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Abstract. A sharp version of the Central Limit Theorem for linear combinations of iterates
of an inner function is proved. The authors previously showed this result assuming a subop-
timal condition on the coefficients of the linear combination. Here we explain a variation of
the argument which leads to the sharp result. We also review the steps of the proof as well as
the main technical tool which is Aleksandrov Disintegration Theorem of Aleksandrov-Clark
measures.

1. Introduction and main results

Let D be the unit disc in the complex plane and let m be the normalized Lebesgue measure
on the unit circle BD. An analytic mapping from D into D is called inner if its radial limits have
modulus one at almost every point of the unit circle. Hence any inner function f induces a map
defined at almost every point z P BD as fpzq “ limrÑ1´ fprzq. Let fn “ f ˝ . . . ˝ f : BD Ñ BD
denote the n-th iterate of the inner function f . It has been recently shown that the iterates
tfnu behave as a sequence of independent random variables in the sense that they obey
appropriate versions of classical results on sequences of independent random variables (see
[Nic22] and [NS22]). There are of course other situations in Complex Analysis where one
encounters probabilistic behaviors in settings where the notion of independence is not directly
present. A classical example of such setting is the assymptotic behaviour of lacunary series.
In a series of classical papers by Paley and Zygmund, Salem and Zygmund and Weiss, the
authors consider versions of the Khintchine-Kolmogorov Theorem for pointwise convergence
(see [Zyg88, Section V.6]), versions of the Central Limit Theorem ([SZ47] and [SZ48]) and of
the Law of the Iterated Logarithm ([Wei59]), for lacunary series. Our work is inspired by the
Central Limit Theorem for lacunary series proved by Salem and Zygmund.

Recall that a sequence of measurable functions tfNu defined at almost every point in the
unit circle converges in distribution to a (circularly symmetric) standard complex normal
variable if for any Borel set K Ă C such that its boundary BK has zero area, one has

lim
NÑ8

m ptz P BD : fN pzq P Kuq “
1

2π

ż

K
e´|w|2{2 dApwq.

Let f be an inner function with fp0q “ 0 which is not a rotation and let tanu be a sequence of
complex numbers. A version of the Central Limit Theorem for linear combinations

ř

anf
n of

iterates has been given in [NS22] under certain conditions on the size of the coefficients tanu.
The main purpose of this paper is to present the following version of this result which holds
under the minimal assumption on the size of the coefficients tanu.

Theorem 1. Let f be an inner function with fp0q “ 0 which is not a rotation. Let tanu be a
sequence of complex numbers with

8
ÿ

n“1

|an|2 “ 8. (1.1)
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Consider

σ2N “

N
ÿ

n“1

|an|2 ` 2Re
N´1
ÿ

k“1

f 1p0qk
N´k
ÿ

n“1

anan`k, N “ 1, 2, . . . (1.2)

Assume that the coefficients tanu satisfy that

lim
NÑ8

|aN |2

řN
n“1 |an|2

“ 0. (1.3)

Then
?
2

σN

N
ÿ

n“1

anf
n

converges in distribution to a standard complex normal variable.

Other versions of the Central Limit Theorem in this context have been given in [IU23] and
[AN23].

We will explain an argument due to Salem and Zygmund to show that condition (1.3) is
optimal in the sense that for any sequence tanu with

ř

|an|2 “ 8 and

lim sup
NÑ8

|aN |2

řN
n“1 |an|2

ą 0,

there are examples of inner functions for which the conclusion cannot hold. For 1 ď p ă 8

let }g}p denote the Lp norm of the function g on the unit circle defined by

}g}pp “

ż

BD
|g|pdm.

Let f be an inner function with fp0q “ 0 which is not a rotation and let tanu be a sequence
of complex numbers. It was proved in [NS22] that

1 ´ |f 1p0q|

1 ` |f 1p0q|

N
ÿ

n“k

|an|2 ď σ2N “

›

›

›

›

›

N
ÿ

n“k

anf
n

›

›

›

›

›

2

2

ď
1 ` |f 1p0q|

1 ´ |f 1p0q|

N
ÿ

n“k

|an|2, N “ 1, 2, . . . , (1.4)

for 1 ď k ď N. Hence the series
ř

anf
n converges in L2pBDq if and only if

ř

|an|2 ă 8.
Moreover if this last condition holds, then the series

ř

anf
npzq converges at almost every

point z P BD (see [Nic22]). In this context, repeating the proof of Theorem 1, one can show
that when one has pointwise convergence, the tails obey a Central Limit Theorem.

Theorem 2. Let f be an inner function with fp0q “ 0 which is not a rotation. Let tanu be a
sequence of complex numbers with

ř

|an|2 ă 8. Consider

σ2pNq “
ÿ

něN

|an|2 ` 2Re
ÿ

kě1

f 1p0qk
ÿ

něN

anan`k, N “ 1, 2, . . .

Assume that the coefficients tanu satisfy that

lim
NÑ8

|aN |2
ř

něN |an|2
“ 0. (1.5)

Then ?
2

σpNq

8
ÿ

n“N

anf
n

converges in distribution to a standard complex normal variable.

Given a set A of positive integers, consider the corresponding partial sum

ξpAq “
ÿ

nPA
anf

n.
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The proof of Theorem 1 contains two main ideas. The first one is a convenient splitting of the
partial sums

N
ÿ

n“1

anf
n “

ÿ

k

pξpAkq ` ξpBkqq

into certain alternating blocks of consecutive terms ξpAkq and ξpBkq which depend on N, that
is, satisfying maxAk `1 “ minBk and maxBk `1 “ minAk`1, which obey two counteracting
properties. On the one hand }

ř

ξpBkq}2{σN must be small so that
ř

ξpBkq becomes irrele-
vant. On the other hand the number of terms of each block ξpBkq must be large so that the
correlations between different blocks ξpAkq decay sufficiently fast. The construction of these
blocks is inspired by a similar construction of Weiss in [Wei59]. The second main idea in
the proof was already present in [NS22] and concerns the decay of certain correlations which
naturally appear when proving a Central Limit Theorem. We mention two main properties.
If A and B are two sets of positive integers such that a ă b for any a P A and b P B, it turns
out that |ξpAq|2 and |ξpBq|2 are uncorrelated, that is,

ż

BD
|ξpAq|2|ξpBq|2 dm “

ˆ
ż

BD
|ξpAq|2 dm

˙ˆ
ż

BD
|ξpBq|2 dm

˙

(1.6)

(see Theorem 6 in Section 3). The second property provides an exponential decay of the higher
order correlations of the iterates. More concretely, let εi “ 1 or εi “ ´1 for i “ 1, 2, . . . , k
and n1 ă . . . ă nk be positive integers satisfying nj ´ nj´1 ě q ě 1, j “ 2, . . . , k. Denote
ε “ pε1, . . . , εkq and n “ pn1, . . . , nkq. For a positive integer n, denote by f´n the function

defined by f´npzq “ fnpzq, z P BD. It was shown in [NS22] that
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BD

k
ź

j“1

f εjnj dm

ˇ

ˇ

ˇ

ˇ

ˇ

ď Ckk!|f 1p0q|Φpε,nq, k “ 1, 2, . . . , (1.7)

if q is sufficiently large and where Φ is a certain function depending on the choice of indices
that satisfies Φpε,nq ě kq{4 and that is well suited for summing over the indices afterwards
(see Theorem 10 in Section 4). The main technical tool in the proof of both properties (1.6)
and (1.7) is the theory of Aleksandrov-Clark measures and more concretely, the Aleksandrov
Disintegration Theorem.

We have tried to make this paper self-contained. We use some auxiliary results from [NS22]
but, when possible, we have provided simple proofs. This paper is structured as follows. In
Section 2 we show that the growth condition (1.3) on the coefficients cannot be improved.
Section 3 contains a brief exposition on Aleksandrov-Clark measures and their application
in the proof of Theorem 1. In Section 4 we state some auxiliary results. Finally, we prove
Theorem 1 in Section 5

We thank the referee for reading carefully the paper and for several important suggestions.
In particular the referee found several errors and inaccuracies which fortunately could be
solved.

2. Optimality of the assumption on the coefficients

Here we discuss the optimal character of condition (1.3). Observe that the results of Salem
and Zygmund [SZ47] can be applied in this context to inner functions of the form fpzq “ zd

with d ě 2. Thus, since they showed that condition (1.3) is optimal for lacunary series, it
cannot be improved for inner functions in general. Nonetheless, we expose their argument
in slightly more general terms in order to show that it applies to other examples of inner
functions f.

