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Introduction

We aim at studying the structure of the set of periods in dimension
one, following the path started by the well known Sharkovskii
Theorem.

The case of spaces contractible to a point (trees), starting with the
interval and stars is the easiest one. The case of graphs with
circuits, starting with the circle, is far from being understood. It
helps to assume that the branching points are fixed.

As we will see this is an unfinished long project with participation
of many people.
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Introduction

This talk aims at studying the the simplest case after the circle S1.
That is, the continuous self maps of the space
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Background and Motivation
The simplest case: the interval. The Sharkovskii Theorem

We start by introducing

The Sharkovskii Ordering Sh≥:

3 Sh> 5 Sh> 7 Sh> · · · Sh> 2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> · · · Sh>
4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> · · · Sh> · · · Sh>
2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> · · · Sh> 2∞ Sh> · · · Sh>
2n Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

is defined on the set NSh = N ∪ {2∞}
(we have to include the symbol 2∞ to assure the existence of
supremum for certain sets).

In the ordering Sh> the least element is 1 and the largest is 3.

The supremum of the set {1, 2, 4, . . . , 2n, . . . } is 2∞.
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Initial segments for the Sharkovskii Ordering

For s ∈ NSh, Ssh(s) denotes the set {k ∈ N : s Sh≥ k}.

Examples of sets of the form Ssh(s) are:
Ssh(2∞) = {1, 2, 4, . . . , 2n, . . . },
Ssh(3) = N,
Ssh(6) is the set of all positive even numbers union {1}, and
Ssh(16) = {1, 2, 4, 8, 16}.

Remark

Ssh(s) is finite if and only if s ∈ Ssh(2∞).
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Sharkovskii’s Theorem

Theorem (Sharkovskii)

For each continuous map g from a closed interval of the real line
into itself, there exists s ∈ NSh such that Per(g) = Ssh(s).
Conversely, for each s ∈ NSh there exists a continuous map gs from
a closed interval of the real line into itself such that
Per(gs) = Ssh(s).

Per(g) denotes the set of (least) periods of all periodic points of g .
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The set of periods for star maps — Notation

A (topological) graph is a connected Hausdorff space G , which is a
finite union of subspaces Gi , each of them homeomorphic to a
closed, non-degenerate interval of the real line and Gi ∩ Gj is finite
for all i 6= j . Every graph is compact.

The points from a graph which do not have a neighbourhood
homeomorphic to an open interval are called vertices. The set of
vertices of a graph G is denoted by V(G ) and is clearly finite (or
empty — when G is homeomorphic to to the circle).

The closure of any connected component of G \ V(G ) is called an
edge of G . Clearly, a graph has finitely many edges and each of
them is homeomorphic to a closed interval or to the circle.
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The set of periods for star maps — Notation

A tree is a graph which is uniquely arcwise connected.

Let G be a graph, let z ∈ G and let U be an open neighbourhood
(in G ) of z such that Cl(U) is a tree. The number of connected
components of U \ {z} is called the valence of z and is denoted by
Val(z). This definition is independent of the choice of U and
Val(z) 6= 2 if and only if z ∈ V(G ). A vertex of valence 1 is called
an endpoint of G whereas a point of valence larger than 2 is called
a branching point of G .

Let n ∈ N \ {1}. An n-star is a tree with n endpoints and at most
one branching point. Note that a 2-star is homeomorphic to an
interval (an thus it has no branching point) while an n-star with
n ≥ 3 has a unique branching point b with Val(b) = n. Xn will
denote an n-star and Xn the class of all continuous maps from Xn

into Xn.
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Baldwin partial orderings. Example: the structure of 4≥
For each integer t ≥ 2 we denote:

Nt = (N ∪ {t · 2∞}) \ {2, 3, . . . , t − 1} and

N∨
t = {mt : m ∈ N} ∪ {1, t · 2∞}.

Then, the ordering t≥ is defined in Nt as follows:
for k,m ∈ Nt we have m t≥ k if one of the
following holds:

(i) k = 1 or k = m,

(ii) k ,m ∈ N∨
t \ {1} and m/t Sh> k/t (here we

use the arithmetic rule: t · 2∞/t = 2∞),

(iii) k ∈ N∨
t and m /∈ N∨

t ,

(iv) k ,m /∈ N∨
t and k = im + jt with i , j ∈ N.

