Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11
WCECS 2009, October 20-22, 2009, San Francisco, USA

An Adaptive Genetic Algorithm for Multiprocessor
Task Assignment Problem with Limited Memory

Abbas Mehrabi, Saeed Mehrabi, and Ali D. Mehrabi

Abstract—Multiprocessor and distributed systems both
play a vital role in high performance computing. One of the
most important issues in this area is to assign a set of tasks
on a set of processors with limited memory to provide load
balancing. Recently genetic algorithms, which are in the
class of stochastic search algorithms, have been used for
most combinatorial optimization problems. In this paper we
solve the task assignment problem with considering load
balancing by new method, based on the genetic (GAs)
algorithms. Our GA employs a repair function to guarantee
valid assignments during the process of algorithm.
According to the effectiveness of this algorithm in
comparison with heuristic algorithms including branch and
bound and graph cuts, it can be used for task assignment
problem in most parallel processing environments.

Index Terms— Genetic Algorithms; Combinatorial
Optimization; Multiprocessor Systems; Load Balancing;
Parallel Processing Environments.

I. INTRODUCTION

Parallel processing systems, are used in most
applications, such as information processing, weather
modeling, database systems, real-time simulation of
dynamic systems and image processing today. The
maximum efficiency of these systems can be obtained,
when the task assignment and
partitioning methods are applied effectively. This
problem has been proved to be NP-Complete [18].
Several approaches to the task allocation model have
been identified. They are basically graph theoretical,
integer programming and heuristic method.

In graph based approach, each running task in the
system and the cost induced by the communication delay
between them residing in separate processors are
represented by a node and a weighted edge, respectively
[17]. It minimizes the total interprocessor communication
cost by performing a partitioning algorithm on the graph

Manuscript received July 3, 2009; Revised July 29, 2009.

Abbas Mehrabi is now M.S.C student at Computer Engineering
Department, Islamic Azad University, South Tehran Branch, Tehran,
Iran. (email: abbas.mehrabi8141@gmail.com).

Saeed Mehrabi is B.S student at Department of Computer Science,
Shahid Bahonar University of Kerman, Kerman, Iran. (email:
mehrabi235@gmail.com).

Ali D. Mehrabi is with the Department of Mathematical and
Computer Science, Yazd University, Yazd, Iran. (email:
mehrabi@yazduni.ac.ir).

ISBN:978-988-18210-2-7

such that, each partition includes a set of tasks, which are
assigned to a specified single processor. The limitation of
its generalization is the high computing time complexity
when more than two processor are used in the allocation
model. Furthermore, it is difficult to incorporate various
constraints into such a model. An instance of this task
graph is shown in figure 1. The graph has eight nodes
corresponding to problem tasks and some edges between
them indicating the communication delay as the edges
label.

The integer programming method [6], [7] is based on
the implicit enumeration subject to the additional
constraints. It allows constraints to be easily incorporated
into the allocation model to meet various application
requirements. This approach is limited by the amounts of
time and memory needed to obtain an optimal solution
since they grow as exponential functions of the problem
order.

The heuristic method is to provide fast and effective
algorithm for a suboptimum solution [9]. This technique
requires less computation time than integer programming
methods. They are useful on applications where an
optimum solution is not obtainable within a critical time
limit. They are also applicable to larger dimensional
problems.

This paper is organized in 5 sections: in section 2 the
multiprocessor task assignment problem is formulized.
The section 3 is related to surveying the proposed genetic
algorithm. We analyze our algorithm in section 4 by
simulation. Finally we conclude this paper in section 5.

II. PROBLEM FORMULATION

The task assignment problem in multiprocessor
systems is defined as the assignment of n tasks T, T,
..., T, to m processors, P;, P, ..., P, to achieve the
following goals:

1. allow specification of total CPU load and memory
constraints to facilitate a variety of engineering
application requirements,

2. balance the utilization of individual processors in
the multiprocessor computing system, and

3. minimize interprocessor communication cost.

The design of a mathematical model for task allocation

for a multiprocessor computing system involves the
following steps:
1. formulate the cost function to measure the processor
communication (IPC) cost and processing cost, 2.
formulate the problem constraints to meet the diverse
requirements, and 3. drive an iterative algorithm to obtain
a minimum total cost solution.

WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11

WCECS 2009, October 20-22, 2009, San Francisco, USA

A. Problem Statement

The cost function is formulated as the sum of the IPC
cost and the processing cost. If two different running
tasks are assigned to a same processor, the
communication delay between them is dissembled, since
data transmission is done effectively. In contrast, if these
two tasks are assigned to two different processors the cost
due to the communication delay between them takes
account in the total system cost.

According to assignment literature there are some
parameters for problem formulation. We first introduce
these parameters and return them anywhere needed. Our
multiprocessor computing system has the
interconnections in the form of heterogeneous in which
the connected processors contributed to the system have
not the same processing ability. Each processor has its
local limited memory. In any static specified time
interval, the set of the assigned tasks to any processor are
located in its local memory for sequential execution. We

denote m, as the amount of memory needed for task i

and ¢;, as the processing requirements of task i for
execution on processor 7. In other hands for processors,
we have M, as memory capacity of processor n, P,

processing capacity of processor n, ¢, communication

ijn
cost between task i and j if i is assign to processor n and
j is assigned to processor /, and

1 if task i is assigned to processor n,

mn 0 otherwise

The total cost for processing the tasks is stated as [5]

min{zzcinxin + z chz_’jnl‘xin‘xﬂ} 1

G)eE n 1

Subject to
> x, =1 Vi, @

> mx, <M, 3)

as the problem constraints. Eq. (2) reveals this fact that
some task is assigned to one and only one processor
during the program execution. Eq. (3) states that the
amount of memory required for all tasks assigned to a
processor must not exceed the processor memory

capacity.
B. Related Works
Richard and ef al. [16] have used an algorithm based

on branch and bound (BB) method. To employ the BB
technique the allocation problem is represented by a

ISBN:978-988-18210-2-7

Fig. 1: A communication task graph.

search tree. The allocation decision represents a
branching at the node corresponding to the given task.
Consider a problem of allocating m tasks among n
processors. Starting with task 1, each task is allocated to
one of the n processor subject to the constraints imposed
on the relations on tasks and processors. The number of
tree levels m corresponds to m tasks. A feasible sequence
of successive branches is called a path. A path from the
root node to the last node corresponds to a complete
allocation; otherwise, it is a partial allocation. The cost
of a path is computed according to the cost equation.

Although this approach finds the optimum solution in
most cases, it needs a lot of backtracks for large problem
instances resulting in exponential time and space
complexity.

Stone [17] investigates the underlying problem with
the aid of network flow algorithms and graph cut
approaches. This paper shows how the well-known Ford-
Fulkerson algorithm for finding the maximum-flow can
find an optimal partition of a modular program that runs
on a two-processor system and its generalization to
systems with three or more processors. To minimize the
total running time, Stone modifies the module
interconnection graph so that each cutset in the modified
graph corresponds in a one-to-one fashion to a module
assignment and the weight of the cutset is the total cost
for that assignment. With this modification, we can solve
a maximum flow problem on the modified graph. The
minimum weight cutset obtained from this solution
determines the module assignments, and this module
assignment is optimal in terms of total cost. In the case of
two or more processors, Stone distinguishes the
processors in two categories: source and sink types in the
interconnection graph and computes the maximum flow
between these nodes by creating a cutset. The weight of
the cutset corresponds to the total running time. The
cutset with minimum weight creates an optimal
assignment.

The maximum flow approach is more efficient than
backtracking because worst-case performance of
backtracking has a much greater complexity than
maximum flow algorithm complexity. However the
problem of finding the maximum flow in an
interconnection graph is still a time consuming problem.
In addition the problem extension to three or more
processors using this approach is itself an intractable
problem.

WCECS 2009

In next section we introduce our genetic algorithm
which solve the underlying problem far better than
previous algorithms in both time and space complexity
according to experimental results.

III. THE GENETIC ALGORITHM

Genetic Algorithms (GAs) [8] which are famous meta-
heuristics based on the mechanism of natural selection
and natural genetics were first developed in 1960 by John
Holland [11] at the Michigan State University. Recently,
GAs have frequently been used for solving many search
and optimization problems (see e. g. [14], [15]). The basic
concept of GA is designed to simulate the processes in
natural system necessary for evolution, specifically for
those that follow the principle of survival of the fittest,
first laid down by Charles Darwin.

The general outline of a genetic algorithm can be
stated as follows. GA starts by generating a random
population of candidate solutions. At each iteration of the
algorithm a population of promising solutions is first
selected. Various operations are then applied to this
population in order to produce new candidate solutions.
Two common and may most important of these
operations are crossover and mutation. The crossover
operator is applied to exchange partial solutions between
pairs of solutions. There are many random methods for
doing crossover in literature.