Given a sequence of measurable functions tfnu defined on the unit circle, we say that they
converge in distribution to a finite measure µ if

lim
nÑ8

m ptz P BD : fnpzq P Kuq “ µpKq
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for every bounded set K such that µpBKq “ 0. This definition is usually stated in general for
sequences of finite measures, but the current one will suffice for our purposes. Let us denote by
Bprq the closed ball of radius r ą 0 centred at the origin. In the subsequent argument, it will
be enough for us to restrict the general bounded sets K to balls Bprq, r ą 0. Observe that in
this case, if we define the functions Pnprq “ m ptz P BD : fnpzq P Bprquq and P prq “ µpBprqq,
convergence in distribution implies that limnÑ8 Pnprq “ P prq whenever r ą 0 is a point at
which P is continuous.

Proposition 3. Le tgnu be a sequence of measurable functions in the unit circle with |gnpzq| ď

1 for every n ě 1 and for almost every z P BD. Let tanu be a sequence of complex numbers
that is not square summable and define

S2
N “

N
ÿ

n“1

|an|2.

Denote

GN pzq “

N
ÿ

n“1

angnpzq, z P BD.

Assume that the sequence tGN{SNu converges in distribution to a finite measure µ and that
it satisfies the uniform decay

m

ˆ"

z P BD :

ˇ

ˇ

ˇ

ˇ

GN pzq

SN

ˇ

ˇ

ˇ

ˇ

ą r

*˙

ď φprq, for all r ą 0, N ě 1, (2.1)

where φprq is a positive decreasing function with limrÑ8 φprq “ 0. Assume that

lim sup
NÑ8

|aN |2

S2
N

ą 0. (2.2)

Then, µ is a probability measure and there exists r0 ą 0 such that

lim
NÑ8

m

ˆ"

z P BD :

ˇ

ˇ

ˇ

ˇ

GN pzq

SN

ˇ

ˇ

ˇ

ˇ

ď r

*˙

“ 1 (2.3)

for all r ě r0. In particular, the measure µ is compactly supported and µpBpr0qq “ 1.

Proof. Given r ą 0 and N ě 1, denote

AN prq “

"

z P BD :

ˇ

ˇ

ˇ

ˇ

GN pzq

SN

ˇ

ˇ

ˇ

ˇ

ď r

*

and define the functions

PN prq “ m pAN prqq , P prq “ µpBprqq.

From the definitions, it is clear that PN and P are nondecreasing functions. For later con-
venience, we recall that this implies that the set of points at which P is discontinuous is
countable.

First we show that the uniform decay (2.1) implies that µ is a probability measure. It is clear
from the definition that for each N ě 1 we have that limrÑ8 PN prq “ 1. Next, estimate (2.1)
for a given r ą 0 is equivalent to

PN prq “ m pAN prqq ě 1 ´ φprq

for all N ě 1. In particular, if r is a point at which P is continuous, we have that P prq ě

1 ´ φprq. Taking an increasing sequence trku of points of continuity of P tending to infinity,
these observations and the fact that limNÑ8 PN prkq “ P prkq for every k ě 1 imply that
limrÑ8 P prq “ 1, as we wanted to see.

Next we show (2.3). Recall that, because P is nondecreasing and it has at most countably
many discontinuities, this is the same than showing that P prq “ 1 for all r ě r0. Assume that
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r0 r1 r2

P pr0q

1

r

P
pr

q

Figure 1. First, since r1 ą 1{p1´
?
1 ´ εq and r0 “ r1

?
1 ´ ε`1, P is constant

and equal to P pr0q on the interval rr0, r1s. Then, the same argument shows that
P is constant on each interval rrn, rn`1s for n ě 0.

this is not the case, so P prq ă 1 for any finite r. Because of (2.2), there exists ε ą 0 such that
|aN |2 ą εS2

N for infinitely many values of N. For such values of N we get that

S2
N´1

S2
N

“
S2
N ´ |aN |2

S2
N

ă 1 ´ ε.

Now write
GN
SN

“
GN´1

SN´1

SN´1

SN
`
aNgN
SN

.

For r ą 0 and for such values of N, observe that if z P AN´1prq, by the previous identity
we have that z P AN pr

?
1 ´ ε ` 1q. In particular, choosing r ą 0 such that both r and

r
?
1 ´ ε ` 1 are continuity points of P and then taking the limit in N (which exists by

assumption), we find that for such values of r it holds that P prq ď P pr
?
1 ´ ε ` 1q. For

r ě 1{p1´
?
1 ´ εq it happens that r

?
1 ´ ε`1 ď r and, since P is nondecreasing, we actually

have that P prq “ P pr
?
1 ´ ε` 1q.

Pick r0 ą 1{p1 ´
?
1 ´ εq and define the sequence trnu given by

rn`1 “
rn ´ 1
?
1 ´ ε

for n ě 1, which increases to infinity by our choice of r0. Note that, since the P has at most
countably many discontinuities, one can choose r0 as before in a way that rn is a point of
continuity of P for every n ě 0. We use this sequence to prove that P is constant and equal
to P pr0q ă 1 on rr0,`8q. Since r1 ą 1{p1 ´

?
1 ´ εq, the previous argument shows that P is

constant on the interval rr1
?
1 ´ ε`1, r1s “ rr0, r1s, so that P prq “ P pr0q ă 1 for all r P rr0, r1s

(see Figure 1). An inductive reasoning over the sequence trnu gives that P prq “ P pr0q ă 1 for
all r ě r0. However, this contradicts the fact that limrÑ8 P prq “ 1, which must hold because
we have shown that µ is a probability measure. □

We explain now how to use Proposition 3 in the context of Theorem 1. Consider a fixed inner
function f with fp0q “ 0 which is not a rotation and let tanu be a sequence of complex numbers
whose moduli are not square summable. Define σN by (1.2). Recall that estimate (1.4) asserts
that there exists C “ Cp|f 1p0q|q ě 1 such that C´1 ď σN{SN ď C (see also Theorem 8).
However, the actual values of the sequence tσN{SNu depend both on f and the particular
sequence tanu. For this reason, further assume that for our fixed f and tanu the sequence
tσN{SNu converges.
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Denote now

GN pzq “

N
ÿ

n“1

anf
npzq, z P BD,

and express
GN pzq

SN
“

σN
?
2SN

?
2GN pzq

σN
.

Therefore, under the assumption on tσN{SNu, if
?
2GN{σN converges in distribution to a

standard complex normal variable, GN{SN also converges to a (possibly nonstandard) normal
variable. In particular, GN{SN converges in distribution to a finite measure. Recall as well
that σN “ }GN}2 , so that we have the uniform bound

›

›

›

›

GN
SN

›

›

›

›

2

ď C.

Hence, by Chebyshev’s inequality, the functions tGN{SNu satisfy the uniform decay (2.1) with
φprq “ C2{r2. Thus, if

lim sup
NÑ8

|aN |2

řN
n“1 |an|2

ą 0, (2.4)

Proposition 3 implies that GN{SN should converge in distribution to a compactly supported
measure, which is a contradiction.

Observe that there is a class of inner functions f for which tσN{SNu converges regardless
of the sequence tanu. Namely, this happens for all inner functions f satisfying f 1p0q “ 0 in
addition to the hypotheses of Theorem 1. In this case it actually holds that σN “ SN for every
N ě 1 (see Theorem 8) and the argument follows. This includes any function of the form
fpzq “ zd, with d ě 2, which induces a lacunary series. However, it also includes examples
with no lacunarity, such as general finite Blaschke products f with f 1p0q “ 0.

3. Aleksandrov-Clark measures

Given an analytic mapping f from the unit disc into itself (not necessarily inner) and a
point α P BD, the function pα ` fq{pα ´ fq has positive real part and hence there exists a
positive measure µα “ µαpfq in the unit circle and a constant Cα P R such that

α ` fpwq

α ´ fpwq
“

ż

BD

z ` w

z ´ w
dµαpzq ` iCα, w P D. (3.1)

The measures tµα : α P BDu are called the Aleksandrov-Clark measures of the function f .
Clark introduced them in his paper [Cla72] and many of their deepest properties were found
by Aleksandrov in [Ale86], [Ale87] and [Ale89]. The two surveys [PS06] and [Sak07] as well as
[CMR06, Chapter IX] contain their main properties and a wide range of applications. Observe
that if fp0q “ 0 then µα are probability measures. Moreover, f is inner if and only if µα is a
singular measure for some (all) α P BD. From the definition it is clear that, if f is an inner
function, the mass of µα is carried by the set f´1ptαuq Ă BD.