Remark

By identifying 2 · 2∞ with 2∞ we have 2≥ = Sh≥.
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Baldwin partial orderings: Initial segments

A set S ⊂ Nt ∩ N is an initial segment of the ordering t≥ if for
every m ∈ S we have {k ∈ N : m t≥ k} ⊂ S (that is, S is closed
under predecessors).

Also we set
St(s) := {n ∈ N : n ≤t s},

which is a particular case of an initial segment. Indeed, any initial
segment of the ≤t ordering can be expressed as the union of at
most t − 1 sets of the form St(si ) because the set Nt splits in at
most t − 1 branches by the ordering ≤t .
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Baldwin’s Theorem

Theorem (Baldwin)

Let f ∈ Xn. Then, Per(f ) is a finite union of initial segments of the
orderings t≥ with 2 ≤ t ≤ n. Conversely, given a set A that is a
finite union of initial segments of the orderings t≥ with 2 ≤ t ≤ n,
there exists a map f ∈ Xn such that f (b) = b and Per(f ) = A.

Stewart Baldwin.

An extension of Šarkovskĭı’s theorem to the n-od.
Ergod. Th. & Dynam. Sys. 11(2) (1991), 249–271.

Remark

The case n = 2 in the above theorem is, indeed, the Sharkovsky’s
Theorem for interval maps. Moreover, since every tail of t≥
contains 1 ∈ Per(f ), then the order t≥ does not contribute to
Per(f ) if the tail with respect to t≥ in the above lemma is reduced
to {1}.
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The set of periods for tree maps

The full characterization is known but complicate to state and out
of the scope of this talk. It was obtained in the following papers

Ll. Alsedà, D. Juher and P. Mumbrú
[1] Sets of periods for piecewise monotone tree maps.
Int. J. of Bifurcation and Chaos 13 (2003), 311–341.

[2] Periodic behavior on trees.
Ergodic Theory Dynam. Systems 25(5) (2005), 1373–1400.

[3] On the preservation of combinatorial types for maps on trees.
Annales de l’Institut Fourier 55(7) (2005) 2375–2398.

[4] Minimal dynamics for tree maps.
Discrete and Contin. Dyn. Sys. Ser. A 20(3) (2008) 511–541.

with the help of the general theory of patterns for trees and graphs

Ll. Alsedà, J. Guaschi, J. Los, F. Mañosas and P. Mumbrú.
Canonical representatives for patterns of tree maps.
Topology 36 (1997), 1123-1153.

Ll. Alsedà, F. Gautero, J. Guaschi, J. Los, F. Mañosas and P. Mumbrú.
Patterns and minimal dynamics for graph maps.
Proc. London Math. Soc. 91(2) (2005), 9414–442.
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The circle case: rotation theory

For interval maps the knowledge of a cycle gives us combinatorial
information sufficient to determine the minimal set of periods of
cycles of any map having the cycle. However, for circle maps this
is not the case, as the following example shows.
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Figure: The graphs of two circle maps drawn on the 2-dimensional torus.
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The circle case: rotation theory

We regard the circle S1 as the set {z ∈ C : |z | = 1}, and the
natural projection e : R −→ S1 is defined by e(x) = exp(2πix).
This map is continuous, surjective and it is a homomorphism from
the additive group of R to the multiplicative group of S1 (i.e. we
have e(x1 + x2) = e(x1) · e(x2)). The kernel of this homomorphism
is the group Z of the integer numbers.
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The circle case: rotation theory

Proposition

Any continuous map f : S1 −→ S1 has a continuous lifting
F : R −→ R, which is unique up to translation by an integer and
such that the diagram

R R

S1 S1

F

e e

f

commutes.
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The circle case: rotation theory

Since, for each n ∈ Z, e(n) = e(n + 1) = 1, we have
e(F (n + 1)) = f (e(n + 1)) = f (e(n)) = e(F (n)). Therefore
F (n + 1)− F (n) is an integer. This integer is called the degree of
f and is denoted by deg f . Any other lifting F̃ of f in the interval

