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Aims and summary

We aim at characterising the set of periods of continuous self
maps on trees.

More precisely, we show that the set of periods of any
continuous self map from a tree into itself is the union of a finite
number of initial segments of Baldwin’s orderings p≥, and a
finite set F . The possible values of p are described as well as
explicit bounds of the set F in terms of the combinatorial
properties of the tree.

Conversely, given a set A which is union of a finite set of initial
segments of Baldwin’s orderings p≥ (with the numbers p
determined in a precise way) and a finite set F , there exists a
continuous self map from a tree into itself whose set of periods
is precisely A.
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An introductory example: the interval case
Notation

The Sharkovskii Ordering Sh≥:
3 Sh> 5 Sh> 7 Sh> · · · Sh> 2 · 3 Sh> 2 · 5 Sh> 2 · 7 Sh> · · · Sh>
4 · 3 Sh> 4 · 5 Sh> 4 · 7 Sh> · · · Sh> · · · Sh>
2n · 3 Sh> 2n · 5 Sh> 2n · 7 Sh> · · · Sh> 2∞

Sh> · · · Sh>
2n

Sh> · · · Sh> 16 Sh> 8 Sh> 4 Sh> 2 Sh> 1.

is defined on the set

NSh = N ∪ {2∞}

(we have to include the symbol 2∞ to assure the existence of
supremum for certain sets).

In the ordering Sh> the least element is 1 and the largest is 3.
The supremum of the set {1, 2, 4, . . . , 2n, . . . } is 2∞.



The Sharkovskii Ordering formal definition

If k = k ′ · 2p where p is non negative and k ′ is odd:

(1) k Sh> 2∞ if k ′ > 1,
(2) 2∞

Sh> k if k ′ = 1,

and if n = n′ · 2q where q is non negative and n′ is odd, then
n Sh> k if and only if one of the following next statements holds:

(3) k ′ > 1, n′ > 1 and p > q,
(4) k ′ > n′ > 1 and p = q,
(5) k ′ = 1 and n′ > 1,
(6) k ′ = 1, n′ = 1 and p < q.



Initial segments for the Sharkovskii Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples
of sets of the form S(s) are:
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Initial segments for the Sharkovskii Ordering

For s ∈ NSh, S(s) denotes the set {k ∈ N : s Sh≥ k}. Examples
of sets of the form S(s) are:

I S(2∞) = {1, 2, 4, . . . , 2n, . . . },

I S(3) = N,

I S(6) is the set of all positive even numbers union {1}, and

I S(16) = {1, 2, 4, 8, 16}.

Note: S(s) is finite if and only if s ∈ S(2∞).



Sharkovskii’s Theorem

Theorem (Sharkovskii)

For each continuous map g from a closed interval of the real
line into itself, there exists s ∈ NSh such that Per(g) = S(s).
Conversely, for each s ∈ NSh there exists a continuous map g
from a closed interval of the real line into itself such that
Per(g) = S(s).

Per(g) denotes the set of (least) periods of all periodic points of
g.



Idea of the proof of Sharkovskii’s Theorem

The orbit P

x1 x2 x3 x4

The map g



The pattern of P

(1, 3, 4, 2)

The minimal map fP

One has:
Per(g) ⊃ Per(fP).



The set of periods of the minimal model
Let us suppose, for example, that P is an orbit of Stefan type of
period n. That is, of the following type:

pn < pn−2 < · · · < p5 < p3 < p1 < p2 < p4 < · · · < pn−3 < pn−1,

o

pn−1 < pn−3 < · · · < p4 < p2 < p1 < p3 < p5 < · · · < pn−2 < pn.

p1 p1p5 p3 p2 p4 p4 p2 p3 p5



Then:

Lemma

The vertices of the fP-(combinatorial) Markov graph of f
associated to P can be labelled so that their arrows are

(a) I1 −→ I2 −→ · · · −→ Is−1 −→ I1,
(b) I1 −→ I1,
(c) Is−1 −→ I1, Is−1 −→ I3, Is−1 −→ I5, . . . , Is−1 −→ Is−2.



That is:
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Conclusion
It is easy to see that the previous Markov Graph gives loops of
length equals to any positive integer contained in S(n).
Consequently, S(n) ⊂ Per(fP), since:

Lemma

Let f ∈ C0(I, I), let P ⊂ I be a finite set and let α = I0 −→ I1 −→
· · · −→ In−1 −→ I0 a loop in the f -Markov graph associated to
P. Then, there exists a fixed point x of f n, such that f i(x) ∈ Ii for
i = 0, 1, . . . , n − 1. By choosing the loop in an appropriate way
one can contain a point x whose (least) period is precisely n.
Consequently, n ∈ Per(f ).