Assume fp0q “ 0. Computing the first two derivatives in formula (3.1) and evaluating at
the origin, we obtain

ż

BD
z dµαpzq “ f 1p0qα, α P BD, (3.2)

and
ż

BD
z2 dµαpzq “

f2p0q

2
α ` f 1p0q2α2, α P BD.

More generally, if we expand both terms of identity (3.1) in power series, we get that for every
positive integer l it holds that

ż

BD
zl dµαpzq “

l
ÿ

k“1

αk
ż

BD
fpzqkzl dmpzq, α P BD.
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Hence for any integer l, the l-th moment of µα is a trigonometric polynomial in the variable
α of degree less than or equal to |l|. Moreover, the coefficients of this polynomials are given
by derivatives of powers of f due to Cauchy’s formula.

Our main technical tool is the Aleksandrov Disintegration Theorem which asserts that

m “

ż

BD
µα dmpαq (3.3)

holds true in the sense that
ż

BD
Gdm “

ż

BD

ż

BD
Gpzq dµαpzq dmpαq

for any integrable function G on the unit circle. In other words, for any given analytic self-
mapping f of the unit disk, the Lebesgue measure is the average of the Aleksandrov-Clark
measures tµαu of f.

Before showing the main application of the Aleksandrov Disintegration Theorem in our
context, we mention a basic fact of inner functions, which is just a restatement of Löwner’s
Lemma. Recall that Löwner’s Lemma claims that if f is an inner function such that fp0q “ 0,
then m

`

f´1pEq
˘

“ m pEq for any measurable set E Ď BD (see for instance [DM91, Corol-
lary 1.5]).

Lemma 4. Let f be an inner function with fp0q “ 0.

(a) Let G be an integrable function on BD. Then
ż

BD
Gpfpzqq dmpzq “

ż

BD
Gpzq dmpzq.

(b) Let k ă j be positive integers. Then
ż

BD
fkf j dm “ f 1p0qj´k.

Proof of Lemma 4. Assume that G is the characteristic function of a measurable set E Ă BD.
Since mpf´1pEqq “ mpEq, the identity (a) follows. The result for general integrable functions
holds because of density of linear combinations of characteristic functions. Using (a) and
Cauchy formula, we have

ż

BD
fkf j dm “

ż

BD
zf j´kpzq dmpzq “ f 1p0qj´k,

where the last equality follows from the chain rule. □

When proving Theorem 1, we will need to estimate integrals of products of iterates of an
inner function f. We will use the Aleksandrov Disintegration Theorem to integrate factors
of these products separately. The following lemma is a particular example of this procedure.
However, the reader will easily see how to apply the same technique to more general products
of iterates. The reason to choose this particular example is not only for clarity, but also
because it will have a direct application in studying the L2 norms of partial sums in Section 4.

Lemma 5. Let f be an inner function with fp0q “ 0. For k “ 1, 2, . . . , p, let nk, jk, be positive
integers such that

maxtnk, jku ă mintnk`1, jk`1u, k “ 1, . . . , p´ 1. (3.4)

Then
ż

BD

p
ź

k“1

fnkf jkdm “

p
ź

k“1

ż

BD
fnkf jkdm. (3.5)

Proof of Lemma 5. We argue by induction on p. Assume (3.5) holds for p ´ 1 products. We
can assume n1 ă j1. By part (a) of Lemma 4 we have

ż

BD

p
ź

k“1

fnkf jk dm “

ż

BD
zf j1´n1pzq

p
ź

k“2

fnk´n1pzqf jk´n1pzq dmpzq.
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Let tµα : α P BDu be the Aleksandrov-Clark measures of the inner function f j1´n1 . The
Aleksandrov Disintegration Theorem (3.3) and the fact that the mass of µα is carried by the
set

␣

z P BD : f j1´n1pzq “ α
(

gives that last integral can be written as

ż

BD

ż

BD
zα

p
ź

k“2

fnk´j1pαqf jk´j1pαq dµαpzq dmpαq.

By (3.2) and part (b) of Lemma 4, we have
ż

BD
z dµαpzq “ f 1p0q

j1´n1
α “ α

ż

BD
fn1f j1 dm.

Hence
ż

BD

p
ź

k“1

fnkf jk dm “

ˆ
ż

BD
fn1f j1 dm

˙
ż

BD

p
ź

k“2

fnk´j1f jk´j1 dm

and we can apply the inductive assumption. One more use of the invariance property of part
(a) of Lemma 4 finishes the proof. □

Linear combinations of iterates of inner functions are not independent, but under suitable
conditions their correlations decay fast enough, which is sufficient for many applications.
The following theorem states a simple condition under which the moduli squared of linear
combinations of iterates of an inner function are uncorrelated.

Theorem 6. Let f be an inner function with fp0q “ 0. Let Ak, k “ 1, 2, . . . , p, be finite
collections of positive integers such that

maxtn : n P Aku ă mintn : n P Ak`1u, k “ 1, . . . , p´ 1. (3.6)

Consider

ξk “
ÿ

nPAk

anf
n.

Then
ż

BD

p
ź

k“1

|ξk|2 dm “

p
ź

k“1

ż

BD
|ξk|2 dm.

Proof. At almost every point of the unit circle we have

|ξk|2 “
ÿ

nPAk

|an|2 `
ÿ

panajfnf
j ` ajanf jf

nq,

where the last sum is taken over all indices n, j P Ak with j ą n. Hence
ś

|ξk|2 can be written
as a linear combination of terms of the form

ź

fnkf jk ,

where nk, jk P Ak. Observe that (3.6) gives the assumption (3.4) in Lemma 5. Now Lemma 5
finishes the proof. □

4. Auxiliary results

This section is devoted to collect some results which will be used in the proof of Theorem 1.
Given an inner function f on the unit disk and a positive integer n, we denote f´n “ fn.

By applying Lemma 5 several times we can estimate expressions of the form
ż

BD
f ε1n1f ε2n2 . . . f εknk dm,

where n1, . . . , nk are positive integers and ε1, . . . , εk P t`1,´1u . The following lemma states
the corresponding results for some particular configurations with 4 factors that will turn out
to be useful later on.
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Lemma 7. Let f be an inner function with fp0q “ 0 which is not a rotation. For k “ 1, 2, 3, 4,
let nk be positive integers and εk P t`1,´1u. Consider

I “ Ipε1n1, ε2n2, ε3n3, ε4n4q “

ż

BD
f ε1n1f ε2n2f ε3n3f ε4n4 dm.

(a) Assume ε1 “ ´ε2, ε3 “ ε4 and maxtn1, n2u ă mintn3, n4u. Then I “ 0.
(b) Assume n1 ă n2 ă n3 ă n4. If ε1ε2 “ ε3ε4 “ ´1 then we have |I| “ |f 1p0q|n2´n1`n4´n3.

If ε1 “ ε2 and n3 ´n2 ě 3, then there exists a constant C “ Cpfq ą 0, independent of the
indices n1, n2, n3, n4, such that |I| ď C|f 1p0q|n4´n1.

(c) Let n1 ă n2 ă n3 be positive integers with n2 ´ n1 ě 3. Then there exists a constant
C “ Cpfq ą 0, independent of the indices n1, n2, n3, such that

ˇ

ˇ

ˇ

ˇ

ż

BD
pf ε1n1q2f ε2n2f ε3n3 dm

ˇ

ˇ

ˇ

ˇ

ď C|f 1p0q|n3´n1 .

(d) Let n1 ď n2 ă n3 be positive integers with n3 ´ n2 ě 3. Then there exists a constant
C “ Cpfq ą 0, independent of the indices n1, n2, n3, such that

ˇ

ˇ

ˇ

ˇ

ż

BD
f ε1n1f ε2n2pf ε3n3q2 dm

ˇ

ˇ

ˇ

ˇ

ď C|f 1p0q|n3´n1 .

Proof of Lemma 7. We can assume n1 ă n2 and ε1 “ 1. Since Lebesgue measure is invariant
under f we have

I “

ż

BD
zf ε2pn2´n1qpzqf ε3pn3´n1qpzqf ε4pn4´n1qpzqdmpzq.

Let tµα : α P BDu be the Aleksandrov-Clark measures of the inner function fn2´n1 . The
Aleksandrov Disintegration Theorem (3.3) and the fact that the mass of µα is carried by the
set tz P BD : fn2´n1pzq “ αu give that

I “

ż

BD

ż

BD
zαε2f ε3pn3´n2qpαqf ε4pn4´n2qpαq dµαpzq dmpαq.