Roughly speaking, the degree of a circle map f is the minimum
number of times that the image of S1 by f covers completely S1

counterclockwise if deg f is positive, and clockwise if deg f is
negative.
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Example a map on the torus (left) and a lifting of it (right)

. . . 0 1 2 . . .

degree 1

Ll. Alsedà (UAB) Periods for sigma maps 16/60

Introduction Background and Motivation The set of periods for σ-maps

The circle case: rotation theory

Proposition

Let f , f ′ be continuous circle maps. Then

(a) deg(f ◦ f ′) = deg f · deg f ′,

(b) deg(f n) = (deg f )n.

Proposition

Let f be a circle map of degree d and let F be a lifting of f . Then
the following statements hold.

(a) If F ′ is another lifting of f , then F = F ′+ k for some integer k.

(b) If k ∈ Z then F + k is also a lifting of f .

(c) F n(x + k) = F n(x) + kdn for all x ∈ R, k ∈ Z and n ≥ 0.

(d) (F + k)n(x) = F n(x) + k(1 + d + d2 + · · ·+ dn−1) for all
x ∈ R, k ∈ Z and n ≥ 0.
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Liftings of degree one

These are continuous maps F : T −→ T such that
F (x + 1) = F (x) + 1 for every x ∈ R. The class of these maps will
be denoted by L1.

Lemma (Behaviour of maps from L1 under iteration)

For n ∈ N, k ∈ Z and x ∈ R:

(a) F n ∈ L1,

(b) F n(x + k) = F n(x) + k,

(c) (F + k)n(x) = F n(x) + kn.
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Lifted periods for maps F ∈ L1.

A point x ∈ R is periodic (mod 1) if there exists n ∈ N such that
F n(x) ∈ x + Z. The period of x is the least integer n with this
property.

That is, F n(x) ∈ x + Z and F i (x) /∈ x + Z for all 1 ≤ i ≤ n − 1.

Observation

x is periodic (mod 1) for F if and only if e(x) is periodic for f .
Moreover, the F -period (mod 1) of x and the f -period of e(x)
coincide.
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Lifted Orbits for maps F ∈ L1.

The set

Orb1(x ,F ) = {F n(x) + m : n ≥ 0 and m ∈ Z},

is called the orbit (mod 1) of x .

Observation

Orb1(x ,F ) = e−1({f n(e(x)) : n ≥ 0}) = e−1(Orb(e(x), f )).

When x is periodic (mod 1) then Orb1(x ,F ) is also called
periodic (mod 1). In this case it is not difficult to see that
Card(Orb1(x ,F ) ∩ Tn) coincides with the period of x for all n ∈ Z.
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Rotation numbers

For F ∈ L1 and x ∈ R we define

ρ
F

(x) = lim sup
m→∞

Fm(x)− x

m
and ρ

F
(x) = lim inf

m→∞
Fm(x)− x

m
.

When ρ
F

(x) = ρ
F

(x) we write only ρ
F

(x) or ρ(x).

The number ρ
F

(x) (if it exists) is called the rotation number of x
with respect to F .
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Basic properties of rotation numbers

Lemma (Properties of rotation numbers with respect to the chosen
lifting)

Let F ∈ L1, x ∈ R, k ∈ Z and n ∈ N.

(a) ρ
F

(x + k) = ρ
F

(x).

(b) ρ
(F+k)

(x) = ρ
F

(x) + k.

(c) ρ
F n (x) = nρ

F
(x).

The same statements hold with ρ and ρ
F

instead of ρ
F

.

Lemma

If F ∈ L1 is non-decreasing then ρ = ρ(x) exists for every x ∈ R
and is independent on x.
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Rotation numbers and periodic points

Definition

Let F ∈ L1. An orbit (mod 1) P ⊂ R of F will be called twist if
F
∣∣
P

is strictly increasing.

(i) Two points in the same orbit (mod 1) have the same
rotation number.

(ii) If F q(x) = x + p with q ∈ N and p ∈ Z, then ρ
F

(x) = p/q.
Therefore all periodic (mod 1) points have rational rotation
numbers.