The first step in designing a genetic algorithm for a
particular problem is to develop a suitable representation
scheme, that's, a way to represent individuals in the GA
population. Our algorithm wuses an appropriate
representation for chromosomes, with considering the
task interconnection graph, the number of processors and
memory constraints. As an example, consider the task
graph shown in Fig. 1. A task assignment chromosome
for this task graph is shown in Fig. 2.

Setting the i cell (called gene in GAs literature) of the
chromosome array to j means the assigning of /™ task to
processor j. This example uses 3 processors, P;, P, and P;.

A correct task assignment chromosome representation
is one in which, the total amount of memory, which is
needed for executing the tasks assigned to some processor
does not violate the memory capacity of that processor.
The total cost for a given assignment is the total
execution time of the tasks assigned to all processors plus
the sum of the communication delay time between tasks
on separate processors.

A. The initial population generation

The first population of GAs plays an important role in

Tasks 1 2 3 4 5 6 7 8
HEIREBDENN

Froeassor f.

Fig. 2: Chromosome representation of task assignment.

ISBN:978-988-18210-2-7

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11
WCECS 2009, October 20-22, 2009, San Francisco, USA

reproductivity of individuals in the next generations. To
create the initial population of chromosomes, we must
assign tasks to processors in chromosome representation
such that the total amount of memory, which is needed
for executing the tasks assigned to each processor, does
not violate the memory capacity of corresponding
processor. We designed the procedure 1 for initial
population generation, which is shown in figure 3. We
mean the M/P;] by the amount of memory, which is
needed for executing task P; on some processor.
CPUMemory[j] is related to the memory capacity of
processor j.

B. Crossover and mutation operators

This proposed algorithm uses the two point crossover
method, which has been used in most GAs for solving
problems related to multiprocessor environments [14].
After some populations conducted, the characteristics of
almost children like to be the same. In fact, the future
individuals would like to inherit the all of their own
attributes from the parents. This means that the
individuals in the population can only go through a
special part of search space and this cause to miss some
best solutions. For searching almost the search space we
use the mutation operator. Once a child solution has been
generated through crossover, a mutation procedure is
performed that mutates few randomly selected genes in
the child solution. The rate of mutation is very important
in GAs and is generally set to be a small value. The
crossover operator procedure is shown in figure 4.

C. Repair operator

After the crossover and mutation operators, it is
possible that some chromosomes to be invalid due to
violation of processor memory capacity. For this reason
we have used a new operator, which is called the repair
operator. This operator is responsible for the conversion
of the invalid child chromosomes to valid chromosomes.

Initial Population Generation Procedure 1

Begin
Input: r: the runber of tasks.
OQuiput: chrom: a new cliromosonie.
fori=1to n de
Begin
int CPU[];
int index=0,
for k=1to CPU_mumber do
if CPUmemory[k]-M[Fi]==0
CPU[+Hindex]=k,
int x=CPU[random],index];
CPUmemory[x]=CPUmemory[x]-MP7];
chrom[j]=x;
End
Quiput; chrom.
End.

Fig. 3: The initial population generation procedure.

WCECS 2009

Crossover Operator Procedure 2

Begin
Input: firstparent, secondparent: two parent
chromosomes.
n: the mumber of tasks.
Quiput: firstchild, secondchild: two child
chromosotmes.
int =random(l,n-17;
int j=random(i+1,10);
firstchild=firstparent(l,i- 1)/ secondparent(ij)
[ifirstparent(j+1,1);
secondchild=secondparent(l, i- DA Firstparent(l)
Hsecondparent(j+1 1),

Quiput: firstchild, secondchild.
End.

Fig. 4: The crossover operator procedure.

It starts with traversing the chromosome array and upon
arriving to an invalid task assignment then searches
another first processor such that its remaining memory is
greater than or equal to the amount of memory which is
needed for executing the corresponding task. The
underlying task will be reassignment to the processor
which is founded. The repair operator procedure is shown
in Fig. 5.

D. Evaluation function and Selection operator

To compute the total system cost, we consider the
execution time of the assigned tasks to all processors plus
the communication delay time between them on the
separate processors. Thus our final objective is to find a
chromosome representation such that first it does not
violate the memory capacity of processors and second the
total system cost according to the chromosome
representation to be optimal.