By (3.2) and part (b) of Lemma 4, we have
ż

BD
z dµαpzq “ f 1p0q

n2´n1
α.

We deduce that

I “ f 1p0q
n2´n1

ż

BD
α1`ε2f ε3pn3´n2qpαqf ε4pn4´n2qpαq dmpαq.

If ε2 “ ´1 and ε3 “ ε4 last integral vanishes and we obtain the statement in (a). If ε2 “ ´1
and ε3 “ ´ε4, the modulus of the last integral is |f 1p0q|n4´n3 and we deduce the first part of
(b). Assume now ε2 “ 1. Then

I “ f 1p0q
n2´n1

ż

BD
z2f ε3pn3´n2qpzqf ε4pn4´n2qpzq dmpzq.

Let tσα : α P BDu be the Aleksandrov-Clark measures of the inner function fn3´n2 . The
Aleksandrov Disintegration Theorem (3.3) and the fact that the mass of σα is carried by the
set tz P BD : fn3´n2pzq “ αu give that

I “ f 1p0q
n2´n1

ż

BD

ż

BD
z2αε3f ε4pn4´n3qpαq dσαpzq dmpαq.

By (3.2)
ż

BD
z2dσαpzq “ α2f 1p0q

n3´n2
` αb,

and |b| ď C|f 1p0q|n3´n2 because n3 ´ n2 ě 3. We deduce that

|I| ď C|f 1p0q|n3´n1 max

"ˇ

ˇ

ˇ

ˇ

ż

BD
αlf ε4pn4´n3qpαq dmpαq

ˇ

ˇ

ˇ

ˇ

*

,
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where the maximum is taken over all positive integers l with |l| ď 3. This gives the second
part of statement (b). Similar arguments give parts (c) and (d). □

The next statement collects convenient estimates of L2 and L4 norms of linear combinations
of iterates of an inner function (see [NS22] for details). Here, given u, v P C, we denote by
xu, vy “ Repuvq the standard scalar product of u and v when considered as elements of R2.

Theorem 8. Let f be an inner function with fp0q “ 0 which is not a rotation and let tanu

be a sequence of complex numbers with
ř

n |an|2 ă 8. Consider

ξ “

8
ÿ

n“1

anf
n

and

σ2 “

8
ÿ

n“1

|an|2 ` 2Re
8
ÿ

k“1

f 1p0qk
8
ÿ

n“1

anan`k.

(a) We have }ξ}
2
2 “ σ2 and

κ´1
8
ÿ

n“1

|an|2 ď σ2 ď κ
8
ÿ

n“1

|an|2,

where κ “ p1 ` |f 1p0q|qp1 ´ |f 1p0q|q´1.
(b) For any t P C we have

ż

BD
xt, ξy2 dm “

1

2
|t|2σ2.

(c) There exists a constant C “ Cpfq ą 0 independent of the sequence tanu, such that }ξ}4 ď

C }ξ}2 .

In the proof of Theorem 1 we will need to consider partial sums of the series of iterates of
an inner function and also partial sums restricted to certain subsets of indices tApkqu. This
auxiliary result, proved in [NS22], will allow us to compare the L2 norms of these partial sums.

Lemma 9. Let tanu be a sequence of complex numbers and λ P C with |λ| ă 1. Consider the
sequence

σ2N “

N
ÿ

n“1

|an|2 ` 2Re
N´1
ÿ

k“1

λk
N´k
ÿ

n“1

anan`k, N “ 1, 2 . . .

For N ą 1, let Apjq “ Apj,Nq, for j “ 1, . . . ,M “ MpNq, be pairwise disjoint sets of
consecutive positive integers smaller than N. Consider

σ2pApjqq “
ÿ

nPApjq

|an|2 ` 2Re
ÿ

kě1

λk
ÿ

nPApjq : n`kPApjq

anan`k, j “ 1, 2 . . . ,M.

Let A “ YApjq. Assume

lim
NÑ8

ř

nPA |an|2

řN
n“1 |an|2

“ 1 (4.1)

and

lim
jÑ8

sup
Ną1:jďMpNq

maxt|an|2 : n P Apj,Nqu
ř

nPApj,Nq |an|2
“ 0. (4.2)

Then

lim
NÑ8

řMpNq

j“1 σ2pApj,Nqq

σ2N
“ 1.

Another technical tool for the proof of Theorem 1 is the following general version of Lemma 7
(see [NS22]). It quantifies the correlation of iterates of an inner function when the number of
iterations differ by a large amount. More concretely, if the minimum difference between the
number of iterations on each iterate is at least q, large enough, then we have certain control
over correlations of up to q different such iterates. Here we use the notation f´n “ fn.
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Theorem 10. Let f be an inner function with fp0q “ 0 and a “ |f 1p0q| ă 1. Let 1 ď k ď q
be positive integers. Let ε “ tεju

k
j“1 where εj “ 1 or εj “ ´1, and let n “ tnju

k
j“1 where

n1 ă n2 ă . . . ă nk are positive integers with nj`1 ´ nj ą q for any j “ 1, 2, . . . , k ´ 1.
Consider

Ipε,nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BD

k
ź

j“1

f εjnj dm

ˇ

ˇ

ˇ

ˇ

ˇ

Then there exist constants C “ Cpfq ą 0, q0 “ q0pfq ą 0 independent of ε and of n, such
that if q ě q0 we have

Ipε,nq ď Ckk!aΦpε,nq, k “ 1, 2, . . . ,

where Φpε,nq “
řk´1
j“1 δjpnj`1 ´ njq, with δj P t0, 1{2, 1u for any j “ 1, . . . , k ´ 1, and with

δ1 “ 1 and δk´1 ě 1{2. In addition, for j “ 2, . . . , k ´ 1 the coefficient δj “ 1 if and only if
δj´1 “ 0. Furthermore, if δj´1 ą 0, the coefficient δj depends on εj`1, . . . , εk and nj , . . . , nk
for j “ 2, . . . , k ´ 1.

The last auxiliary result of this section will be used to simplify the proof of Theorem 1. Its
proof is an elementary application of Cauchy-Schwarz’s inequality (see [NS22]).

Lemma 11. Let tfnu, tgnu be two sequences of measurable functions defined at almost every
point of the unit circle. Assume that there exists a constant C ą 0 such that the following
conditions hold

(a) supn }fn}2 ď C and

lim
nÑ8

ż

BD
fn dm “ 1

(b) gnpzq ą ´C for almost every z P BD and limnÑ8 }gn}2 “ 0.

Then

lim
nÑ8

ż

BD
fne

´gn dm “ 1.

5. Proof of the Central Limit Theorem

The proof of Theorem 1 relies on splitting the partial sum

N
ÿ

n“1

anf
n “

ÿ

k

pξk ` ηkq

into certain blocks of consecutive terms which depend on N and that are of two alternating
types: ξk and ηk. In other words, we will have a block ηk between blocks ξk and ξk`1. The
main idea in this construction relies on balancing two counteracting properties. On the one
hand }

ř

ηk}2{σN must be small so that
ř

ηk becomes irrelevant. On the other hand the
number of terms of each block ηk must be large so that the correlations between different
blocks ξk decay sufficiently fast. This procedure was used by M. Weiss in order to prove the
Law of Iterated Logarithm for lacunary series [Wei59] and is detailed in our context in the
next lemma. Let |A| denote the number of elements of a set A of integers.

Lemma 12. Consider an inner function f with fp0q “ 0 which is not a rotation and a
sequence tanu of complex numbers. Denote

σ2N “

N
ÿ

n“1

|an|2 ` 2Re
N´1
ÿ

k“1

f 1p0qk
N´k
ÿ

n“1

anan`k,

S2
N “

N
ÿ

n“1

|an|2

and assume that there exists a nonincreasing function φ with limNÑ8 φpNq “ 0 such that

supt|an|2 : 1 ď n ď Nu ď φpNqS2
N . (5.1)
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If N is large enough, then we can choose indices 0 ď Mk ă Nk`1 ă Mk`1 ď N for 0 ď k ď

QN ´ 1, with the possible exception that NQN
“ MQN

“ N, such that if we define the blocks
of consecutive integers

Apkq “ tn P N : Mk´1 ă n ď Nku, Bpkq “ tn P N : Nk ă n ď Mku, 1 ď k ď QN (5.2)

and the block sums

ξk “
ÿ

nPApkq

anf
n, ηk “

ÿ

nPBpkq

anf
n, 1 ď k ď QN , (5.3)

it holds that,

lim
NÑ8

QNφpNq1{8 “
1

2
, (5.4)

φpNq1{8σ2N À }ξk}
2
2 À φpNq1{8σ2N , (5.5)

1

σN

›

›

›

›

›

N
ÿ

n“1

anf
n ´

QN
ÿ

k“1

ξk

›

›

›

›

›

2

À φpNq1{16 (5.6)

and

|Apkq| ě φpNq´7{8, |Bpkq| ě
1

2
φpNq´1{2, k “ 1, 2, . . . , QN , (5.7)

with the possible exepction that BpQN q may be empty.