Finally one gets Per(g) = S(s) by taking

s = max
Sh≥

Per(g).



Sets of periods of star maps
General Notation

A (topological) graph is a connected Hausdorff space G, which
is a finite union of subspaces Gi , each of them homeomorphic
to a closed, non-degenerate interval of the real line and Gi ∩ Gj
is finite for all i 6= j . Clearly any graph is compact. The points
from a graph which do not have a neighbourhood
homeomorphic to an open interval are called vertices. The set
of vertices of a graph G is denoted by V(G) and is clearly finite
(or empty — when G is homeomorphic to to the circle).

The closure of any connected component of G \ V(G) is called
an edge of G. Clearly, a graph has finitely many edges and
each of them is homeomorphic to a closed interval or to the
circle.



Trees and stars

A tree is a graph which is uniquely arcwise connected.

Let G be a graph, let z ∈ G and let U be an open
neighboorhood (in G) of z such that Cl(U) is a tree. The
number of connected components of U \ {z} is called the
valence of z and is denoted by Val(z). This definition is
independent of the choice of U and Val(z) 6= 2 if and only if
z ∈ V(G). A vertex of valence 1 is called an endpoint of G
whereas a point of valence larger than 2 is called a branching
point of G.

Let n ∈ N \ {1}. A n-star is a tree with n endpoints and at most
one branching point. Note that a 2-star is homeomorphic to an
interval (an thus it has no branching point) while an n-star with
n ≥ 3 has a unique branching point b with Val(b) = n. Xn will
denote a n star and Xn the class of all continuous maps from
Xn into Xn.



Baldwin partial orderings. The structure of 4≥
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Baldwin partial orderings. Formal definition

For each integer t ≥ 2 we denote:

Nt = (N ∪ {t · 2∞}) \ {2, 3, . . . , t − 1} and
N∨

t = {mt : m ∈ N} ∪ {1, t · 2∞}.

Then, the ordering t≥ is defined in Nt as follows: for k , m ∈ Nt
we have m t≥ k if one of the following holds:

(i) k = 1 o k = m,
(ii) k , m ∈ N∨

t \ {1} and m/t Sh> k/t ,
(iii) k ∈ N∨

t and m /∈ N∨
t ,

(iv) k , m /∈ N∨
t and k = im + jt with i , j ∈ N,

where, in case (ii) we use the following arithmetic rule t · 2∞:
t · 2∞/t = 2∞.

Note: By identifying 2 · 2∞ with 2∞ we have 2≥ = Sh≥.



Initial segments

A set S ⊂ Nt ∩ N is an initial segment of the ordering t≥ if for
every m ∈ S we have {k ∈ N : m t≥ k} ⊂ S (that is, S is closed
under predecessors).

Also we set
St(s) := {n ∈ N : n ≤t s},

which is a particular case of an initial segment. Indeed, any
initial segment of the ≤t ordering can be expressed as the
union of at most t − 1 sets of the form St(si) because the set Nt
splits in at most t − 1 branches by the ordering ≤t .



Baldwin’s Theorem

Theorem

Let f ∈ Xn. Then, Per(f ) is a finite union of initial segments of
the orderings t≥ with 2 ≤ t ≤ n. Conversely, given a set A that
is a finite union of initial segments of the orderings t≥ with
2 ≤ t ≤ n, there exists a map f ∈ Xn such that f (b) = b and
Per(f ) = A.

In a similar way to the interval case, the basic implication to
prove is of the following kind: Assume that f has a periodic orbit
with period n and type t. Then Per(f ) ⊃ St(n).
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Sets of periods of continuous tree maps
General strategy – I

Let S be a tree and let g : S −→ S be continuous. To
characterise the structure of the set Per(g) we use the following
strategy: We fix a periodic orbit P of g:

Step 1. We reduce (if necessary) the model (S, P, g) in finitely
many steps to a model (S′, P ′, g′) which is either non
twist or S′ is a star.
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good estimate) ΛP , of the set of periods of f .
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Step 3. Since (T , A, f ) is the canonical (minimal) model of
(S′, P ′, g′), we prove that the “essential part” of Per(f )
is contained in the set of periods of any map having the
same pattern as (S, P, g). In particular, ΛP ⊂ Per(g).