(iii) Let x be a periodic (mod 1) point of period q and p ∈ Z
such that F q(x) = x + p. If Orb1(x ,F ) is a twist orbit, then
(p, q) = 1.
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Rotation Set: synthesises the rotation numbers information

Definition

For F ∈ L1 we define:

Rot+(F ) = {ρ
F

(x) : x ∈ R},
Rot−(F ) = {ρ

F
(x) : x ∈ R},

Rot(F ) = {ρF (x) : x ∈ R and ρF (x) exists}.

Theorem (Ito)

All these sets coincide. They are a closed interval of the real line
whose endpoints depend continuously on the map (with respect to
the topology of the uniform convergence in the class of continuous
liftings of degree one).

[Ito] Ryuichi Ito.
Rotation sets are closed.
Math. Proc. Cambridge Philos. Soc. 89(1) (1981), 107–111.
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Rotation numbers and twist orbits

Theorem

Let F ∈ L1. Then the following statements hold.

1 For every a ∈ Rot(F ) there exists a twist lifted orbit of F with
rotation number a and disjoint from Const(F ).

2 For every a ∈ Q ∩ Rot(F ) there exists a twist lifted cycle of F
with rotation number a and disjoint from Const(F ).
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The set of periods. Notation

For c ≤ d we set

M(c , d) := {n ∈ N : c < k/n < d for some integer k}.

Notice that we do not assume here that k and n are coprime.
Obviously, M(c , d) = ∅ if and only if c = d .

Given ρ ∈ R and W ⊂ N we set

Λ(ρ,W ) =

{
∅ if ρ /∈ Q,
{nq : q ∈W } if ρ = k/n with k and n coprime.
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The set of periods

Theorem (Misiurewicz)

Let F ∈ L1, and let Rot(F ) = [c , d ]. Then there exist numbers
sc , sd ∈ NSh such that
Per(F ) = Λ(c, Ssh(sc)) ∪M(c , d) ∪ Λ(d ,Ssh(sd)). Conversely, for
any given c, d ∈ R with c ≤ d and sc , sd ∈ NSh, there exists a map
F ∈ L1 such that Rot(F ) = [c , d ] and
Per(F ) = Λ(c , Ssh(sc)) ∪M(c , d) ∪ Λ(d ,Ssh(sd)).

M. Misiurewicz.
Periodic points of maps of degree one of a circle.
Ergod. Th. & Dynam. Sys. 2 (1982), 221–227.

Remark

From the (endpoints of the) rotation interval one also gets lower
bounds of the topological entropy of the map under consideration
(A-Llibre-Mañosas-Misiurewicz).
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The set of periods for σ-maps

A full characterisation of the sets of periods for continuous self
maps of the graph σ having the branching fixed is given in

M. Carme Leseduarte and Jaume Llibre.
On the set of periods for σ maps.
Trans. Amer. Math. Soc. 347(12) (1995), 4899–4942.

Our goal is to extend this result to the general case. The most
natural approach is to follow the strategy used in the circle case
which consists in dividing the problem according to the degree of
the map. The cases considered for the circle are:

degree different from {−1, 0, 1},
degree -1,

degree 0, and

degree 1.
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The set of periods for σ-maps

A characterisation of the set of periods of the class of continuous
maps from the space σ to itself with degree different from
{−1, 0, 1} by using Nielsen Numbers can be found in

Alba Málaga.
Dinámica de grafos de un ciclo para funciones de grado diferente de uno
(Spanish).
Master thesis, Universidad National de Ingenieŕıa, Peru, 2011.
Available at
http://cybertesis.uni.edu.pe/bitstream/uni/277/1/malaga sa.pdf.
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The set of periods for σ-maps

In this talk we aim at studying the set of periods of continuous
σ-maps of degree 1. Following again the strategy of the circle case,
we shall work at the lifting level and we shall use rotation theory.
This theory for graphs with a single circuit was developed in

Llúıs Alsedà and Sylvie Ruette.
Rotation sets for graph maps of degree 1.
Ann. Inst. Fourier (Grenoble) 58(4) (2008), 1233–1294.

and shall be reviewed below.
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Lifted spaces: A simple definition

X

X X

... ...