In particular, observe that (5.4) and (5.7) imply that

QN ď φpNq´1{8 ď φpNq´1{2 ď |Bpkq|, 1 ď k ď QN ´ 1,

if N is sufficiently large. Hence the number of blocks ξk is much smaller than the number of
(possibly null) terms in the blocks ηk.

Proof. We may assume that N is large enough for φpNq ă 1 to be already small. Recall
that, by Theorem 8, we have that S2

N » σ2N . First we define an auxiliary sequence of indices
0 ď Jk ď Jk`1 ď N as follows. Pick J0 “ 0 and let J1 be the smallest positive integer such
that

J1
ÿ

n“1

|an|2 ě φpNq1{8S2
N .

Now define the auxiliary block of consecutive integers

J p1q “ tn P N : J0 ă n ď J1u.

It is clear that the minimality of J1 and the bound (5.1) on the coefficients imply that
ÿ

nPJ p1q

|an|2 ď φpNq1{8S2
N ` |aJ1 |2 ď pφpNq1{8 ` φpNqqS2

N .

Assume that we have chosen J0, J1, . . . , Jk´1 and defined the blocks of consecutive integers
J p1q, . . . ,J pk ´ 1q. Then pick Jk to be the smallest positive integer such that

Jk
ÿ

n“Jk´1`1

|an|2 ě φpNq1{8S2
N ,

and let
J pkq “ tn P N : Jk´1 ă n ď Jku.

As before, the minimality of Jk and (5.1) give that

φpNq1{8S2
N ď

ÿ

nPJ pkq

|an|2 ď pφpNq1{8 ` φpNqqS2
N . (5.8)

We continue this process until we reach JPN
such that

N
ÿ

n“JPN
`1

|an|2 ă φpNq1{8S2
N (5.9)
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1 2 3 . . . J1 . . . JPN´1 ` 1 . . . JPN
JPN

` 1 . . . N

J p1q . . . J pPN q coefficients in TN

Figure 2. The blocks of indices J pkq are pairwise disjoint blocks of consecu-
tive indices that contain all positive integers up to JPN

.

J p1q Bp1,1q Bp1,2q Bp1,3q Bp1,4q J p3q Bp2,1q Bp2,2q Bp2,3q J p5q

Ap1q Bp1q Ap2q Bp2q Ap3q

Figure 3. In each block J p2kq consider smaller blocks Bpk, jq. Then, we
choose Bpkq to be one of these blocks for which

ř

nPBpk,jq |an|2 is minimal.

Finally, the blocks Apkq are the sets of indices between blocks Bpk ´ 1q and
Bpkq.

and denote T 2
N “

řN
n“JPN

`1 |an|2 (see Figure 2). Observe that by estimate (5.8), summing

over k, we have that

φpNq1{8S2
NPN ď S2

N ´ T 2
N ď pφpNq1{8 ` φpNqqS2

NPN .

Thus, since φpNq Ñ 0, by (5.9) we get that the number PN of auxiliary blocks satisfies

lim
NÑ8

φpNq1{8PN “ 1. (5.10)

Also note that, since |an|2 ď φpNqS2
N for n ď N, we deduce from the lower bound in (5.8) that

φpNqS2
N |J pkq| ě φpNq1{8S2

N , 1 ď k ď PN . Hence, the number of indices in J pkq satisfies

|J pkq| ě φpNq´7{8, 1 ď k ď PN . (5.11)

Next, we modify the auxiliary blocks J pkq to obtain the blocksApkq and Bpkq (see Figure 3).

Fix 1 ď k ď tPN{2u. By (5.11), each block J p2kq has length larger than φpNq´7{8, which is

larger than φpNq´1{2.We pick pk smaller pairwise disjoint blocks of consecutive integers Bpk, jq

of lengths tφpNq´1{2u. Observe that the blocks Bpk, jq may not exhaust Jp2kq. Note that the
estimate (5.11) on the number of indices in J p2kq, gives that we can get at least

pk ě
|J p2kq|

φpNq´1{2
ě φpNq´3{8 (5.12)

such shorter blocks. Now we pick Bpkq to be one of the blocks Bpk, jq such that the sum
ÿ

nPBpk,jq

|an|2

is minimal. It turns out that
ÿ

nPBpkq

|an|2 ď
1

pk

ÿ

nPJ p2kq

|an|2 ď 2φpNq1{2S2
N , (5.13)

where the last inequality follows from (5.8) and (5.12).
We define now the sequences Mk and Nk. For clarity, we will assume that PN is even,

since the minor modifications when it is odd will be obvious. Set QN “ PN{2, M0 “ 0 and,
Nk “ minBpkq ´ 1, Mk “ maxBpkq for 1 ď k ď QN , and

Apkq “ tn P N : Mk´1 ă n ď Nku, 1 ď k ď QN .
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Note that (5.2) is clear by the definition of Mk and Nk. In addition, by the construction of
Bpkq for 1 ď k ď QN we have that

|Bpkq| ě
1

2
φpNq´1{2.

Also, taking into account that each block Apkq, 1 ď k ď QN , contains some block J piq with
1 ď i ď PN odd, estimate (5.11) gives that

|Apkq| ě φpNq´7{8

and this proves (5.7). After defining the sets of indices Apkq and Bpkq, the block sums ξk
and ηk are given by (5.3) for 1 ď k ď QN . Also note that for any 1 ď k ď QN we have
Apkq Ă J p2k ´ 2q Y J p2k ´ 1q Y J p2kq (where we consider J p0q “ H). Hence applying
Theorem 8 to ξk we find

}ξk}
2
2 À

ÿ

nPJ pi´1qYJ piqYJ pi`1q

|an|2 À φpNq1{8σ2N , 1 ď k ď QN ,

which is property (5.5).
When PN is even, the construction already gives that QN “ PN{2, while if PN is odd, then

QN “ pPN ` 1q{2. In any of these two cases, using (5.10) we get (5.4). The other differences
that we would have when PN is odd are that we would have one more block Apkq than Bpkq

and that the last index in the sequences tMku and tNku would be NQN
instead of MQN

.
We are only left with checking (5.6). First denote the sums over indices that are not in any

of the blocks ξk and ηk, by

R2
N “

N
ÿ

n“MQN
`1

|an|2, ρN “

N
ÿ

n“MQN
`1

anf
n.

In particular, note that

R2
N “

JPN
ÿ

n“MQN
`1

|an|2 `

N
ÿ

n“JPN
`1

|an|2 ď p2φpNq1{8 ` φpNqqS2
N .

Thus, using Theorem 8 twice we see that

}ρN}
2
2 “

›

›

›

›

›

N
ÿ

n“1

anf
n ´

QN
ÿ

k“1

pξk ` ηkq

›

›

›

›

›

2

2

À R2
N À φpNq1{8σ2N . (5.14)

Note that
N
ÿ

n“1

anf
n ´

QN
ÿ

k“1

ξk “

QN
ÿ

k“1

ηk ` ρN .

Then using (5.13), (5.14) and (5.4), we deduce
›

›

›

›

›

N
ÿ

n“1

anf
n ´

QN
ÿ

k“1

ξk

›

›

›

›

›

2

ď

QN
ÿ

k“1

}ηk}2 ` }ρN}2 À

À QNφpNq1{4σN ` φpNq1{16σN À φpNq1{16σN .

(5.15)

This concludes the proof of (5.6). □

We use Lemma 12 to prove Theorem 1. The idea is that we will discard the blocks ηk and
the tail ρN as their total L2 norm is irrelevant compared to that of the full partial sum. Then,
the correlation between the blocks ξk will be controlled due to the length of the blocks ηk that
separate them. In practice, this will imply that the blocks ξk will behave almost as if they
were independent.
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Proof of Theorem 1. For a given value of N split the partial sum

N
ÿ

n“1

anf
n

into the blocks ξk and ηk, with 1 ď k ď QN , given by Lemma 12. Observe that, because of
property (5.6) and Chebyshev’s inequality, we only need to see that

TN “

?
2

σN

QN
ÿ

k“1

ξk

tends in distribution to a standard complex normal random variable as N tends to infinity.
We split the proof into several parts.