Step 4. Let us consider the set of all periodic orbits P of g. The
structure of Per(g) can be obtained by organising the
unions of all the sets ΛP in an appropriate way.



Step 4: Structure of the set of periods

[AJM2005] L. Alsedà, D. Juher, and P. Mumbrú,
Periodic behavior on trees,
Ergodic Theory Dynam. Systems 25(5) (2005), 1373–1400.

Definition

Given S and T trees, and p ≥ 2 we write S A pT when S
contains a subtree W with p endpoints, such that T is
homeomorphic to a connected component of S \ Int(W ), and
the number of endpoints of each connected component of
S \ Int(W ) is larger than or equal to the number of endpoints of
T .



Example

W

T

S A 4T



Definition (continued)

Let Σ be the set of all finite sequences of positive integers
s = (p1, p2, . . . , pm) with pi ≥ 2 for 1 ≤ i < m.

Given a tree S, ΣS denotes the set of all sequences
(p1, p2, . . . , pm) ∈ Σ for which there exists a sequence of trees
(S1, S2, . . . , Sm) satisfying:

(i) S ⊃ S1, Si A piSi+1 and En(Sm) ≥ pm, where En(·)
denotes the number of endpoints of a tree.

(ii) Si it is not a star for 1 ≤ i < m.

Note: ΣS is finite since m ≤ 1 + log2(En(S) − 1).



Examples

I The 4-star has ΣS = {(1), (2), (3), (4)} as the set of
admissible sequences.



Examples

I The 4-star has ΣS = {(1), (2), (3), (4)} as the set of
admissible sequences.

I

Admissible sequences:
ΣS = {(1), (2), (3), (4), (5), (6),

(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3),

(4, 1), (4, 2), (5, 1), (5, 2), (6, 1), (6, 2)}



The characterisation of the set of periods

Theorem (Direct Implication)

Let g : S −→ S be a tree map. Then there exists a (finite) set
S ⊂ ΣS such that

Per(g) =
⋃

s∈S

(

Ks ∪ Fs ∪
(

Is \ dse{2, 3, . . . , λs}
))

where, for each s = (p1, p2, . . . , pm) ∈ S, λs is a positive integer,
dse = p1p2 · · ·pm and

(a) Ks = {p1, p1p2, . . . , p1p2 · · ·pm−1}

(b) Is is an initial segment of the dse-Baldwin ordering whose
maximal elements belong to {1} ∪ p1p2 · · ·pm−1(N ∪ 2∞).

(c) If Is ( {1} ∪ dseN then λs = 0 and Fs = ∅.



The characterisation of the set of periods–continued

Theorem (Direct Implication–continued)

(d) Fs is disjoint from Ks ∪ Is \ dse{2, 3, . . . , λs}.
(e) Fs is finite (or empty). When Fs 6= ∅, we have

minFs ≥ λsdse/2 and |Fs| is bounded in terms of En(S).

Theorem (Converse Implication)

Given a finite set S ⊂ Σ and a family {Fs, Is, λs}s∈S verifying
(a–e) of the Direct Theorem, there exists a tree S and a
continuous map g : S −→ S such that S ⊂ ΣS and

Per(g) =
⋃

s∈S

(

Ks ∪ Fs ∪
(

Is \ dse{2, 3, . . . , λs}
))

.



Example
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x1 x10
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x6
x12x9

x24

x4

x25

x2

x23

x3

x13 x16 x19

x7

Per(g) = {25, 28, 31, 62, 65, 68} ∪ S3(34) \ {8}.

In the notation of the theorem we have s = (3), S = {s},
Fs = {25, 28, 31, 62, 65, 68}, Is = S3(34) and λs = 2.



Step 1: Reduction

Example of a periodic orbit 3–twist of period 12 (this notion
generalises the notion of a division in the interval).

X 1

107

4 5

2
8

11

6
9

12
3

Y

Z

g′ = rX ◦g◦rZ ◦g◦rY ◦g : X −→ X ; Per(g) ⊃ {1}∪3·Per(g ′).

Notation: rY : S −→ y denotes the natural retraction from S to
Y .



The above construction generalises the notion of a
division in the interval:



Step 1: Formalisation
Proposition

For a model (S, P, g), the following statements hold:

(a) There exists a finite sequence of models {(Si , Pi , gi), pi}
m
i=1

such that:
(i) (S1, P1, g1) = (S, P, g)
(ii) Pi is a periodic orbit of gi such that the endpoints of Si are

contained in Pi for i > 1.
(iii) for each i < m, (Si , Pi , gi) is pi–twist and (Si+1, Pi+1, gi+1) is

a reduction of (Si , Pi , gi).
(iv) (Sm, Pm, gm) is either not twist or Sm is a star.
(v) |P| = p1p2 · · · pm−1|Pm|.