X

10

h(0) h(1) h(2)
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Lifted spaces: A simple definition

A lifted space T is a connected closed subset of C containing R
such that

(i) For every z ∈ C, z ∈ T is equivalent to z + Z ∈ T ,

(ii) the closure of each connected component of T \ R is a
compact set that intersects R at a single point, and

(iii) the number of connected components C of T \ R such that
C ∩ [0, 1] 6= ∅ is finite.

The class of all lifted spaces will be denoted by T.
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Maps on lifted spaces

Following the circle case, on a lifted space T we will only consider
liftings of continuous maps of degree one.

These are continuous maps F : T −→ T such that
F (x + 1) = F (x) + 1 for every x ∈ T ⊂ C.

The class of these maps will be denoted by L1.
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Recalling the notion of a lifting.

When T ∈ T is obtained by unwinding a loop W contained in a
topological space X there exists a continuous map π : T −→ X ,
called the standard projection from T to X , such that
π([0, 1]) = W and π(x + 1) = π(x) for all x ∈ T .

Then, given f : X −→ X continuous, there exists a (non-unique)
continuous map F : T −→ T such that f ◦ π = π ◦ F .

Each of these maps will be called a lifting of f .

Observe that f ◦ π = π ◦ F implies that F (1)− F (0) ∈ Z. This
number is called the degree of f and denoted by deg(f ).
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Retraction

Given T ∈ T there is a natural retraction r : T −→ R. When
x ∈ R, then clearly r(x) = x . When x /∈ R, by definition, there
exists a connected component C of T \ R such that x ∈ C and
Clos (C ) intersects R at a single point z . Then r(x) is defined to
be, precisely, the point z . In particular, r is constant on Clos (C ).

A point x ∈ R such that r−1(x) 6= {x} will be called a branching
point of T . The set of all branching points of T will be denoted by
B(T ). It is a subset of R by definition.

The map r : T −→ R is continuous and verifies
r(x + 1) = r(x) + 1 for all x ∈ T .
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Rotation numbers
Definition

Let F ∈ L1 and x ∈ T . We define the rotation number of x as

ρ
F

(x) := lim
n→+∞

r ◦ F n(x)− r(x)

n

if the limit exists.

We also define the following rotation sets of F :

Rot(F ) = {ρ
F

(x) : x ∈ T},
RotR(F ) = {ρ

F
(x) : x ∈ R}.

Remark

Recall that the composition of maps of degree one has degree one.
Thus, r ◦ F n has degree one for every n and we can compute
rotation numbers.
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Rotation numbers

For every x ∈ T , k ∈ Z and n ∈ N, it follows, as in the circle case,
that

ρ
F

(x + k) = ρ
F

(x),

ρ
(F+k)

(x) = ρ
F

(x) + k and

ρ
Fn

(x) = nρ
F

(x).

The second property implies that, if F , G are two liftings of the
same continuous map from σ into itself, then their rotation sets
differ from an integer (∃k ∈ Z such that G = F + k , and hence
Rot(G ) = Rot(F ) + k).
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Rotation numbers

In what follows we will consider a special subclass of T. Namely,
the subclass of all T ∈ T such that

r−1([0, 1]) = {x ∈ T : 0 ≤ r(x) ≤ 1}

is a finite graph. This class is denoted by T◦.

For instance the initial example of lifted space does not belong to
T◦.

The class T◦ has better properties than the general one.
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Rotation numbers

Unfortunately, the set Rot(F ), even when T ∈ T◦, need not be
connected, as it happens in the circle case. However, the set
RotR(F ), which is a subset of Rot(F ), has better properties:

Theorem

For every T ∈ T◦, F ∈ L1, RotR(F ) is a non empty compact
interval. Moreover, if α ∈ RotR(F ), then:

1 There exists a point x ∈ R such that ρ
F

(x) = α and
F n(x) ∈ R for infinitely many n.

2 If p/q ∈ RotR(F ), then there exists a periodic (mod 1) point
x ∈ T with ρ

F
(x) = p/q.