1. The characteristic function of TN . By the Levi Continuity Theorem, it is sufficient to
show that for any complex number t we have

φN ptq “

ż

BD
eixt,TN y dm Ñ e´|t|2{2, as N Ñ 8. (5.16)

As before xt, wy “ Reptwq is the standard scalar product in the plane. Fix t P C. Our first
step is to show the approximation

lim
NÑ8

˜

φN ptq ´

ż

BD

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

exp

˜

´
xt, ξky

2

σN 2

¸

dm

¸

“ 0. (5.17)

We start with some apriori estimates. Given δ ą 0, consider the sets Ek “ Ekpδ,Nq “ tz P

BD : |ξkpzq| ą δσNu, k “ 1, 2, . . . , QN . By part (c) of Theorem 8 and estimate (5.5) we have

}ξk}
4
4 À φpNq1{4σ4N . Chebyshev’s inequality and estimate (5.4) give

QN
ÿ

k“1

mpEkq À
φpNq1{4σ4NQN

δ4σ4N
À
φpNq1{8

δ4

if N is sufficiently large. Given µ ą 1, consider the set

E0 “ E0pµ, t,Nq “

#

z P BD :

QN
ÿ

k“1

xt, ξkpzqy
2

ą µσ2N

+

.

Part (b) of Theorem 8, estimates (5.4), (5.5) and Chebyshev’s inequality yield

mpE0q À
|t|2φpNq1{8σ2NQN

µσ2N
À

|t|2

µ
,

if N is sufficiently large. Hence the set

E “ Epδ, µ, t,Nq “

QN
ď

k“0

Ek

satisfies

mpEq À

˜

φpNq1{8

δ4
`

|t|2

µ

¸

. (5.18)

Now we will choose appropriate constants δ ą 0 and µ ą 1. Using the elementary identity

exp pzq “ p1 ` zq exp

ˆ

z2

2
` op|z|2q

˙

,

where op|z|2q{|z|2 Ñ 0 as z Ñ 0, we deduce

exp pixt, TNyq “

˜

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

exp

˜

´
xt, ξky

2

σ2N

¸¸

exp

˜

QN
ÿ

k“1

o

˜

xt, ξky
2

σ2N

¸¸

.
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Fix ε ą 0 and let µ ą 1 be a constant to be fixed later. Note that xt, ξkpzqy
2
{σ2N ď δ2|t|2 if

z P BDzEk, k “ 1, . . . , QN . So picking δ “ δpε, tq ą 0 sufficiently small we have

|Re

QN
ÿ

k“1

o

˜

xt, ξkpzqy
2

σ2N

¸

| ď ε

QN
ÿ

k“1

xt, ξkpzqy
2

σ2N
ď εµ, z P BDzE.

Note that the last inequality holds because z P BDzE0. Hence
ˇ

ˇ

ˇ

ˇ

ˇ

ż

BDzE
exp pixt, TNyq dm´

ż

BDzE

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

exp

˜

´
xt, ξky

2

σ2N

¸

dm

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ď peεµ ´ 1q

ż

BDzE

QN
ź

k“1

˜

1 `
2xt, ξky

2

σ2N

¸1{2

exp

˜

´
xt, ξky

2

σ2N

¸

dm ď eεµ ´ 1.

The last inequality follows from the elementary estimate p1 ` xq1{2e´x{2 ď 1 if x ě 0. Hence
ˇ

ˇ

ˇ

ˇ

ˇ

φN ptq ´

ż

BD

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

exp

˜

´
xt, ξky

2

σ2N

¸

dm

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2mpEq ` eεµ ´ 1.

Taking µ “ 1{
?
ε ą 1 we get that both |t|2{µ and εµ are small. Then estimate (5.18) yields

the approximation (5.17) as N Ñ 8. Therefore to prove (5.16) it is sufficient to show that for
any t P C one has

lim
NÑ8

ż

BD

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

exp

˜

´
xt, ξky

2

σ2N

¸

dm “ exp p´|t|2{2q.

This will follow from Lemma 11 applied to the functions

fN “

QN
ź

k“1

ˆ

1 `
i
?
2xt, ξky

σN

˙

,

gN “
1

σ2N

QN
ÿ

k“1

xt, ξky
2

´
|t|2

2
.

According to Lemma 11 it is sufficient to show

sup
N

}fN}2 ă 8, (5.19)

lim
NÑ8

}gN}2 “ 0, (5.20)

lim
NÑ8

ż

BD
fNdm “ 1. (5.21)

2. The norm }fN}2 . Observe that

QN
ź

k“1

˜

1 `
2xt, ξky

2

σ2N

¸

“ 1 `

QN
ÿ

k“1

2k

σ2kN

ÿ

xt, ξj1y
2 . . . xt, ξjky

2,

where the last sum is taken over all collections of indices 1 ď j1 ă . . . ă jk ď QN . Since
xt, ξny

2
ď |t|2|ξn|2, Theorem 6, part (a) of Theorem 8 and estimate (5.5) give that

ż

BD
xt, ξj1y

2 . . . xt, ξjky
2 dm ď Cpfqk|t|2kφpNqk{8σ2kN , 1 ď k ď QN .

Since the total number of distinct collections of indices j1, . . . , jk verifying 1 ď j1 ă . . . ă jk ď

QN is
`

QN
k

˘

, we deduce

ż

BD

QN
ź

k“1

˜

1 `
2xt, ξky

2

σN 2

¸

dm ď 1 `

QN
ÿ

k“1

ˆ

QN
k

˙

Cpfqk2k|t|2kφpNqk{8σ2kN
σ2kN

.
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Simplifying last expression we deduce
ż

BD

QN
ź

k“1

˜

1 `
2xt, ξky

2

σ2N

¸

dm ď

´

1 ` 2Cpfq|t|2φpNq1{8
¯QN

.

Now (5.4) implies that QN À φpNq´1{8, if N is sufficiently large, from which we get that

}fN}
2
2 ď exp p3Cpfq|t|2q. This gives (5.19).

3. The norm }gN}2. Recall that

ξk “
ÿ

nPApkq

anf
n, k “ 1, . . . , QN . (5.22)

Let A “
ŤQN

k“1Apkq. Observe that (5.6) together with Theorem 8 gives

lim
NÑ8

ř

nPA |an|2

S2
N

“ 1.

This is assumption (4.1) of Lemma 9. Assumption (4.2) is an immediate consequence of (5.1)
and (5.5). Thus, Lemma 9 gives

lim
NÑ8

řQN

k“1 }ξk}
2
2

σ2N
“ 1. (5.23)

Denote λ “ t{|t|. We have

gN “
|t|2

4σ2N

QN
ÿ

k“1

ˆ

2|ξk|2 ` λ2ξ2k ` λ2ξ2k ´ 2
σ2N
QN

˙

.

Applying (5.23), the proof of (5.20) reduces to show

lim
NÑ8

›

›

›

›

›

1

σ2N

QN
ÿ

k“1

ψk

›

›

›

›

›

2

“ 0,

where ψk “ 2p|ξk|2 ´ }ξk}
2
2q ` λ2ξ2k ` λ2ξ2k. Now

›

›

›

›

›

QN
ÿ

k“1

ψk

›

›

›

›

›

2

2

“

QN
ÿ

k“1

}ψk}
2
2 ` 2Re

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD
ψkψj dm. (5.24)

Since |ψk| ď 4|ξk|2 ` 2 }ξk}
2
2, parts (a) and (c) of Theorem 8 and estimate (5.5) give that

}ψk}
2
2 ď CpfqφpNq1{4σ4N . Hence, using that QN » φpNq´1{8 by expression (5.4), we get

QN
ÿ

k“1

}ψk}
2
2 À φpNq1{8σ4N

and we deduce

lim
NÑ8

1

σ4N

QN
ÿ

k“1

}ψk}
2
2 “ 0.

The second term in (5.24) splits as

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD
ψkψj dm “ A`B ` C `D,

where

A “ 4

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD

´

|ξk|2 ´ }ξk}
2
2

¯´

|ξj |
2 ´ }ξj}

2
2

¯

dm,

B “ 2

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD

´

|ξk|2 ´ }ξk}
2
2

¯´

λ2ξ2j ` λ2ξ2j

¯

dm,
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C “ 2

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD

´

λ2ξ2k ` λ2ξ2k

¯´

|ξj |
2 ´ }ξj}

2
2

¯

dm,

D “

QN´1
ÿ

k“1

QN
ÿ

jąk

ż

BD

´

λ2ξ2k ` λ2ξ2k

¯´

λ2ξ2j ` λ2ξ2j

¯

dm.

