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Introduction

e mathematical optimization, modeling, complexity
e convex optimization

e recent history



Mathematical optimization

minimize  fo(z1,...,x,)

subject to  fi(x1,...,7,) <0

fm(x1, ... 20) <0

e v = (x1,%2,...,T,) are decision variables
o fo(r1,29,...,1,) gives the cost of choosing x

e inequalities give constraints that = must satisfy

a mathematical model of a decision, design, or estimation problem
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Limits of mathematical optimization

e how realistic is the model, and how certain are we about it?

e is the optimization problem tractable by existing numerical algorithms?

Optimization research

e modeling

generic techniques for formulating tractable optimization problems

e algorithms

expand class of problems that can be efficiently solved
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Complexity of nonlinear optimization

e the general optimization problem is intractable

e even simple looking optimization problems can be very hard

Examples

e quadratic optimization problem with many constraints

e minimizing a multivariate polynomial
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The famous exception: Linear programming

mn
minimize ¢’z = E CiT;
i=1
subject to alx <b;, i=1,...,m

e widely used since Dantzig introduced the simplex algorithm in 1948

e since 1950s, many applications in operations research, network
optimization, finance, engineering,. . .

e extensive theory (optimality conditions, sensitivity, . . . )

e there exist very efficient algorithms for solving linear programs
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Solving linear programs

e no closed-form expression for solution
e widely available and reliable software
e for some algorithms, can prove polynomial time

e problems with over 10° variables or constraints solved routinely
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Convex optimization problem

minimize  fo(z)
subject to  fi(x) <0

fm(x) <0
e objective and constraint functions are convex: for 0 < 6 <1

filbz + (1 = 0)y) < 0fi(x) + (1 —0)fi(y)

e includes least-squares problems and linear programs as special cases
e can be solved exactly, with similar complexity as LPs

e surprisingly many problems can be solved via convex optimization
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History

e 1940s: linear programming

minimize clx

subject to alx <b;, i=1,...,m

e 1950s: quadratic programming
e 1960s: geometric programming

e 1990s: semidefinite programming, second-order cone programming,
quadratically constrained quadratic programming, robust optimization,
sum-of-squares programming, . . .

Introduction



New applications since 1990

e linear matrix inequality techniques in control

e circuit design via geometric programming

e support vector machine learning via quadratic programming

e semidefinite programming relaxations in combinatorial optimization
e /1-norm optimization for sparse signal reconstruction

e applications in structural optimization, statistics, signal processing,
communications, image processing, computer vision, quantum
information theory, finance, . ..

Introduction



Algorithms

Interior-point methods

e 1984 (Karmarkar): first practical polynomial-time algorithm
e 1984-1990: efficient implementations for large-scale LPs

e around 1990 (Nesterov & Nemirovski): polynomial-time interior-point
methods for nonlinear convex programming

e since 1990: extensions and high-quality software packages

First-order algorithms

e similar to gradient descent, but with better convergence properties
e based on Nesterov's ‘optimal’ methods from 1980s

e extend to certain nondifferentiable or constrained problems
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Outline

e basic theory

— convex sets and functions
— convex optimization problems
— linear, quadratic, and geometric programming
e cone linear programming and applications
— second-order cone programming
— semidefinite programming
e some recent developments in algorithms (since 1990)

— interior-point methods
— fast gradient methods
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Convex sets and functions

e definition
e basic examples and properties

e operations that preserve convexity
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Convex set

contains line segment between any two points in the set

r,10€C;, 0<0<1 = 0Ox1+(1—-0)xxeC’

Examples: one convex, two nonconvex sets

Convex sets and functions
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Examples and properties

e solution set of linear equations Az = b (affine set)
e solution set of linear inequalities Ax < b (polyhedron)
e norm balls {x | ||z|| < R} and norm cones {(z,t) | |[z| < t}

e set of positive semidefinite matrices ST = {X € §" | X = 0}

e image of a convex set under a linear transformation is convex
e inverse image of a convex set under a linear transformation is convex

e intersection of convex sets is convex

Convex sets and functions
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Example of intersection property

C={zeR"|[p(t)] <1for|t| < m/3}

where p(t) = x1 cost + xycos 2t + - - - + x, cos nt

p(t)

0 /3 " 2m/3 0
C' is intersection of infinitely many halfspaces, hence convex

Convex sets and functions 14



Convex function

domain dom f is a convex set and

flz+ (1 —0)y) <0f(z)+(1—-0)f(y)

forall z,y edom f, 0 <60 <1

(y, f(y))
(z, f(x))

f is concave if —f is convex

Convex sets and functions
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Epigraph and sublevel set