Remark

If min RotR(F ) = p/q there may not exist a periodic point x ∈ R
with ρ(x) = p/q.
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In certain cases the standard rotation set behaves
“correctly”

Theorem

If
⋃

n≥0

F n(R) = T (including the case when F is transitive), then

RotR(F ) = Rot(F )
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The rotation set

The previous comments tell us that the study of the dynamics of
the maps from L1 has to be decomposed into two parts:

T̂ :=
⋃

n≥0 F−n(R); studied with RotR(F ).

and T \ T̂ that can be studied with retractions and “tree like”
techniques.

Thus, the rotation theory must concentrate on RotR(F ) and its
relationship with the set of periods. The dynamics “living” in the
other part can be studied with “non rotational” techniques.
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Relation between the rotation set and the set of periods

Per(α,F ) denotes the set of all n ∈ N for which ∃x ∈ T such that
x is periodic (mod 1) of period n and ρ

F
(x) = α.

Theorem

Per(α,F ) = ∅ if and only if α /∈ Rot(F ) ∩Q.

Assume that p/q ∈ Int(RotR(F )). Then Per(p/q,F ) contains
nq for all great enough integers n.

If RotR(F ) is not reduced to a single point, then the set of
periods of periodic (mod 1) points of f contains all but
finitely many integers.

Remark

The theorem does not say that Per(p/q,F ) is equal to
{n ∈ N : n ≥ N} for some integer N. There are counterexamples
of this statement.
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The set of periods for σ maps

The universal covering of the space σ is

S = R ∪ B,

where
B := {z ∈ C : <(z) ∈ Z and =(z) ∈ [0, 1]}

and <(z) and =(z) denote respectively the real and imaginary part
of a complex number z .

0 1 2 3 4 5 6

· · · · · ·

Figure: The space S , universal covering of σ.
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Observe that S = S + Z = {x + k : x ∈ S and k ∈ Z}. Moreover,
the real part function defines a retraction from S to R. That is,
<(x) = x for every x ∈ R and, when x ∈ S \ R, then <(x) gives
the integer in the base of the segment where x lies.

In what follows, L1(S) will denote the class of continuous maps F
from S into itself of degree 1, that is, F (x + 1) = F (x) + 1 for all
x ∈ S . Also, the set of (true — not (mod 1)) periods of all
periodic points of F will be denoted by Per◦(F ).

For every m ∈ Z, we set

Bm := {z ∈ S : <(z) = m and =(z) ∈ [0, 1]} = S ∩ <−1(m), and

B̊m := Bm \ {m}.

Each of the sets Bm is called a branch of S .

Clearly, B = ∪m∈ZBm, Bm ∩ R = {m} and B̊m ∩ R = ∅.
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A conjecture on the set of periods for degree one

The maps F ∈ L1(S) such that F (R) ⊂ R and F (Bm) = F (m) for
every m ∈ Z can be identified with the class of liftings of
continuous circle maps of degree 1.

Therefore any possible set of periods of a continuous circle map of
degree 1 is a set of periods of a map in L1(S).
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A conjecture on the set of periods for degree one

Consider the 3-star Y0 := B0 ∪ [−1/3, 1/3] ⊂ S and consider the
class of maps F ∈ L1(S) such that

F (Y0) ⊂ Y0,
F (x) ∈ Y0 ∪ [1/3, x) for every x ∈ [1/3, 1/2) and
F (x) ∈ (Y0 + 1) ∪ (x , 2/3] for every x ∈ (1/2, 2/3] (in
particular F (1/2) = 1/2).

This implies that Per(F ) = Per◦(F
∣∣
Y0

) and thus, every possible set
of periods of a map from a 3-star into itself can be a set of periods
of a map from L1(S). Clearly, this includes the sets of periods of
interval maps.