To select the chromosomes for the next generation of
the algorithm, a number of chromosomes with small
values for their evaluation function are moved to the next
generation without any change. Among the remaining
chromosomes in order, we apply the crossover operator to
a number of them according to the crossover operator
probability (P.). Finally we apply the mutation operator to
the remaining chromosomes with the large value for their
evaluation function. The new generated offsprings are
moved to the next generation to complete it.

IV. EXPERIMENTAL RESULTS

In this section, we will present the experimental results
and analyze the computational performance. The platform
for conducting the experiments is a PC with a 2.4 GHz
CPU and 512 MB RAM. All programs are coded in Java
programming language in NetBeans IDE 6.5.1. We also
have used the yED Graph Editor software from yWorks
company for drawing the task graph. To simulate our
genetic algorithm for interconnection task graph in figure
1, first we have used the data sets shown in table 1 and
table 2 respectively. The data in table 1 stands for
memory capacity of each processor in the heterogeneous

ISBN:978-988-18210-2-7

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11
WCECS 2009, October 20-22, 2009, San Francisco, USA

multiprocessor system. Table 2 includes the execution
time for executing some task, say 7;, on some processor,
say P;, plus the amount of memory for execution.

The stopping criterion in most GAs is the number of
generations such that no improvement is obtained in the
value of evaluation function. Parameter setting is an
important component of a standard genetic algorithm
which determines the convergence rate of the algorithm.
According to our practice experiments, we find the
following settings best fitted for our implementation. In
all execution instances, we have set the algorithm
parameters to probability of crossover operator P.=0.7
and the probability of mutation operator P,=0.3. In the
case of task graph figure 1 after the execution of the
algorithm with the given parameters we got the minimum
cost 54 that is obtained from the task assignment given in
table 3 after 100 times successive generations of the
algorithm.

We have tested our algorithm on a variety of large task
graph instances with random data sets to verify the
correctness of our algorithm. Results have shown in Table
4. For each graph instance, the optimum solutions, which
obtained after some generations, along the number of
corresponding running processors for assignment are
given in table. The results obtained not only are almost
consistent with the two previous algorithms described in
subsection 2.2, but importantly also they have a lower
time complexity for finding the optimum solution.

Repair Operator Procedure 3

Begin
Input: chrom: invalid chromosotme.
f: the mumber of tasks.
OQutput: newchrom: valid chromosome.
for 1:=1to ndo
Begin
int y=chroml[i];
if CPUmemory[y]-LI[Fi]<0 do
Begin
int CFU];
int index=0;
for k=1 to CPU_number
if CPUmemory[k]-M[Fi]==0
CPU[+Hindex] =k,
int z:=CPU[randoml,index]];
CPUmemory[z]:=CF memory]z]-M[F1];
newchrom[i] =z,
End
else
CPUmemory[y]:=CP Umemory [¥]-M[F1];
End
Quiput: newchrom.
End.

Fig. 5: The repair operator procedure.

TaBLE 1: The memory capacity for each processor.

CPU Number Memory Capacity
P, 20 ME
P, 15 MB
P, 10 MB

WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11
WCECS 2009, October 20-22, 2009, San Francisco, USA

TABLE 2: The execution time and amount of memory for each task.

Task Number | Execution time Execution time Execution time Amount of
on Py on P, on Py memery
T 10ns s 15ns iMB
Ty 1213 Sns 8ns TMB
T ans 12 ns 10ns 4 MB
Ty 15ns 14115 1215 ZMB
Ts 203 1613 17ns SMB
Te 14 ns 17 ns 15ns 2 MB
T; 1313 1013 8ns & MB
Tz 511 213 s 4 MB

TABLE 3: The optimal task assignment.

CPU Number The set of assigned tasks
P, {T,T,,T5}
P, {Ts,T7}
P; [Ty, s, T}

TABLE 4: The results obtained by running our algorithm on "tgins.*" task graph instances. The last column indicates the optimum solutions which are as
same as our algorithm results.