Epigraph: epi f = {(z,t) | z € dom f, f(z) <t}

epi f

a function is convex if and only its
epigraph is a convex set

Sublevel sets: C, = {x € dom f | f(z) < a}

the sublevel sets of a convex function are convex (converse is false)

Convex sets and functions

16



Examples

e expx, —logx, xlogx are convex

(87

o r%isconvex forx >0and a>1or a <0;

x|* is convex for v > 1
e quadratic-over-linear function z!'z/t is convex in x, t for t > 0

e geometric mean (x1xs - - -xn)l/” is concave for z = 0

e logdet X is concave on set of positive definite matrices

e log(e® + ---e") is convex

e linear and affine functions are convex and concave

® NOrms are€e Convex

Convex sets and functions
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Differentiable convex functions

differentiable f is convex if and only if dom f is convex and

fly) > f@)+Vf(x)' (y—=z) forallz,y € dom f
f(y)
flx) + Vf(x) (y— =)

(z, f(z))

twice differentiable f is convex if and only if dom f is convex and

V2f(z) =0 forall z € dom f

Convex sets and functions 18



Operations that preserve convexity

methods for establishing convexity of a function

1. verify definition
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex sets and functions
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Positive weighted sum & composition with affine function

Nonnegative multiple: af is convex if f is convex, a > 0
Sum: f1 + fy convex if fi, fo convex (extends to infinite sums, integrals)
Composition with affine function: f(Ax + b) is convex if f is convex

Examples

e log barrier for linear inequalities

flz) = - Z log(b; — a; z)

e (any) norm of affine function: f(x) = ||Ax + b||

Convex sets and functions 20



Pointwise maximum

f(2) = max{ fi(x)...., ()}

is convex if f1, ..., f,, are convex

Example: sum of r largest components of 2 € R"”
fla) =axpp+ g+ + 2y

is convex (x; is ith largest component of x)

proof:

flx) =max{z; +zi,+ - +x;, |1 <i1 <ia < - <ip <n}

Convex sets and functions
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Pointwise supremum

g(x) = sup f(z,y)
yeA

is convex if f(x,y) is convex in = for each y € A

Example: maximum eigenvalue of symmetric matrix

)\maX(X): Sup yTXy
lyll2=1

Convex sets and functions

22



Composition with scalar functions

composition of g : R — Rand h: R — R:

f is convex if

g convex, h convex and nondecreasing
g concave, h convex and nonincreasing

(if we assign h(x) = oo for x € dom h)

Examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive

Convex sets and functions
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Vector composition

composition of ¢ : R® — R and h : R* — R:

f(x) =h(g(x)) = h(g1(x), g2(x), ..., gr(x))

f is convex if

g; convex, h convex and nondecreasing in each argument
g; concave, h convex and nonincreasing in each argument

(if we assign h(x) = oo for x € dom h)

Examples

e > " loggi(x) is concave if g; are concave and positive

e log> " expg;(x) is convex if g; are convex

Convex sets and functions
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Minimization

g(x) = inf f(z,y)

yeC

is convex if f(x,y) is convex in x,y and C'is a convex set

Examples
e distance to a convex set C: g(x) = inf,co ||z — Y|

e optimal value of linear program as function of righthand side

— inf &F
g(x) inf ety

follows by taking

flz,y)=c'y, domf={(z,y)| Ay <z}

Convex sets and functions
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Perspective

the perspective of a function f : R™ — R is the function g : R” x R — R,

g(x,t) = tf(z/t)

g is convex if f is convex on domg = {(x,t) | x/t € dom f, t > 0}

Examples

T

e perspective of f(x) = x' = is quadratic-over-linear function

QUTﬂj

9(33775) — T

e perspective of negative logarithm f(x) = —logx is relative entropy

g(x,t) =tlogt —tlogx

Convex sets and functions 26
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Convex optimization problems

e standard form
e linear, quadratic, geometric programming

e modeling languages

27



Convex optimization problem

minimize  fo(x)
subject to fz( ) <0, i=1,....m
Ax =0

fo, fi, ..., fm are convex functions

e feasible set is convex
e |ocally optimal points are globally optimal

e tractable, both in theory and practice

Convex optimization problems
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Linear program (LP)

minimize clz+d

subject to Gax X h

Ax =b

e inequality is componentwise vector inequality

e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Convex optimization problems
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Piecewise-linear minimization

minimize f(x) = _max (aj  + b;)

f(x)