Moreover, this phenomenon could occur for rotation numbers
different from 0. That is, there may exist a map from X3 with set
of periods A ⊂ N, p ∈ Z, q ∈ N and S̃ ⊂ S such that

Per◦((F q − p)
∣∣
S̃

) = A and Per(p/q,F ) = q · Per◦((F q − p)
∣∣
S̃

).
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A conjecture on the set of periods for degree one

From the above comments, and Misiurewicz’s and Baldwin’s
Theorems we get the following natural

Conjecture

Let F ∈ L1(S) be with RotR(F ) = [c , d ]. Then there exist sets
Ec ,Ed ⊂ N which are finite unions of of tails of the orderings ≤2

and ≤3 such that Per(F ) = Λ(c ,Ec) ∪M(c , d) ∪ Λ(d ,Ed).
Conversely, given c , d ∈ R with c ≤ d , and non empty sets
Ec ,Ed ⊂ N which are finite union of of tails of the orderings ≤2

and ≤3, there exists a map F ∈ L1(S) such that RotR(F ) = [c, d ]
and Per(F ) = Λ(c ,Ec) ∪M(c , d) ∪ Λ(d ,Ed).

As we shall see, some facts seem to indicate that this conjecture is
not entirely true (though they do not disprove it). However, we
shall use this conjecture as a guideline: on the one hand, we shall
prove that it is partly true; on the other hand, we shall stress some
difficulties.
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On the second (converse) (converse) statement of the
conjecture

This statement holds in two particular cases:

Corollary (of Misiurewicz’s Theorem)

Given c , d ∈ R with c ≤ d and sc , sd ∈ NSh, there exists a map
F ∈ L1(S) such that RotR(F ) = [c , d ] and
Per(F ) = Λ(c, Ssh(sc)) ∪M(c , d) ∪ Λ(d ,Ssh(sd)).

When both c and d are irrational, this corollary implies the second
statement of the Conjecture.
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On the second (converse) statement of the conjecture

It remains to consider the cases when c and/or d are in Q and
when the order ≤3 is needed (or equivalently when one refers to
the set of periods of any 3-star map). The next theorem deals with
the case when c (or d) is equal to 0 (or, equivalently, to an
integer) and ≤3 is needed only for this endpoint.

Theorem

Let d 6= 0 be a real number, sd ∈ NSh and f ∈ X3. Then there
exists a map F ∈ L1(S) such that RotR(F ) = Rot(F ) is the closed
interval with endpoints 0 and d (i.e., [c, d ] or [d , c]),
Per(0,F ) = Per◦(f ) and
Per(F ) = Per◦(f ) ∪M(0, d) ∪ Λ(d , Ssh(sd)).
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On the second (converse) statement of the conjecture

A natural strategy to prove the second statement of the Conjecture
in the general case (i.e. when no endpoint of the rotation interval
is an integer) is to construct examples of maps F ∈ L1(S) with a
block structure over maps f ∈ X3 in such a way that p/q is an
endpoint of the rotation interval RotR(F ) and
Per(p/q,F ) = q · Per◦(f ). The next result shows that this is not
possible. Hence, if the second statement of the Conjecture holds,
the examples must be built by using some more complicated
behaviour of the points of the orbit in R and on the branches than
a block structure.
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Bad news for the second statement of the conjecture

Let F ∈ L1(S) and let P be a periodic orbit (mod 1) of F with
period nq and rotation number p/q. For every x ∈ P and
i = 0, 1, . . . , q − 1, we set

Pi (x) := {F i (x),G (F i (x)),G 2(F i (x)), . . . ,Gn−1(F i (x))},

where G := F q − p. It follows that every Pi (x) is a (true) periodic
orbit of G of period n.

Theorem

Let F ∈ L1(S) and let P be a periodic orbit (mod 1) of F with
period nq and rotation number p/q. Assume that there exists
x ∈ P such that 〈P0(x)〉 is homeomorphic to a 3-star and
〈P1(x)〉 ⊂ [n, n + 1] ⊂ R for some n ∈ Z. Assume also that P0(x)
is a periodic orbit of G := F q − p, F i (m) ∈ 〈Pi (x)〉 for
i = 0, 1, . . . , q − 1 and G (m) = m, where m ∈ Z ∩ 〈P0(x)〉 denotes
the branching point of 〈P0(x)〉. Then Per(p/q,F ) = q · N.
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On the first (direct) statement of the conjecture

There are two completely different types of orbits (mod 1)
according to the way that they force the existence of other periods:

the periodic (mod 1) orbits contained in B (viewed at σ
level, this means that these periodic orbits do not intersect
the circuit of σ), or

the “rotational orbits” that visit the ground R of our space S .

