idea of the hierarchical EN (Vakhutinsky and Golden, 1995)
is to divide the area containing the vertices into smaller subareas and to replace the
vertices in each subarea by a single vertex located at their center of gravity. As the
algorithm unfolds, the subareas are progressively reduced until each subarea contains
a single vertex. It is reported that working on smaller aggregated problems at the start
allows the algorithm to find the general shape of the solution more quickly.

4.2.2 Problematic Issues

When implementing an elastic net algorithm, the following issues should be taken
care of:

Normalization of Coordinate Vectors The behavior of EN may be quite different
from one problem instance to another. Some authors have noted that a more robust
algorithmic behavior is obtained by normalizing the coordinate vectors of the vertices
(Favata and Walker, 1991).

Initial Ring The number of ring points M to be used is clearly related to the
number of vertices N. However, using too many points leads to a loss of efficiency. In
the literature, M is usually set around 2.5N. The initial position of the ring is typically
around the center of gravity of the vertices. Good results are also reported when the
points on the ring correspond to the convex hull of the vertex set (Burke, 1994).

Ring Migration When the value of parameter K is large, the energy function is
rather smooth, but as this value is reduced a multimodal energy landscape emerges,
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where good local minima should correspond to good tours. In order to obtain this result,
parameter K must be slowly reduced to avoid some form of twisting or crossover of
the ring (which typically leads to long tours). For example, a problem with 100 vertices
was solved in (Durbin and Willshaw, 1987) by setting K to an initial value of 0.2 and by
reducing it by 1% every 25 iterations until a value in the range 0.01–0.02 was obtained.

Interpretation of the Final Configuration Two or more different ring points may
be associated with the same vertex if they are all within the tolerance of that vertex (this
is sometimes referred to as a spike). Conversely, a ring point may be associated with
two or more vertices. In such cases, the solution is not well defined. In Figure 15.4(a),
two ring points are within the tolerance of vertex 2, and two different sequences 1-2-3-
4-5 and 1-3-4-2-5 are obtained depending of the ring point chosen. In Figure 15.4(b), a
single ring point is associated with vertices 2 and 3. Hence, it is impossible to know if
vertex 2 is visited before or after vertex 3. One possible way of solving these problems
is through postprocessing. For example, all valid solutions obtainable with the current
configuration can be considered and the best overall solution is taken. Trying to avoid
this phenomenon during the course of the algorithm is rather difficult. Some theoretical
studies indicate that an appropriate setting of the  ratio (so that it is about one-half of
the average inter-point distance on the ring) is likely to lead to fully-specified solutions
(Simmen, 1991).

4.3 Self-organizing Map

4.3.1 Efficiency Issues

As noted by different authors (Burke and Damany, 1992; Favata and Walker, 1991),
significant gains in efficiency are obtained by reducing the number of ring points that
move towards the current vertex (i.e., those that are close the the winning point) and also
by reducing the magnitude of the move. In Step 2, the update mechanism is governed
by function f ( j , j*) which has a form like:

where

otherwise
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In this definition, is the lateral distance on the ring between point j and winning
point j* (assuming that the points on the ring are indexed from 1 to M), and is
the absolute value of x. This function is such that it always returns a value of 1 for
the winning point, and this value decreases as the lateral distance from the winning
point increases; when the lateral distance goes beyond parameter L, the points do
not move at all. The value of parameter is increased from one pass to another to
progressively reduce the magnitude of the move of neighboring units. At the end,
when is sufficiently large, only the winning unit moves towards the current vertex
and separates from its neighbors to fix the solution.

4.3.2 Problematic Issues

Since the SOM is closely related to EN, many issues mentioned above for EN still hold
here. We thus focus on a specific issue, which is related to the mechanics of the SOM
for updating the ring location.

Ring Point Freezing Solution ambiguity can occur, either because many ring points
fall within the tolerance of a given vertex or a single ring point falls within the tolerance
of two or more vertices. However, due to the specific methodology adopted for stretch-
ing the ring, which is based on a competition between ring points, it may also happen
that a number of points will freeze at their initial location, because they never win any
competition. Consequently, partially-defined tours are obtained, where a number of
vertices are (i.e., do not have any close ring points). Different techniques
have been proposed to alleviate this problem:

In Angeniol et al. (1988), the implementation is based on the distinctive feature
that ring points are dynamically created and deleted. A point is duplicated if it
wins for two different vertices after a complete pass through the set of vertices. It
is deleted, if it does not win after three complete passes. Through this mechanism,
vertices are less likely to end up alone. Starting with a single point on the ring, the
authors report that up to twice as many points as vertices may be created during
the procedure.

In Burke and Damany (1992), a conscience mechanism proposed by Desieno
(1988) replaces the dynamic creation and deletion of ring points. A penalty is
added to the distance between a ring point and a vertex, based on the number
of times that point has won the competition in the past. Consequently, frequent
winners are heavily penalized in favor of other units. Basically, Step 1.2 (com-
petition) in the SOM algorithm of Section 3.2 is modified as follows for a given
vertex i and ring point j:

where is the penalty or bias associated with ring point j. This penalty is
typically the fraction of competitions won by ring point j in the past. Good
results are reported with a number of ring points now equal to the number of
vertices, leading to substantial savings in computation time.

Parameter that weighs the penalty with respect to the true distance in the con-
science mechanism, is reportedly difficult to tune. In (Burke, 1994), a vigilant net
is proposed where ring points are turned off if they win too often to let others win.
Basically, the number of wins is recorded for each unit and that unit is turned off
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for the remaining of the pass through the set of vertices, if this number exceeds
some threshold value (known as the vigilant parameter). At the start of the next
pass, the winning score of all units is reset to zero. The vigilance parameter is
large initially, to allow the vertices to win freely at the start, and is progressively
reduced until it reaches a value of one, to let the ring points separate and converge
towards distinct vertices.

5 CONCLUDING REMARKS

This chapter has reviewed the two main types of neural network models that can be
used for combinatorial optimization: Hopfield networks and the deformable template
models of elastic nets and self-organizing maps. The review has covered both the
theoretical aspects of their application to combinatorial optimization problems, as well
as discussing a variety of practical considerations that affect the performance of the
models.

From a metaheuristics viewpoint, neural networks can be seen as an alternative tech-
nique with the current potential to match the performance of better known algorithms
such as tabu search and simulated annealing. This potential relies on due considera-
tion of the aforementioned range of issues affecting the success and efficiency of the
methods. The deformable template methods are well suited to solving low dimensional
problems with geometric interpretation like the TSP. The Hopfield network method
generalizes to a broad range of combinatorial problems, but the cost of this general-
ization is a reduction in efficiency and scalability. Certainly, current developments in
hardware implementation of neural architectures should see some of these limitations
relaxed in future years. The advantage of neural networks over other metaheuristic
techniques could then be more fully demonstrated.
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