Xz
Equivalent linear program
minimize t
subject to alx +b; <t, i=1,...,m

an LP with variables z, t € R

Convex optimization problems
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Linear discrimination

separate two sets of points {z1,...,xn}, {y1,...,ynm} by a hyperplane

alz;+b>0, i=1,...,N
aly,+b<0, i=1,....M

homogeneous in a, b, hence equivalent to the linear inequalities (in a, b)

alz;,+b>1, i=1,...,N, aly,+b< -1, i=1,....M

Convex optimization problems 31



Approximate linear separation of non-separable sets

N M
minimize Z max{0,1 —a’x; — b} + Z max{0,1 + a’y; + b}
i=1 i=1

e a piecewise-linear minimization problem in a, b; equivalent to an LP

e can be interpreted as a heuristic for minimizing #misclassified points

Convex optimization problems

32



/1-Norm and /_.-norm minimization

¢1-Norm approximation and equivalent LP (||y|l1 = >, |vk|)

n
minimize ||Az — bl minimize Zyz
i=1

subjectto —y <X Ax—-b=<y

{~-Norm approximation (||y||ec = maxy |yx|)

minimize ||Az — b/« minimize vy
subject to —yl < Az —b =<yl

(1 is vector of ones)

Convex optimization problems
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢la +r
subject to Gz X h
Ax =10

e P c S, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems
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Linear program with random cost

minimize cl'z

subject to Gx X h

e ¢ Is random vector with mean ¢ and covariance X

T

e hence, ¢’ x is random variable with mean ¢

Expected cost-variance trade-off

T

2 and variance 1Y

minimize Eclz + yvar(clz) =céla + vzl Yz

subject to Gx =X h

~v > 0 is risk aversion parameter

Convex optimization problems
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Robust linear discrimination

Hi = {z|a'z+b=1}
Ho = {z]a’24+b=-1}

distance between hyperplanes is 2/||al|2

to separate two sets of points by maximum margin,

minimize  ||a]|3 = ala

subjectto alz;+b>1, i=1,...,N
aly, +b< -1, i=1,....M

a quadratic program in a, b

Convex optimization problems 36



Support vector classifier

N M
min.  ~|lal|3 + Zmax{(), 1 —a'z; — b} + Zmax{(), 1+ a’y; + b}
i=1 i=1

equivalent to a QP

Convex optimization problems
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Sparse signal reconstruction

e signal = of length 1000 | |

O ‘ I 1

e ten nonzero components

0 200 400 600 800 1000
reconstruct signal from m = 100 random noisy measurements

b= Ax +v

(Az'j ~ N(O, 1) i.i.d. and v ~ N(O,O'QI) with o = 001)

Convex optimization problems 38



¢5>-Norm regularization

minimize || Az — b||5 + ||z||3

a least-squares problem

2 2
1 1

, | |

-2 -2
0 200 400 600 800 1000 0 200 400 600 800 1000

left: exact signal z; right: 2-norm reconstruction

Convex optimization problems



equivalent to a QP

¢1-Norm regularization

minimize

| Az — b3 + [|lx

. ‘| |

0 200 400

600

800

1000

200

left: exact signal z; right: 1-norm reconstruction

Convex optimization problems

400

600

800

1000



Geometric programming

Posynomial function:

with ¢ > 0

Geometric program (GP)

minimize  fo(z)
subject to  fi(x) <1, i=1,...

with f; posynomial

Convex optimization problems

, TN
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Geometric program in convex form

change variables to
yi = log i,

and take logarithm of cost, constraints

Geometric program in convex form:

K
minimize  log Z exp(ag,y + box)
k=1
K
subject to log Z exp(aly + bir) | <0,
k=1

bir. = log c;x

Convex optimization problems
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Modeling software

Modeling packages for convex optimization

e CVX, Yalmip (Matlab)
e CVXMOD (Python)

assist in formulating convex problems by automating two tasks:
e verifying convexity from convex calculus rules

e transforming problem in input format required by standard solvers

Related packages

general purpose optimization modeling: AMPL, GAMS

Convex optimization problems
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CVX example

minimize || Ax — b1
subject to —05< 2, <03, k=1,...,n

Matlab code

A = randn(5, 3); b = randn(5, 1);
CVX_begin

variable x(3);

minimize (norm(A*xx - b, 1))

subject to
-0.5 <= x;
x <= 0.3;
cvx_end

e between cvx_begin and cvx_end, x is a CVX variable

e after execution, x is Matlab variable with optimal solution

Convex optimization problems 44
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Cone programming

e generalized inequalities
e second-order cone programming

e semidefinite programming

45



Cone linear program

minimize ¢!z

subject to Gx =g h
Ax =D

e y <k 2z means z —y € K, where K is a proper convex cone
e extends linear programming (K = R") to nonpolyhedral cones
e popular as standard format for nonlinear convex optimization

e theory and algorithms very similar to linear programming

Cone programming
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Second-order cone program (SOCP)

minimize 'z
subject to || Az + il < cfz+d;, i=1,...,m

e || - |2 is Euclidean norm ||y||2 = \/y% + -+ y2

e constraints are nonlinear, nondifferentiable, convex

constraints are inequalities
w.r.t. second-order cone:

{y|\/y%+"“|‘y§_1§yp}

Cone programming A7



Examples of SOC-representable constraints

Convex quadratic constraint (A = LL! positive definite)
el Az + 201z 4+ ¢ <0 = HLT:U+L 1bH2 (bTA™1p — ¢)1/2

also extends to positive semidefinite singular A

Hyperbolic constraint

2
el <yz, y,z>0 — H[ * ]

Cone programming 48



Examples of SOC-representable constraints

Positive powers
r,z >0

e two hyperbolic constraints can be converted to SOC constraints

e extends to powers zP for rational p > 1

Negative powers

e two hyperbolic constraints can be converted to SOC constraints

e extends to powers xP for rational p < 0

Cone programming 49



Robust linear program (stochastic)

minimize ¢l

subject to prob(alz <b;))>n, i=1,...,m

e a; random and normally distributed with mean a;, covariance ;;

e we require that x satisfies each constraint with probability exceeding n

n = 10% n = 50% n = 90%

Cone programming
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SOCP formulation

the ‘chance constraint’ prob(alx < b;) > 7 is equivalent to the constraint
_T —1 1/2
al'z + & ()| 2} %xll2 < by

® is the (unit) normal cumulative density function

robust LP is a second-order cone program for n > 0.5

Cone programming 51



Robust linear program (deterministic)

minimize clx

subject to alx <b;foralla; €&, i=1,...,m
e a; uncertain but bounded by ellipsoid & = {a; + Pu | ||u]l2 < 1}

e we require that z satisfies each constraint for all possible a;

SOCP formulation

minimize ¢!z

subject to alx + ||Plx|2 <b;, i=1,...,m

follows from

sup (a; + Piu)Tx — C_LZT + HPiTCUHQ
|ul[2<1

Cone programming
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Semidefinite program (SDP)

minimize clzx

subject to x1A; +x049+ -+ 2,4, < B

o A, Ay, ..., A,, B are symmetric matrices

e inequality X =Y means Y — X is positive semidefinite, i.e.,

ZT(Y — X)Z = Z(Yw — Xij)ZiZj Z 0 for all z

2]

e includes many nonlinear constraints as special cases

Cone programming
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Geometry

e a nonpolyhedral convex cone

e feasible set of a semidefinite program is the intersection of the positive
semidefinite cone in high dimension with planes

Cone programming
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Examples

Alx) = Ao+ 21A1+ -+ znAm (A; € S™)

Eigenvalue minimization (and equivalent SDP)

minimize Apax(A(x)) minimize ¢
subject to A(x) <X tI

Matrix-fractional function

minimize b1 A(x)™'b minimize ¢
subject to A(x) = 0 subject to [ A(x) b ] _

Cone programming 55



Matrix norm minimization
A(z) = Ao + 141 + 2242 + - + 2, Ay (4; € RPY)

Matrix norm approximation (|| X || = maxy o5 (X))

minimize ||A(z)||2 minimize ¢
. tI  A(x)
subject to [ A) i ] = 0
Nuclear norm approximation (|| X|/. =), ox(X))
minimize ||A(x)||« minimize  (trU +trV)/2
. U A(x)t
subject to [ Alz) v ] = 0

Cone programming

56



Semidefinite relaxations & randomization

semidefinite programming is increasingly used

e to find good bounds for hard (i.e., nonconvex) problems, via relaxation

e as a heuristic for good suboptimal points, often via randomization

Example: Boolean least-squares

minimize  ||Az — b||3
subjectto z?=1, i=1,...,n

e basic problem in digital communications
e could check all 2" possible values of x € {—1,1}" . ..

e an NP-hard problem, and very hard in practice

Cone programming 57



Semidefinite lifting

with P = ATA, g=—A"b, r =010

Az — b”% — Z Pijrix; + QZ%‘%’ +r

1,7=1 1=1

after introducing new variables X;; = z;z;

n n
minimize Y Py;Xi;+2)  qiwi v
ij=1 i=1
subjectto X;; =1, 1=1,...,n
XijIZIZiZCj, i,jzl,...,n

e cost function and first constraints are linear

T

e last constraint in matrix form is X = xzz*, nonlinear and nonconvex,

... still a very hard problem

Cone programming
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Semidefinite relaxation

replace X = zz! with weaker constraint X > zz!, to obtain relaxation

n n
minimize Z P;i; X +22qixi+r

subjectto X,;; =1, i1=1,...,n
X = xxt

e convex; can be solved as an semidefinite program

e optimal value gives lower bound for BLS

o if X = xx! at the optimum, we have solved the exact problem
e otherwise, can use randomized rounding