(b)

Per(g) ⊃ {1, p1, p1p2, . . . , p1p2 · · ·pm−1}

∪ p1p2 . . . pm−1 Per(gm)



Step 1: Conclusion

Now the problem consists in estimating the set Per(gm).
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Step 1: Conclusion

Now the problem consists in estimating the set Per(gm).

I If Sm is a star, then this set if given by Baldwin Theorem
(stated before).

I In the other case, (Sm, Pm, gm) is not twist and the
computation of its set of periods is done in the Steps 2 and
3.



Step 2: Computation of the set of periods in canonical
models

One of the crucial notions in this theory is the concept of
pattern for tree maps:

[AGLMM] Ll. Alsedà, J. Guaschi, J. Los, F. Mañosas and P.
Mumbrú,
Canonical representatives for patterns of tree maps,
Topology 36 (1997), 1123-1153.

As in the interval case we need a definition of pattern for which
it always exists a minimal model (canonical — in the interval is
the “connect–the–dots” map) (T , A, f ) with the following
properties of dynamical minimality:



Basic requirements on a canonical (minimal) model
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I f minimises the topological entropy among all the tree
maps having a periodic orbit with the same pattern as
(T , A, f ) (this is essentially due to the fact that any such
tree map will have G as a subgraph — as in the interval
case).
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Basic requirements on a canonical (minimal) model

I f minimises the topological entropy among all the tree
maps having a periodic orbit with the same pattern as
(T , A, f ) (this is essentially due to the fact that any such
tree map will have G as a subgraph — as in the interval
case).

I The dynamics of f can be coded by means of a
combinatorial (Markov) graph G. Essentially, there exists a
bijection between the periodic orbits of f and the loops of
G. Moreover, the topological entropy of f is the logarithm of
the spectral radius of G.

Note: Due to the existence of branch points, in this context
there does not exist the “connect–the–dots” map. The price to
pay for having minimal models in this context is that the space
must be not fixed (homotopy relative to P)!!!.



Example: Pattern – 1st part

The pattern
of P
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The original map
(S, P, g)



Example: Pattern – 2nd part

The pattern
of P
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1
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3

2

5
4

The canonical model
(T , A, f )



Properties of a canonical model

(1) f is A-monotone: if {a, b} ⊂ A and (a, b) ∩ A = ∅, then f
maps [a, b] monotonely “onto” [f (a), f (b)].

(2) f (V (T )) ⊂ V (T ) ∪ A. Thus A ∪ V (T ) is f–invariant and
(T , A ∪ V (T ), f ) is a Markov model.

(3) In general T 6= S !!

Despite of Property (3), Properties (1) and (2) allow us to
compute the periods associate to loops in the Markov Graph
that are simple and extern:



Example
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Sets of periods for canonical models
Notation

Given t ≥ 2 and r ∈ Nt we denote:

S∗

t (r) =

{

{k ∈ N : n ≤t r} si r /∈ N∨
t ,

{1} ∪ tN si r ∈ N∨
t .



Sets of periods for canonical models

Theorem

Let (T , A, f ) be a non twist canonical model. Then,

Per(f ) ⊃ S∗

p(|A| + lp) \ {2p, 3p, . . . , λp},

Where p is the type of the model (a generalisation of the
corresponding notion introduced by Baldwin for the stars) and l
and λ are bounded constants in terms of the combinatorial
properties of T .

[AJM2003] L. Alsedà, D. Juher, and P. Mumbrú,
Sets of periods for piecewise monotone tree maps,
Int. J. of Bifurcation and Chaos 13 (2003), 311–341.



Example
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x18 x17
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x16
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x15

x19
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x3

x14 x13

x1

x20

x5

x12

A model with |A| = 20, p = 4, λ = 2 and l = 1
Per(f ) = S∗

4(24) \ {8} = {1} ∪ 4N \ {8}



Step 3: Minimality of canonical models relative to the
set of periods

Let g : S −→ S be a tree map, let P be a periodic orbit of g and
let (T , A, f ) be a canonical representative of the pattern
(S, P, g). Is it true that Per(f ) ⊂ Per(g)?

In

[AGLMM] Ll. Alsedà, J. Guaschi, J. Los, F. Mañosas and P.
Mumbrú,
Canonical representatives for patterns of tree maps,
Topology 36 (1997), 1123-1153.

it is proved that if n ∈ Per(f ) then g2n has a fixed point x.
However it is not made explicit which is really the least period of
x .