Task graph Nurnber of Number of Number of Nurmnber of Optimum
instance tasks comrmunication | Processors for | generations solution
(tgins) edges assignrment
teins 01 20 15 3 150 285
tgins 02 40 25 4 170 326
teins 03 50 30 4 170 354
toins (4 80 40 8 210 1025
tgins 05 100 &0 15 220 1763
tgins 06 150] 18 220 1932
teins (07 200 120 25 310 2375
toins 08 300 230 25 350 4578
toins (09 300 350 a0 3E0 6756
tgins 10 700 560 83 410 9398

ISBN:978-988-18210-2-7

WCECS 2009

Proceedings of the World Congress on Engineering and Computer Science 2009 Vol 11

WCECS 2009, October 20-22, 2009, San Francisco, USA

V. CONCLUSION

One of the most important problems in multiprocessor
systems is to assign a set of tasks on a set of processors
with limited memory to provide load balancing. Some
heuristic methods including branch and bound (BB) and
graph cuts algorithms are developed for task assignment
problem with some constraints. Although these
approaches find the optimal task assignment, they have
high time complexity. Also in the case of cut graph
approach, problem extension to three or more processors
is very difficult and time consuming.

In this paper we have presented a new method based
on genetic algorithms for solving the task assignment
problem in heterogeneous multiprocessor platforms with
respect to load balancing. To prevent of creating invalid
task assignments, our algorithm employs a repair
operator. According to the experimental results, our
algorithm finds the optimum solution in large graph
instances in lower time complexity than the heuristic
methods.

ACKNOWLEDGMENT

The authors would like to thank anonymous referee for
suggestions which led to a substantial improvement of
this paper. The authors are also privileged to thank their
parents who remember them there are many other things
in life behind writing paper!

REFERENCES

[11 A. Billionnet, M. C. Costa, A. Sutter, "An efficient
algorithm for the task allocation problem", J. ACM 39
(3) (1992) 502-518.

[2] U. Bodenhofer, "Genetic Algorithms: Theory
and Applications". Lecture Notes. 3™ edition, 2003.
[3] S. Bokhari. "Assignment Problems in Parallel

and Distributed Computing”, Kluwer, Boston, 1987.

[4] S. H.Bokhari. "4 shortest tree
assignments
processor

(1981).

algorithm for optimal
across space and time in a distributed
system", 1EEE Trans. Software Engrg. SE-7 (6)

ISBN:978-988-18210-2-7

[5] W.W. Chu, L.M. Lan,

(6]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

"Task allocation and precedence
relation for distributed real-time systems”, IEEE
Transactions on Computers 36 (1987) 667-669.

W. W. Chu, "Optimal file allocation in multiple
computing system", IEEE Trans. Comput., vol. C-18, pp.
885-889, Oct. 1969.

0. L El-Dessouki, and W. H. Huan, "Distributed

enumeration on network computers," 1EEE Trans.
Comput., vol. C-29, pp. 1068-1079, Dec. 1980.

D. E. Goldberg, "Genetic ~ Algorithms in Search,
Optimization and Machine Learning".

Massachusetts: ~ Addison Wesley, 1989.
V. B. Gylys and J.A. Edward, "Optimal partitioning
of workload for distributed systems". In

Dig. COMPCON, Fall 1976, 1976, pp. 353-357.

Y. Hamam, Kh. S. Hindi, "Assignment of program
modules to processors: A simulated annealing
approach”, European Journal of Operational Research,
122 pp. 509-513, 2000.

J.H. Holland, "adaptation in natural and artificial
systems". MA: MIT Press, 1992.

V. M. Lo, "Heuristic algorithms for task
assignment in distributed systems"”, 1EEE Transactions

on Computers, 1988, pp. 1384-1397.

V.F. Magirou,J.Z. Milis, "An algorithm for the

multiprocessor assignment problem", Oper. Res. Lett. 8
(1989) 351-356.
A. Mehrabi, S. Mehrabi, "4 New Genetic Algorithm

for Multiprocessor Scheduling Problem",
In Proc. of the National Conference on
Engineering (RSEC), Tehran, Iran, 2009.

(in Persian).
Software

S. Mehrabi, A. Mehrabi and A.D. Mehrabi, "4 New
Hybrid Genetic Algorithm for Maximum Independent Set

Problem", In Proceedings of the 4™ International
Conference on Software and Data Technologies
(ICSOFT'09), Sofia, Bulgaria, 2009.

P. Richard, E.S. Lee, and M. Tsuchiya, "4 task
allocation model for distributed computing
systems", IEEE Trans. on Computers, vol.C-31, pp.
41-47, No.1, Jan.1982.

H.S. Stone. "Multiprocessor scheduling with the aid
of network flow algorithms", 1EEE Trans. Software

Engrg. SE-3 (1) (1977) 85-93.

J. D. Ullman, " NP-Complete
JCSS,10(1975),384-93.

Scheduling Problems",

WCECS 2009