)

generate z from N (z, X — zz") and take x = sign(z)

Cone programming
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Example

0.5

0.4r  SDP bound LS solution

frequency
©
@

o
N

0.1r

1 1.2
|Az — b||2/(SDP bound)

e feasible set has 2199 ~ 103" points

e histogram of 1000 randomized solutions from SDP relaxation

Cone programming



Nonnegative polynomial on R
f(t) :330+£U1t+°-'—|—£€2mt2m Z O fOF aII t € R

® a convex constraint on x

e holds if and only if f is a sum of squares of (two) polynomials:

@) = ) (yko + yrrt + -+ + Yrmt™)?
k
— 1 - T — 1 -
|t k R
- 1 - T - 1 -
: Y ;
- tm — - tm —

where Y = > yky,:f >0

Cone programming
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f(t) > 0 if and only if for some Y > 0,

this is an SDP constraint: there exists Y > 0 such that

Cone programming

f(t)

1
t

t 2lm

SDP formulation

X0
X1

)

T

Y14
Yio + Yoy

tm

Yis + Yoo + Y30

Ym—l—l,m—l—l
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General sum-of-squares constraints

f(t) = x2'p(t) is a sum of squares if

S

o) = S (wFa()? = a(t)” (Z ykyT> a(t)
k=1

k=1

e p, q: basis functions (of polynomials, trigonometric polynomials, . . . )
e independent variable £ can be one- or multidimensional

e a sufficient condition for nonnegativity of % p(t), useful in nonconvex
polynomial optimization in several variables

e in some nontrivial cases (e.g., polynomial on R), necessary and sufficient
Equivalent SDP constraint (on the variables z, X)

:ch(t) = q(t)TXq(t), X =0

Cone programming 63



Example: Cosine polynomials

f(w) =zg+ x1C08W + -+ 4 X2y cOS 2nW > 0
Sum of squares theorem: f(w) > 0 for « < w < 3 if and only if
fw) = g1(w)? + s(w)ga(w)

® g1, go: cosine polynomials of degree n and n — 1

e s(w) = (cosw — cos B)(cosa — cosw) is a given weight function

Equivalent SDP formulation: f(w) > 0 for a <w < g if and only if
' p(w) = qr(w) Xiq1(w) + s(w)g2(w)" Xaqo(w), X120, Xp=0

D, q1, q2: basis vectors (1, cosw, cos(2w), ...) up to order 2n, n, n — 1

Cone programming 64



Example: Linear-phase Nyquist filter

minimize sup,. |ho + hicosw + - - - + ha, cos 2nw|

with hg = 1/M, hipr = 0 for positive integer k

0

10 ¢
— 10_1;
VammN i
3 :
N—" I

10_2§ - T

_3; . | WW\MWW\[\WWQW

10 0 0.5 1 1.5 2 2.5 3

w

(Example with n =25, M =5, ws = 0.69)

Cone programming



SDP formulation
minimize ¢
subjectto —t< H(w)<t, ws<w<m

where H(w) = hg 4+ hycosw + - - - + ha, cos 2nw

Equivalent SDP
minimize t
subject to t— H(w) =
t+ H(w) =
Xlioa X2t07 X3>-07 X4>-O

Variables t, h; (¢ # kM), 4 matrices X; of size roughly n

Cone programming
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Chebyshev inequalities
Classical (two-sided) Chebyshev inequality

prob(|X| <1)>1- 0"

e holds for all random X with EX =0, E X2 = o2

e there exists a distribution that achieves the bound

Generalized Chebyshev inequalities

give lower bound on prob(X € ('), given moments of X

Cone programming 67



Chebyshev inequality for quadratic constraints

e (' is defined by quadratic inequalities
C={recR"|2lAx+2b]x+¢<0,i=1,...,m}

e X is random vector with EX =aq, EXX1T = 8§

SDP formulation (variables P € S", g ¢ R", r,7y,...,7m € R)

maximize 1 —tr(SP) — 2alq —r

. -P q Az bz .
~ T; ;> =1,...
subject to _qT r—l]—ﬂ[bgp Ci]’ >0 1=1,....m
P q
>_
@ T]—O

optimal value is tight lower bound on prob(X € 5)