By Theorem 6, }ξkξj}2 “ }ξk}2 }ξj}2 if k ‰ j and we deduce A “ 0. Since the mean of ξ2j over
the unit circle vanishes and at almost every point in the unit circle one has

|ξk|2 “
ÿ

nPApkq

|an|2 ` 2Re
ÿ

nPApkq

ÿ

jPApkq,jąn

anajfnf
j , (5.25)

the integrals in B can be written as a linear combination of
ż

BD
fn1f j1

´

λ2ξ2j ` λ2ξ2j

¯

dm,

where n1, j1 P Apkq and hence maxtn1, j1u ă mintn : n P Apjqu. According to part (a) of
Lemma 7,

ż

BD
fn1f j1ξ2j dm “ 0

and we deduce B “ 0. Since the mean of ξ2k over the unit circle vanishes, we have

C “ 4Re

QN´1
ÿ

k“1

λ2
QN
ÿ

j“k`1

ż

BD
ξ2k|ξj |

2 dm.

Fix j ą k. Using again that ξk vanishes at the origin and formula (5.25), we have
ż

BD
ξ2k|ξj |

2 dm “

ż

BD
ξ2k2Re

ÿ

r,lPApjq,ląr

aralf rf
l dm.

Using formula (5.22) to expand ξ2k, we obtain
ż

BD
ξ2k|ξj |

2 dm “ E ` F,

where

E “
ÿ

nPApkq

ÿ

r,lPApjq,ląr

a2n

ż

BD
pfnq2

´

aralf rf
l ` aralf

rf l
¯

dm,

F “ 2
ÿ

n,sPApkq : sąn

anas
ÿ

r,lPApjq,ląr

ż

BD
fnfs

´

aralf rf
l ` aralf

rf l
¯

dm.

By part (c) of Lemma 7 we have
ˇ

ˇ

ˇ

ˇ

ż

BD
pfnq2f rf l dm

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

BD
pfnq2f lf r dm

ˇ

ˇ

ˇ

ˇ

ď Cpfq|f 1p0q|l´n, if n ă r ă l, r ´ n ě 3.

We deduce that

|E| ď Cpfq
ÿ

nPApkq

|an|2
ÿ

r,lPApjq,ląr

|ar||al||f
1p0q|l´n.

Denote ψpNq “ φpNq´1{2{2. According to (5.7), since j ą k we have r ´ n ě ψpNq for any
r P Apjq and any n P Apkq. Hence we have

ÿ

r,lPApjq,ląr

|ar||al||f
1p0q|l´n ď |f 1p0q|ψpNq

ÿ

tě1

|f 1p0q|t
ÿ

rPApjq : r`tPApjq

|ar||ar`t|. (5.26)

By Cauchy-Schwarz’s inequality, the last sum is bounded by
ř

rPApjq |ar|
2 À φpNq1{8σ2N . Hence

|E| ď Cpfq|f 1p0q|ψpNqφpNq1{4σ4N . (5.27)
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Similarly, part (b) of Lemma 7 gives that
ˇ

ˇ

ˇ

ˇ

ż

BD
fnfsf rf l dm

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

BD
fnfsf rf l dm

ˇ

ˇ

ˇ

ˇ

ď Cpfq|f 1p0q|l´n, n ă s ă r ă l,

if r ´ s ě 3. Then

|F | ď 2Cpfq
ÿ

n,sPApkq : sąn

|an||as|
ÿ

r,lPApjq,ląr

|f 1p0q|l´n|ar||al|.

As before, since j ą k we have that r ´ s ě ψpNq for any r P Apjq and any s P Apkq. Hence
l ´ n “ l ´ r ` r ´ s ` s ´ n ě ψpNq ` l ´ r ` s ´ n, for any n, s P Apkq, s ą n and any
r, l P Apjq, l ą r. Hence

|F | ď 2Cpfq|f 1p0q|ψpNq
ÿ

n,sPApkq : sąn

|f 1p0q|s´n|an||as|
ÿ

r,lPApjq,ląr

|f 1p0q|l´r|ar||al|.

Repeating the argument in (5.26) we obtain

|F | ď 2Cpfqσ4N |f 1p0q|ψpNqφpNq1{4. (5.28)

Now, the exponential decay in (5.27) and (5.28) give that

lim
NÑ8

C

σ4N
“ 0. (5.29)

The corresponding estimate for D follows from the estimate
ˇ

ˇ

ˇ

ˇ

ż

BD
ξk

2ξj
2 dm

ˇ

ˇ

ˇ

ˇ

ď CpfqS4
N |f 1p0q|ψpNq, k ă j.

As before this last estimate follows from (5.7) and from
ˇ

ˇ

ˇ

ˇ

ż

BD
fnfsf lf t dm

ˇ

ˇ

ˇ

ˇ

ď Cpfq|f 1p0q|t´n, n ď s ă l ď t, l ´ s ě 3,

which follows from parts (b) of Lemma 7 when n ă s ă l ă t, part (c) of Lemma 7 if
n “ s, l ă t and part (d) if l “ t. This finishes the proof of (5.20).

4. The integral of fN . In this last step we will prove (5.21). Observe that at almost every
point in the unit circle we have

fN “ 1 `

QN
ÿ

k“1

ik2k{2

σkN

ÿ

xt, ξi1y . . . xt, ξiky, (5.30)

where the second sum is taken over all collections of indices 1 ď i1 ă . . . ă ik ď QN . Fix
1 ď i1 ă . . . ă ik ď QN . The integral

ż

BD
xt, ξi1y . . . xt, ξiky dm “ 2´k

ż

BD

k
ź

n“1

`

tξin ` tξin
˘

dm

is a multiple of a sum of 2k integrals of the form

t
r
tl
ż

BD
ξε1i1 . . . ξ

εk
ik
dm,

where r ` l “ k, εi “ 1 or εi “ ´1 for i “ 1, . . . , k. We recall the notation ξi
´1pzq “ ξipzq,

z P BD. Now, each ξi is a linear combination of iterates of f , that is

ξj “
ÿ

nPApjq

anf
n.

Hence
ż

BD
ξε1i1 . . . ξ

εk
ik
dm “

ÿ

nPC

k
ź

j“1

a
εj
nj

ż

BD
fn1ε1 . . . fnkεk dm,
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where
ř

nPC means the sum over the collection C of all possible k-tuples n “ tnju
k
j“1 of indices

such that nj P Apijq for j “ 1, . . . , k. Since |an| ď SN , n ď N , we have
ˇ

ˇ

ˇ

ˇ

ż

BD
ξε1i1 . . . ξ

εk
ik
dm

ˇ

ˇ

ˇ

ˇ

ď SkN
ÿ

nPC

ˇ

ˇ

ˇ

ˇ

ż

BD
fn1ε1 . . . fnkεk dm

ˇ

ˇ

ˇ

ˇ

. (5.31)

Let ε “ tεju
k
j“1 be fixed and consider Φpnq “ Φpε,nq “

řk´1
j“1 δjpnj`1 ´ njq where δj P

t0, 1{2, 1u for j “ 1, . . . , k ´ 1, with δ1 “ 1 and δk´1 ě 1{2, and with δj “ 1 if and only if
δj´1 “ 0 for j “ 2, . . . , k´ 1, as introduced in Theorem 10. Let a “ |f 1p0q|. Theorem 10 gives

ˇ

ˇ

ˇ

ˇ

ż

BD
ξε1i1 . . . ξ

εk
ik
dm

ˇ

ˇ

ˇ

ˇ

ď k!SkNCpfqk
ÿ

nPC
aΦpnq. (5.32)

We split the sum over n P C as follows. Let D denote the set of pk ´ 1q-tuples δ “ tδju
k´1
j“1 of

coefficients that can appear in Φpnq as one varies n, that is, those tuples with δj P t0, 1{2, 1u

for j “ 1, . . . , k ´ 1, with δ1 “ 1 and δk´1 ě 1{2, and with δj “ 1 if and only if δj´1 “ 0,

for j “ 2, . . . , k ´ 1. Observe that D has at most 2k elements. Given a k-tuple n P C, let us
denote by δpnq the pk ´ 1q-tuple δ of coefficients appearing in Φpnq for that particular value
of n. Then we have that

ÿ

nPC
aΦpnq “

ÿ

δPD

ÿ

tnPC : δpnq“δu

aΦpnq.