In general the answer to this question is NO

Canonical model
Per(f ) = {1, 2, 4}

1 2 1 2

3 4 3 4

y y

Per(g) = {1, 4}

y

1 2

3 4



When the answer is positive?

A periodic point of (T , A, f ) will be called significant if it does not
travel together with a vertex of T .

Note: the periods computed in the Characterisation of the set
of periods (Direct Implication) correspond to significant orbits.



When the answer is positive?

Theorem

Let g : S −→ S be a tree map exhibiting a periodic orbit P with
pattern P. Let (T , A, f ) be the canonical model of P. If there is
a significant n-periodic orbit of f , then n ∈ Per(g).

[AJM2005b] L. Alsedà, D. Juher, and P. Mumbrú,
On the preservation of combinatorial types for maps on
trees,
Annales de l’Institut Fourier 55(7) (2205) 2375–2398.

[AJM2006] L. Alsedà, D. Juher, and P. Mumbrú,
Periodic behaviour on trees,
In preparation.



Idea of the proof

Let x be a significant n-periodic point of f . There exists a
unique simple loop β in the P-path graph such that x and β are
associated:

β = π0 → π1 → . . . → πn−1 → π0

Set π0 = {a, b} and π1 = {c, d}.



a

b

c

b

d

c

a J

f (J) = [c, d ]

d

J ba

d

c

(T , A, f ) (S, P, g)

b

a

c

d

g(J) = [c, d ]



There exists a finite union J(β) ⊂ [a, b] of closed intervals with
pairwise disjoint interiors such that g i(J) ⊂ 〈πi〉 for 0 ≤ i < n
and gn(J) = 〈π0〉:

The map gn

a b

vertices
It may happen that there are no fixed points of gn in [a, b]. In
fact there are several situations where this does not happen.
Namely:



* When the loop β is positive i.e. gn is “increasing”
(gn(a) < a < b < gn(b)):

The map gn

a b

vertices



* When n = |β| is bigger than K · L, where:

I K is the number of basic paths having some vertex in their
interior.

I L is the maximum number of vertices contained in the
interior of a basic path.

It is easy to see that

K · L ≥ M(S) :=
1
2
|En(S)| · (|En(S)| − 1) · |V (S)|2

When n > K · L, there is a basic path (say, π0) in the loop β
such that the number of occurrences of π0 in β is larger than
the number of vertices in the interior of π0. For instance, if π0
has 2 vertices in its interior, then π0 occurs at least 3 times in β.



Thus we can consider 3 (pairwise different) shifts of β starting
at π0 (say, β1, β2, β3) and get the corresponding J(β1), J(β2)
and J(β3):

The map gn

ba

J(β3)J(β2)J(β1)



So, we are left with the case:

1 < n < M(S) and β negative

Key tool to study these cases: A theorem of persistence of
orbits (among “homotopically conjugate” graph maps) from

[AGGLMM] Ll. Alsedà, F. Gautero, J. Guaschi, J. Los, F.
Mañosas and P. Mumbrú,
Patterns and minimal dynamics for graph maps,
Proc. London Math. Soc. 91(2) (2005), 9414–442.

Key notions:

I Nielsen fixed point class
I Index of a Nielsen fixed point class



Definition

Let f : G −→ G and g : G′ −→ G′ be graph maps such that
there exist two homotopy equivalences r : G −→ G′ and
s : G′ −→ G satisfying r ◦ s ' IdG′ , s ◦ r ' IdG and f ' s ◦ g ◦ r .
Then, there exists an index-preserving bijection that, for each
n ∈ N, sends essential fixed point classes of f n to essential
fixed point classes of gn.



The trick to play

(T , A, f ) (S, P, g)
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The above construction is done in such a way that:

I f : T G −→ T G and g : SG −→ SG verify the hypotheses of
the theorem of persistence.

I Per(f ) = Per(f ) and
Per(g) ∩ {1, 2, . . . , M(S)} = Per(g) ∩ {1, 2, . . . , M(S)}.

I If a periodic point x of f is associated to a negative loop β,
then x is alone in its Nielsen class, and its index is −1.

THUS, BY THE THEOREM OF PERSISTENCE, THE
SIGNIFICANT PERIODS OF A CANONICAL (SIMPLIFIED)
MODEL ARE ALSO PERIODS OF THE ORIGINAL MODEL.