Cone programming 68



Example

e a = E X; dashed line shows {z | (z — a)T (S — aal) 1 (z — a) = 1}
e lower bound on prob(X € () is achieved by distribution shown in red

e ellipse is defined by ' Px +2¢'x +r =1

Cone programming

69



Detection example

r=s+v
e © € R": received signal

e s: transmitted signal s € {s1,52,...,Sn} (one of NV possible symbols)

e v: noise with Ev =0, Evv! = 0?1

Detection problem: given observed value of x, estimate s

Cone programming
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Example (IV = 7): bound on probability of correct detection of s7 is 0.205

dots: distribution with probability of correct detection 0.205

Cone programming 71



Cone programming duality

Primal and dual cone program

P: minimize c¢f'z D: maximize —blz
subject to Az <g b subjectto Alz+c¢=0
< EK* O

e optimal values are equal (if primal or dual is strictly feasible)

e dual inequality is with respect to the dual cone

K*={z|z'2>0forall x € K}

e K = K™ for linear, second-order cone, semidefinite programming

Applications: optimality conditions, sensitivity analysis, algorithms, . . .

Cone programming
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Interior-point methods

Newton's method
barrier method
primal-dual interior-point methods

problem structure

73



Equality-constrained convex optimization

minimize  f(x)
subject to Ax =1b

f twice continuously differentiable and convex

Optimality (Karush-Kuhn-Tucker or KKT) condition

Vflx)+ Aty =0, Ax =10
Example: f(z) = (1/2)2 Pz + gl +r with P =0
P AT r | | —q
A 0 y | | b
a symmetric indefinite set of equations, known as a KKT system

Interior-point methods
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Newton step

replace f with second-order approximation f, at feasible z:

minimize  fo(z) 2 f(3) + V(@) (@ — &) + %(a; =TV (@) (- )
subject to Ax =1b

solution is * = & + Axy; with Ax,; defined by

7 -l

Ax,; is called the Newton step at =

Interior-point methods
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Interpretation (for unconstrained problem)

T + Axye minimizes 2nd-order
approximation f

T + Ax, solves linearized optimality

condition fcll
/ il
Vfo(x) (@ 4 Az, F(E + Azwy))

— V() + V(@) (@ — ) (&, /()

= 0
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Newton’s algorithm

given starting point z(?) € dom f with Az(9) = b, tolerance ¢
repeat for k =0,1,...

1. compute Newton step Az, at (%) by solving

v2f£1x<k>) ,%T ] [ Aim ] _ [ —Vfo(a;“f)) ]

2. terminate if —V ()T Az, < e
3. kD = 2(k) L ¢t A, with ¢ determined by line search

Comments

o VF(z")T Az, is directional derivative at (%) in Newton direction

e line search needed to guarantee f(z(*+1)) < f(x(*)), global convergence

Interior-point methods I



Example

f(x) = — Z log(1 — %) — Z log(b; — al ) (with n = 10%, m = 10°)
i=1 i=1

10°

100 L

f(z™) —inf f(x)

10_5V

0 5 10 15 20
k

e high accuracy after small number of iterations

e fast asymptotic convergence
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Classical convergence analysis

Assumptions (m, L are positive constants)

e f strongly convex: V2f(z) = mlI
e VZf Lipschitz continuous: ||V?f(z) — V2f(y)|l2 < Lllz — 9|2

Summary: two regimes

e damped phase (||V f(x)||2 large): for some constant v > 0

faH) = f(z®) < —

e quadratic convergence (||V f(x)||2 small)

IV f(2*))||5 decreases quadratically
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Self-concordant functions

Shortcomings of classical convergence analysis

e depends on unknown constants (m, L, .. .)

e bound is not affinely invariant, although Newton’'s method is

Analysis for self-concordant functions (Nesterov and Nemirovski, 1994)

e a convex function of one variable is self-concordant if
()| < 2f"(x)3/? for all z € dom f

a function of several variables is s.c. if its restriction to lines is s.c.
e analysis is affine-invariant, does not depend on unknown constants

e developed for complexity theory of interior-point methods
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Interior-point methods

minimize  fo(x)
subjec to  fi(x) <0, i=1,...,m
Ax =10

functions f;, i = 0,1,...,m, are convex

Basic idea: follow ‘central path’ through interior feasible set to solution

C

e

Interior-point methods
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General properties

e path-following mechanism relies on Newton's method
e every iteration requires solving a set of linear equations (KKT system)
e number of iterations small (10-50), fairly independent of problem size

e some versions known to have polynomial worst-case complexity

History

e introduced in 1950s and 1960s
e used in polynomial-time methods for linear programming (1980s)

e polynomial-time algorithms for general convex optimization (ca. 1990)
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Reformulation via indicator function

minimize  fo(x)
subject to f@( ) <0, i=1,....m
Ax =10

Reformulation

minimize  fo(z) + S0, I_(fi(x))

subject to Az =1b

where I_ is indicator function of R_:
I_(u)=0 ifu<O0, I _(u) =00 otherwise

e reformulated problem has no inequality constraints

e however, objective function is not differentiable
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Approximation via logarithmic barrier
minimize  fo(z) — - 3" log(— ()
INimiz — — — il

o\ ; — g
subject to Ax =1b

e fort >0, —(1/t)log(—u) is a smooth approximation of I_

e approximation improves as t — o0

23 ) 1 0 1
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Logarithmic barrier function

