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Abstract

We consider weak-star closed invariant subspaces of the shift operator in the classi-
cal Bloch space. We prove that any bounded analytic function decomposes into two
factors, one which is cyclic and another one generating a proper invariant subspace,
satisfying a certain permanence property, which in a certain way is opposite to cyclic-
ity. Singular inner functions play the crucial role in this decomposition. We show
in several different ways that the description of shift invariant subspaces generated
by inner functions in the Bloch spaces deviates substantially from the correspond-
ing description in the Bergman spaces, provided by the celebrated Korenblum and
Roberts Theorem. Furthermore, the relationship between invertibility and cyclicity
is also investigated and we provide an invertible function in the Bloch space which
is not cyclic therein. Our results answer several open questions stated in the early
nineties.

1 Introduction

Let D denote the open unit disc in the complex plane C and let B be the classical Bloch
space of analytic functions f in D satisfying

∥f∥B := |f(0)|+ sup
z∈D

(1− |z|)|f ′(z)| <∞.

Taking the closure of analytic polynomials in the norm above we obtain the so-called
little Bloch space B0, which is a separable Banach subspace of B consisting of functions f
satisfying

lim
|z|→1−

(1− |z|)f ′(z) = 0.

Functions in the Bloch space are intimately related to conformal mappings, and as such they
are regarded as a crucial objects in geometric function theory, see [21] for further details.
Let H∞ designate the Banach space of bounded analytic functions f in D equipped with
the usual norm ∥f∥∞ = sup{|f(z)| : z ∈ D}, and recall that H∞ ⊂ B by Schwarz lemma.
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The Bloch space may be regarded as the limit when p → ∞ of the Bergman spaces Bp of
analytic functions f in D such that∫

D
|f(z)|pdA(z) <∞,

where dA denotes the area measure on D. For 1 ≤ p < ∞, we denote by W p the Sobolev
space of analytic functions g on D satisfying

∥g∥pW p := |g(0)|p +
∫
D
|g′(z)|pdA(z) <∞.

Let dm denotes Lebesgue measure in ∂D. It is well-known that the dual space of W 1 can
be identified with B considered in the Cauchy-pairing. More precisely, for any f ∈ B and
g ∈ W 1, the limit

ℓf (g) := lim
r→1−

∫
∂D
f(rζ)g(rζ)dm(ζ)

exists and f induces a unique bounded linear functional on W 1. Similarly, the dual of B0

can be identified with W 1, see for instance [4]. Let Mz denote the multiplication operator
by the independent variable z, that is, the linear operator Mzf(z) = zf(z), f ∈ B. Our
main purpose is to investigate a certain class ofMz-invariant subspaces in B, and to adjust
for the fact that B is not separable, we shall instead consider weak-star closed subspaces
in B which are Mz-invariant. Given a function f ∈ B, we shall denote by [f ]B the smallest
weak-star closed Mz-invariant subspace containing f , that is, [f ]B is the weak-star closure
of polynomial multiples of f . If f ∈ B0, then [f ]B is actually the norm-closure of polynomial
multiples of f by Mazur’s Theorem. A function f ∈ B is called cyclic in B if [f ]B = B.
Since the set of analytic polynomials is weak-star dense in B, we have that f is cyclic
in B if and only if 1 ∈ [f ]B. It is worth mentioning that [f ]B may be much larger than
the subspace of weak-star limits of sequences of polynomial multiples of f , as we shall
demonstrate in Theorem 1.10. A function f ∈ H∞ is declared to satisfy the permanence
property (in B) if the corresponding Mz-invariant subspace satisfies [f ]B ∩ H∞ = fH∞.
The permanence property should be understood as an antithesis to cyclicity, in the sense
that any bounded analytic function in [f ]B is divisible by f .

In this note, we shall mainly be concerned with Mz-invariant subspaces in B generated
by bounded analytic functions. Recall that any f ∈ H∞ can be factored as f = FBSµ,
where F denotes the outer factor of f defined by

F (z) = exp

(∫
∂D

ζ + z

ζ − z
log |f(ζ)|dm(ζ)

)
, z ∈ D,

the function Sµ is the singular inner factor of f given by

Sµ(z) = exp

(
−
∫
∂D

ζ + z

ζ − z
dµ(ζ)

)
, z ∈ D,
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where µ is a positive finite Borel measure on ∂D which is singular with respect dm, while
B denotes the Blaschke product encoding the zeros of f on D, that is,

B(z) =
∏

a:f(a)=0

|a|
a

a− z

1− az
, z ∈ D.