Given δ “ tδju
k´1
j“1 P D fixed, we define Φδpnq “

řk´1
j“1 δjpnj`1 ´ njq for every n P C. We

clearly have that
ÿ

nPC
aΦpnq ď

ÿ

δPD

ÿ

nPC
aΦδpnq. (5.33)

Consider now a fixed δ “ pδ1, . . . , δk´1q P D and let us compute the rightmost sum in (5.33).
Recall that δ1 “ 1. It may be useful for the following argument to have in mind that δ might
look like δ “ p1, 1{2, . . . , 1{2, 0, 1, 0, 1, 1{2, . . . , , 1{2q. This is to say that δ has consecutive
chains of nonzero elements (at least one such chain), all of them starting by 1 and with the
rest of the terms, if any, equal to 1{2. Moreover, there is exactly one null term between each
consecutive pair of such chains. Let lp1q be the minimum integer such that δlp1q`1 “ 0 (we set
lp1q “ k ´ 1 if δj ‰ 0 for all 1 ď j ď k ´ 1). This is to say that lp1q is the last index of the
first chain of nonzero elements. In particular, observe that if lp1q ą 1, we have that δj “ 1{2
for 2 ď j ď lp1q because by Theorem 10 δj “ 1 if and only if δj´1 “ 0 for j ą 1. Assume now
that we have determined lpm´ 1q. If lpm´ 1q ă k ´ 1, then let lpmq be the minimum integer
such that lpm´ 1q ă lpmq ď k ´ 1 and such that δlpmq`1 “ 0. As before, we set lpmq “ k ´ 1
if δj ‰ 0 for all lpm ´ 1q ď j ď k ´ 1. We iterate this process until we set lprq “ k ´ 1 for
some integer 1 ď r ď k. Roughly speaking the indices lpmq indicate the end of the strips of
nonzero terms in the components of δ. Taking lp0q “ ´1, note that

Φδpnq “

k´1
ÿ

j“1

δjpnj`1 ´ njq “

r
ÿ

m“1

ˆ

pnlpm´1q`3 ´ nlpm´1q`2q `
1

2
pnlpmq`1 ´ nlpm´1q`3q

˙

.

Hence the sum
ÿ

nPC
aΦδpnq

in the right-hand side of (5.33) becomes a product over m “ 1, . . . , r, of sums of the form

lpmq`1
ÿ

j“lpm´1q`2

ÿ

njPApijq

apnlpm´1q`3´nlpm´1q`2q` 1
2

pnlpmq`1´nlpm´1q`3q. (5.34)

Thus, to estimate
ÿ

nPC
aΦδpnq,
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we need to estimate sums of the form (5.34). Since the argument is identical for any m, we
present it for m “ 1. To simplify the notation write l “ lp1q and assume l ą 2. Denote here
n1 “ maxApi1q, n2 “ minApi2q and nl`1 “ minApil`1q, and observe that n2 ´ n1 ě ψpNq

because of (5.7). Here as before, ψpNq “ φpNq´1{2{2. Notice that the exponent in (5.34) is

pn2 ´ n1q `
1

2
pnl`1 ´ n2q “

1

2
pnl`1 ´ n1q `

1

2
pn2 ´ n1q ě

1

2
ψpNq `

1

2
pnl`1 ´ n1q.

Summing over n1 and n2 we get that (5.34) is bounded by

C2aψpNq{2
l`1
ÿ

j“3

ÿ

njPApijq

apnl`1´n1q{2.

Next, summing over nj for j up to l yields the factor |Api3q| ¨ |Api4q| ¨ ¨ ¨ |Apilq|, while summing

over nl`1 we get the factor apnl`1´n1q{2. In other words,

l`1
ÿ

j“3

ÿ

njPApijq

apnl`1´n1q{2 ď C3apnl`1´n1q{2
p|Api3q| ¨ ¨ ¨ |Apilq|q.

Here, |Apijq| denotes the number of indices in the set Apijq. Recall that between each con-
secutive pair of sets Apijq, there is a set Bpijq with at least ψpNq terms. Thus, we have that
nl`1 ´ n1 ě lψpNq ` |Api3q| ` . . .` |Apilq|. Hence, we find that

l`1
ÿ

j“1

ÿ

njPApijq

apn2´n1q`pnl`1´n2q{2 ď C l`1apl`1qψpNq{2 (5.35)

because each factor a|Apijq||Apijq| is bounded by a universal constant. Note that if l “ 1 or
l “ 2, then (5.35) is obvious.

Now,the full sum
ÿ

nPC
aΦδpnq,

in the right-hand side of (5.33) becomes a product over m “ 1, . . . , r, of sums of the form
(5.34). Thus, applying the estimate (5.35) we get that

ÿ

nPC
aΦδpnq ď

r
ź

m“1

pCaψpNq{2qplpmq´lpm´1qq ď CkakψpNq{2.

Next, summing over δ P D and using the fact that D has at most 2k such tuples, we get that
the sum in the left hand side of (5.33) can be estimated as

ÿ

nPC
aΦpnq ď p2CqkakψpNq{2.

Thus, using this in (5.32), there exists a constant Cpfq ą 0 such that
ˇ

ˇ

ˇ

ˇ

ż

BD
ξε1i1 . . . ξ

εk
ik
dm

ˇ

ˇ

ˇ

ˇ

ď k!SkNCpfqkakψpNq{2.

We deduce that
ˇ

ˇ

ˇ

ˇ

ż

BD
xt, ξi1y . . . xt, ξiky dm

ˇ

ˇ

ˇ

ˇ

ď k!SkNCpfqk|t|kakψpNq{2.

Since the total number of collections of indices 1 ď i1 ă . . . ă ik ď QN is
`

QN
k

˘

, using (5.30),
it follows that

ˇ

ˇ

ˇ

ˇ

ż

BD
fN dm´ 1

ˇ

ˇ

ˇ

ˇ

ď

QN
ÿ

k“1

ˆ

QN
k

˙

k!2k{2σ´k
N pCpfqSN |t|qkakψpNq{2.
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Finally, using that k! ď QkN for any integer 1 ď k ď QN , last sum is smaller than
˜

1 `
Cpfq

?
2|t|SNQNa

ψpNq{2

σN

¸QN

´ 1,

which tends to 0 as N Ñ 8 because by (5.4) we have

lim
NÑ8

SNQ
2
Na

ψpNq{2

σN
“ 0.

□
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Linĕın. Oper. Teorii Funktsĭı. 17 (1989), pp. 7–33, 321.

[CMR06] J. A. Cima, A. L. Matheson, and W. T. Ross. The Cauchy transform. Vol. 125.
Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2006, pp. x+272.

[Cla72] D. N. Clark. “One dimensional perturbations of restricted shifts”. J. Analyse Math.
25 (1972), pp. 169–191.
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3 (1991), pp. 5–79.

[IU23] O. Ivrii and M. Urbański. Inner Functions, Composition Operators, Symbolic Dy-
namics and Thermodynamic Formalism. 2023. arXiv: 2308.16063.

[Nic22] A. Nicolau. “Convergence of linear combinations of iterates of an inner function”.
J. Math. Pures Appl. (9) 161 (2022), pp. 135–165.

[NS22] A. Nicolau and O. Soler i Gibert. “A central limit theorem for inner functions”.
Adv. Math. 401 (2022), Paper No. 108318, 39.

[PS06] A. Poltoratski and D. Sarason. “Aleksandrov-Clark measures”. Recent advances
in operator-related function theory. Vol. 393. Contemp. Math. Amer. Math. Soc.,
Providence, RI, 2006, pp. 1–14.

[Sak07] E. Saksman. “An elementary introduction to Clark measures”. Topics in complex
analysis and operator theory. Univ. Málaga, Málaga, 2007, pp. 85–136.

[SZ47] R. Salem and A. Zygmund. “On lacunary trigonometric series”. Proc. Nat. Acad.
Sci. U.S.A. 33 (1947), pp. 333–338.

[SZ48] R. Salem and A. Zygmund. “On lacunary trigonometric series. II”. Proc. Nat. Acad.
Sci. U.S.A. 34 (1948), pp. 54–62.

[Wei59] M. Weiss. “The law of the iterated logarithm for lacunary trigonometric series”.
Trans. Amer. Math. Soc. 91 (1959), pp. 444–469.

[Zyg88] A. Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library.
Reprint of the 1979 edition. Cambridge University Press, Cambridge, 1988, Vol. I:
xiv+383 pp., Vol. II: iv+364.

Artur Nicolau
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