= —Zl%(—fi(l’))
with dom ¢ = {x | fi(x) <O0,..., fm(z) <0}

e convex (follows from composition rules and convexity of f;)

e twice continuously differentiable, with derivatives

Ms

Vo(r) =

Vi i)

Vi(z) = Z Vi@V fila +Z

fz)

Interior-point methods
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Central path

central path is {x*(t) | t > 0}, where x*(t) is the solution of

minimize  tfy(z) + ¢(x)
subject to Ax =0b

Example: central path for an LP

minimize clzx

subject to alx <b;, i=1,...,6

hyperplane ¢!z = c¢f'z*(t) is tangent to

level curve of ¢ through x*(¢)

Interior-point methods
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Barrier method

given strictly feasible z, ¢ := ¢(®) > 0, i > 1, tolerance € > 0
repeat:

1. Centering step. Compute x*(t) and set = := z*(t)
2. Stopping criterion. Terminate if m/t < e
3. Increaset. t := ut

e stopping criterion m/t < e guarantees
fo(x) — optimal value < €

(follows from duality)
e typical value of 1 is 10-20
e several heuristics for choice of t(¥)

e centering usually done using Newton's method, starting at current x

Interior-point methods
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Example: Inequality form LP

m = 100 inequalities, n = 50 variables

duality gap

w=>50 =150 p=2

0 20 40 60
Newton iterations

30

Newton iterations

140¢

[
\)
=

100}

w

0 40

80 120 160 200
7

e starts with  on central path (¢(9 = 1, duality gap 100)

e terminates when ¢ = 10% (gap m/t = 107°)

e total number of Newton iterations not very sensitive for 1 > 10

Interior-point methods
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Family of standard LPs

minimize cl'z

subjectto Axr=0b, x>0

A € R™*2™: for each m, solve 100 randomly generated instances

35

Newton iterations

150 * *
10t 102 103
™m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Second-order cone programming

minimize  flz
subject to  ||A;z + il < clz+d;, i=1,...,m

Logarithmic barrier function
p(x) = — Z log ((C;FQ} +d;)” — || Az + b;))3)
i=1

e a convex function

e log(v? — ul'u) is ‘logarithm’ for 2nd-order cone {(u,v) | ||ull2 < v}

Barrier method: follows central path z*(t) = argmin(tf?z + ¢(z))
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duality gap

Example

50 variables, 50 second-order cone constraints in RO

100

—_
@)
|

N

10_4V

106 pu=50'u=200 =2

Newton iterations

0 2‘0 40 60 &0
Newton iterations

Interior-point methods
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Semidefinite programming

minimize ¢!z

subject to =141+ -+ 2,4, X B

Logarithmic barrier function
¢(x) = —logdet(B — x1A1 — -+ — x,A,)

e a convex function

e logdet X is ‘logarithm’ for p.s.d. cone

Barrier method: follows central path z*(t) = argmin(tfz + ¢(z))
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100 variables, one linear matrix inequality in

Example

10
0

o 10
®
o0
z 1077
©
=

1076t = 150" = 50 u =2

0 20 40 60 80

Newton iterations

Interior-point methods

Newton iterations

SlOO
140
100+t
60
201
0 Qb 4‘0 6‘0 8‘0 160
I

120
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Complexity of barrier method

Iteration complexity

e can be bounded by polynomial function of problem dimensions (with
correct formulation, barrier function)

e examples: O(y/m) iteration bound for LP or SOCP with m inequalities,
SDP with constraint of order m

e proofs rely on theory of Newton's method for self-concordant functions

e in practice: #iterations roughly constant as a function of problem size

Linear algebra complexity

dominated by solution of Newton system
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Primal-dual interior-point methods

Similarities with barrier method

e follow the same central path

e linear algebra (KKT system) per iteration is similar

Differences

e faster and more robust

e update primal and dual variables in each step

e no distinction between inner (centering) and outer iterations
e include heuristics for adaptive choice of barrier parameter ¢
e can start at infeasible points

e often exhibit superlinear asymptotic convergence

Interior-point methods
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Software implementations

General-purpose software for nonlinear convex optimization

e several high-quality packages (MOSEK, Sedumi, SDPT3, .. .)

