
Shortest Paths (Dijkstra’s Algorithm)

1. For each of the graphs below (one undirected, the second directed) find
the shortest distances from vertex A to all other vertices. (Note that the
edges {I, G} and {A, J} cross each other, but there is not a vertex at the
point of intersection). For each graph, draw the subgraph that consist of
edges that are used in the shortest paths.

You should find both the shortest distances and the predecessor array
which will allow us to reconstruct a path joining A to any vertex.

For each of these two graphs, the weight of every edge is 1 (and hence,
that’s why I haven’t included the weights in the diagram).

As for any problem using Dijkstra’s algorithm, I will maintain a table
for the shortest distances. In fact, I will maintain two elements in the
table, the (current) shortest distance and the predecessor of a vertex.
Both of these items could be updated in each step of the algorithm. The
predecessor array lets us reconstruct the shortest path from vertex A to
any other one, by tracing backwards through those values.

Note that I will not show the list of elements whose distance values are
fixed (permanent) at each step, but will merely show which new one be-
comes fixed in each step. Of course, once a value becomes fixed, it won’t
decrease further (why?), and we won’t consider it again in later steps to
determine the new vertex to fix. Recall that we also take the minimum
(breaking ties arbitrarily) of the vertices that are not fixed at each step.

The values of the predecessors are initially undefined, and I will only show
them once the distance value becomes finite.

1



fixed A B C D E F G H I J K L
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

A 0,∅ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1, A 1, A ∞ ∞
I 0,∅ ∞ ∞ ∞ ∞ 2, I ∞ ∞ 1, A 1, A ∞ ∞
J 0,∅ 2, J ∞ ∞ ∞ 2, I 2, J ∞ 1, A 1, A ∞ 2, J
B 0,∅ 2, J ∞ 3, B ∞ 2, I 2, J 3, B 1, A 1, A ∞ 2, J
F 0,∅ 2, J ∞ 3, B ∞ 2, I 2, J 3, B 1, A 1, A ∞ 2, J
L 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
G 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
D 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
C 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
E 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
H 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J
K 0,∅ 2, J 3, L 3, B 3, L 2, I 2, J 3, B 1, A 1, A 3, L 2, J

In this case, after vertex L becomes fixed, no other distance label decreases
(so the table doesn’t change past this point). Of course, for large graphs,
it may take many steps until we’re done, and we cannot necessarily see
that we’re finished until the very end (indeed, all but the last vertex in
the table could join up to some new vertex in the graph).

The subgraph that consists of edges in the shortest paths (specified by the
predecessor array) is shown below.

2



The next graph follows.

For this directed graph, we end up with this table from the execution of
Dijsktra’s algorithm. As above, the exact order when the vertex labels
become fixed might differ slightly from mine (in the case of ties). You
should end up with the same smallest distances, but the predecessor array
might differ slightly (again, because of how you might have broken ties).

fixed A B C D E F G H I J K L
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

A 0,∅ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1, A ∞ ∞ ∞
I 0,∅ ∞ ∞ ∞ ∞ 2, I 2, I ∞ 1, A ∞ ∞ ∞
G 0,∅ ∞ 3, G ∞ 3, G 2, I 2, I ∞ 1, A ∞ ∞ ∞
F 0,∅ 3, F 3, G ∞ 3, G 2, I 2, I ∞ 1, A ∞ ∞ ∞
C 0,∅ 3, F 3, G ∞ 3, G 2, I 2, I ∞ 1, A ∞ ∞ 4, C
E 0,∅ 3, F 3, G ∞ 3, G 2, I 2, I ∞ 1, A ∞ ∞ 4, C
B 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I ∞ 1, A 4, B ∞ 4, C
D 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I ∞ 1, A 4, B ∞ 4, C
L 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I ∞ 1, A 4, B 5, L 4, C
J 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I ∞ 1, A 4, B 5, L 4, C
K 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I 6, K 1, A 4, B 5, L 4, C
H 0,∅ 3, F 3, G 4, B 3, G 2, I 2, I 6, K 1, A 4, B 5, L 4, C

The subgraph consisting of edges in the shortest paths is shown below.

3



2. Consider the weighted (undirected) graph below. (Edges {G, I} and {A, J}
cross but there is not a vertex at their intersection.)

Find shortest paths from vertex A to all other vertices in the graph. You
should find both the shortest distances and the predecessor array which
will allow us to reconstruct a path joining A to any vertex.

As above, draw the subgraph that contains only those edges used in the
shortest paths.

In the table below, I keep track of the current minimum distances, as well
as the predecessor on the path to that vertex. Note that the predecessor

4



of A is listed as ∅ since the vertex A has no predecessor. For lack of room,
I don’t list all of the vertices that are currently “fixed” in the first column,
just the new vertex that becomes fixed in that round.

Fixed A B C D E F G H I J K L
∅ 0, ∅ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
A 0, ∅ ∞ ∞ ∞ ∞ ∞ 5, A ∞ 6, A 6, A ∞ ∞
G 0, ∅ ∞ 12, G ∞ 9, G ∞ 5, A ∞ 6, A 6, A ∞ ∞
I 0, ∅ ∞ 12, G ∞ 9, G 10, I 5, A ∞ 6, A 6, A ∞ ∞
J 0, ∅ 7, J 12, G ∞ 9, G 9, J 5, A ∞ 6, A 6, A ∞ 10, J
B 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
E 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
F 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
K 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
L 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
D 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
C 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J
H 0, ∅ 7, J 12, G 11, B 9, G 9, J 5, A 13, B 6, A 6, A 10, B 10, J

In this case, after the vertex B becomes fixed, it turns out that none of the
distances decrease in the following steps. In general, it might take longer
for other distances to decrease to their proper values. (And certainly if I
had chosen other values for some of the edges, this could have easily been
the case.)

The predecessors allow us to determine the path from vertex A to any
other vertex by tracing backwards through the path. For example, to get
to vertex K, we come through vertex B, which is reached via vertex J ,
and we get to J from A. Thus the path from A to K is A, B, J,K. In
a similar manner we can determine any of the other shortest paths from
vertex A to other vertices.

The subgraph that consists of all the “shortest path edges” is shown on the
next page. (As an aside, note that the subgraph generated in this manner
is necessarily a spanning tree of the graph, since each vertex (except the
starting vertex) has a unique predecessor. This will not, in general be a
minimum spanning tree of the original graph.)

5



6