We start by studying the periods forced by the periodic (mod 1)
orbits contained in B.
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Orbits living in the branches

Definition

Let F be a continuous map from S to itself of degree d ∈ Z and
let P be a periodic (mod 1) orbit of F . We say that P lives in the
branches when P ⊂ B. Observe that, since P is a (mod 1) orbit,
for every m ∈ Z, Bm ∩ P = (B0 ∩ P) + m.

The following result extends the results of Leseduarte-Llibre (which
deal with σ maps fixing the branching point) to all σ maps.

Theorem

Let F be a continuous map from S to itself of degree d ∈ Z and
let P be a periodic (mod 1) orbit of F of period p that lives in
the branches. Then Per(F ) ⊃ Ssh(p). Moreover, for every d ∈ Z
and every p ∈ NSh, there exists a continuous map Fp of S of degree
d such that Per(Fp) = Ssh(p).
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Large orbits

Definition

Let F be a continuous map from S to itself of degree d ∈ Z and
let Q be a (true) periodic orbit of F . We say that Q is a large orbit
if diam(<(Q)) ≥ 1, where diam(·) denotes the diameter of a set.

Observe that a periodic orbit Q living in the branches is large if
and only if Q intersects two different branches.

The next result for large orbits living in the branches and degree
one is much stronger than the previous one.

Theorem

Let F ∈ L1(S) and let Q be a large orbit of F such that Q lives in
the branches. Then Per(F ) = N.
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More on large orbits

Large orbits contained in R work as in the circle case by using
< ◦ F . More precisely, if F ∈ L1(S) has a large orbit contained in
R, then so does the map < ◦ F . Thus, by the Theorem 2.2 of

Llúıs Alsedà and Sylvie Ruette.
Periodic orbits of large diameter for circle maps.
Proc. Amer. Math. Soc. 138(9) (2010), 3211–3217.

there exists n ∈ N such that
[
− 1

n ,
1
n

]
⊂ Rot(< ◦ F ).

It can be shown that, if 0 ∈ Int Rot(< ◦ F ), then F has a positive
horseshoe and Per(0,F ) = N. Consequently,
Per(F ) ⊃ Per(0,F ) = N.

The set of periods of maps from L1(S) having a large orbit that
intersects both R and the branches remains unknown. There is an
example showing that the existence of a large orbit does not ensure
that Per(F ) = N.
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Integers in the interior of the rotation set

Theorem

Let F ∈ L1(S). If Int(RotR(F )) ∩ Z 6= ∅, then Per(F ) is equal to,
either N, or N \ {1}, or N \ {2}. Moreover, there exist maps
F0,F1,F2 ∈ L1(S) with 0 ∈ Int(RotR(Fi )) for i = 0, 1, 2 such that
Per(F0) = N, Per(F1) = N \ {1} and Per(F2) = N \ {2}.

This theorem is in contrast with the circle case: from one side this
results is much more difficult to prove. From another side, in the
circle, an integer in the interior of the rotation interval always
implies periodic points of all periods while, here, there exists a map
such that 0 ∈ Int(RotR(F )) and Per(0,F ) = {k ∈ N | k ≥ n}.
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The dynamics of certain orbits has complicate underlying
structure
The original model
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Figure: Above: a map F , which is defined by its action on x0, . . . , xk and
1, and is piecewise linear on the partition generated by these points
(mod 1). Below: the Markov graph of F ; several integers on the same
arrow, as well as an arrow pointing to the ellipse containing
A0, . . . ,Ak−1, are short-cuts indicating several arrows.

Ll. Alsedà (UAB) Periods for sigma maps 57/60

Introduction Background and Motivation The set of periods for σ-maps

The dynamics of certain orbits has complicate underlying
structure
The monotone model: a 5-star
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Figure: On the left: the linear model of [TP ,P,FP

∣∣
P

], the map being
affine on each of the intervals B0, . . . ,Bk . On the right: its Markov
graph.
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The dynamics of certain orbits has complicate underlying
structure
The original model
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The dynamics of certain orbits has complicate underlying
structure
The monotone model: a bistar
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