e exploit sparsity to achieve scalability

Customized implementations

e can exploit non-sparse types of problem structure

e often orders of magnitude faster than general-purpose solvers
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Example: /;-regularized least-squares
minimize || Az — b[|3 + [|z]]1
Ais m x n (with m < n) and dense
Quadratic program formulation

minimize  ||Ax —b||3 + 17w
subjectto —u =<z < u

e coefficient of Newton system in interior-point method is

[ATA 0 ]+[ D1+ Dy Dy — Dy

0 0 Do — Dy Dy + D, (D1, D positive diagonal)

e very expensive (O(n?)) for large n
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Customized implementation

e can reduce Newton equation to solution of a system

e cost per iteration is O(m?n)

(AD7'AT + DAu =7

Comparison (seconds on 3.2Ghz machine)

m n custom | general-purpose
50 | 100 0.02 0.05
50 | 200 0.03 0.17
100 | 1000 0.32 10.6
100 | 2000 0.71 76.9
500 | 1000 2.5 11.2
500 | 2000 5.5 79.8

general-purpose solver is MOSEK

Interior-point methods




Convex optimization — MLSS 2009

First-order methods

e gradient method
e Nesterov's gradient methods

e extensions
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Gradient method

to minimize a convex differentiable function f: choose z(?) and repeat
e®) = k=D _ ¢, v f (P71, k=1,2,...
t is step size (fixed or determined by backtracking line search)

Classical convergence result

e assume V[ Lipschitz continuous (||Vf(z) — Vf(y)ll2 < L||z — y/|2)

e error decreases as 1/k, hence

1
O (—) iterations
€

needed to reach accuracy f(z*)) — f* < e
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Nesterov’s gradient method

choose z(?); take (1) = 2(0) — ¢,V £(2(9)) and for k > 2

k—2
RO ‘E(k_l)+k—+1(x(k_l) k2
2™ =y, V")

e gradient method with ‘extrapolation’

e if f has Lipschitz continuous gradient, error decreases as 1/k?; hence

1
O (\%) Iterations

needed to reach accuracy f(x*)) — f* < e

e many variations; first one published in 1983
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randomly generated data with m = 2000, n = 1000, fixed step size

First-order methods

(F(®) — /1 f]

10

10

10

10

10

10

10

Example

minimize log Z exp(a) x + b;)
i=1

—— gradient
- - Nesterov

50 100 150
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Interpretation of gradient update

2B = gD g ()

1
= argmin (Vf(a:<k_1))Tz + a“z — x(k’_DH%)

z

Interpretation

%) minimizes

1
F@D) + VD) (2 = 2hD) 4 =z — o)
k

a simple quadratic model of f at z(F=1)
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Projected gradient method
minimize  f(x)
subjectto z € C

f convex, C' a closed convex set

1
+*) = argmin (Vf(a:(k_l))Tz + —||z — :1:<k_1>\|§>
zeC tk

= Pc (az(k_l) — thf(a:(k_l)))

e useful if projection Pz on C' is inexpensive (e.g., box constraints)
e similar convergence result as for basic gradient algorithm

e can be used in fast Nesterov-type gradient methods
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Nonsmooth components

minimize f(x) + g(x)

f. g convex, with f differentiable, g nondifferentiable

1
:9 — argmin (Vf<x<k—1>>Tz+g<m>+t—\|z—x<k-1>uz)
z k

1 2
= argmin (f Hz — g 4 tkv(]‘“(a:("“_l))H2 + g(z))
k

z

1>

St, (ﬂf(k_l) — tkvf(af(k_l))>

e gradient step for f followed by ‘thresholding’ operation .S;
e useful if thresholding is inexpensive (e.g., because g is separable)

e similar convergence result as basic gradient method
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Example: /;-norm regularization

minimize  f(x) + [|z||1

f convex and differentiable

Thresholding operator

. 1 2
Si(y) = argmin ( =yl + qul)

.\ 2t
Se(Y)k
Yo —t Yp =t .
Sty =4 0 —t <y <t Yk
Ye + 1 Yp < —t
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(f@®y — )/ f*

randomly generated A € R?000%1000. fived step

First-order methods

¢1-Norm regularized least-squares

10
10
10
10
10
10
10

10

1
minimize §HA:U — b3+ ||z]|1

—— gradient
- - Nesterov

20

40

k

60

80

100
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Summary: Advances in convex optimization

Theory

new problem classes, robust optimization, convex relaxations, . . .

Applications

new applications in different fields; surprisingly many discovered recently

Algorithms and software

e high-quality general-purpose implementations of interior-point methods
e software packages for convex modeling

e new first-order methods
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