Functions in H∞ having radial limits of modulus one at almost every point of the unit circle
are called inner functions, and they are always of the form Θ = BSµ. Given f ∈ H∞ with
inner-outer factorization f = FBSµ, we denote by νf its associated Herglotz-Nevanlinna
measure defined by

dνf = − log |f(ζ)|dm(ζ) + dµ(ζ) +
∑

z:f(z)=0

(1− |z|2)δz,

where δz denotes the Dirac point mass measure at z ∈ D. Note that if ∥f∥H∞ ≤ 1, then
νf is positive. It was established in [12] that classical outer functions belonging to B must
be cyclic, and the existence of a cyclic singular inner function in B0 was proved in [3]. Our
first result provides a structural theorem forMz-invariant subspaces generated by bounded
analytic functions, where singular inner functions play the decisive role.

Theorem 1.1. Let f = FSµB be in H∞, where F is outer, Sµ is singular inner and B is a
Blaschke product. Then there exists a unique (up to sets of µ-measure zero) decomposition
µ = µP + µC of µ, where µP , µC are mutually singular positive measures giving rise to the
following dichotomy.

(i) The inner function Θ0 := BSµP
generates a proper Mz-invariant subspace on B

satisfying the permanence property, that is, [Θ0]B ∩H∞ = Θ0H
∞.

(ii) FSµC
is cyclic in B.

Theorem 1.1 should be viewed as a Bloch space version of Theorem 1 in [28] by Roberts
in the context of Bergman spaces. Our result shows that in order to understand Mz-
invariant subspaces in B generated by functions in H∞, it suffices to study the permanence
property and cyclicity of singular inner functions. It turns out that these two notions have
natural interpretations in the context of model spaces. For 0 < p < ∞ let Hp denote the
classical Hardy space of analytic functions f in D such that

∥f∥pp = sup
0<r<1

∫
∂D

|f(rζ)|pdm(ζ) <∞.

We recall that given an inner function Θ, the associated model space KΘ is defined as
KΘ = H2 ⊖ΘH2, that is, the orthogonal complement of ΘH2 in the classical Hardy space
H2. It follows from the celebrated Beurling Theorem that the model spaces are the only
invariant subspaces for the adjoint (Mz)

∗ viewed as an operator on H2. A deep result of
Aleksandrov says that functions with continuous extensions to ∂D in any model space are
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always dense therein, see [1] and also [2] and [25] for recent generalizations. Recall that a
closed set E ⊂ ∂D of Lebesgue measure zero is said to be a Beurling-Carleson set if∫

∂D
log dist (ζ, E) dm(ζ) > −∞.

It was recently established that
⋂

p>1W
p∩KΘ is dense in KΘ if and only if Θ = BSµ and µ

is carried on a countable union of Beurling-Carleson sets [26], while ∪p>1W
p∩KSµ = {0} if

and only if µ does not charge any Beurling-Carleson set [17]. We shall now consider what
happens when p = 1 in our next result. Recall that for an inner function Θ, one defines
the associated model space K1

Θ := H1∩ΘzH1, interpreted in the sense of boundary values
on ∂D. In other words, a function f ∈ H1 belongs to K1

Θ if there exists a function g ∈ H1

with g(0) = 0 such that Θ(ζ)f(ζ) = g(ζ) for m-a.e. ζ ∈ ∂D.

Theorem 1.2. Let µ be a positive, finite, Borel, singular measure in ∂D and let Sµ be the
corresponding singular inner function. Then

(i) Sµ is cyclic in B if and only if K1
Sµ

∩W 1 = {0}.

(ii) The permanence property [Sµ]B∩H
∞ = SµH

∞ holds if and only if K1
Sµ

∩W 1 is dense

in K1
Sµ
.

Viewing B as a limiting case of the Bergman spaces, we shall now make a few com-
parisons. In the context of Bergman spaces, the celebrated Theorem of Korenblum and
Roberts asserts that any singular measure µ uniquely decomposes as µ = µC + µK, where
µC is concentrated on a countable union of Beurling-Carleson sets and gives rise to a
proper Mz-invariant subspace generated by SµC satisfying the permanence property on the
Bergman space, while µK charges no Beurling-Carleson set and induces a cyclic vector SµK

therein, see [23], [28]. We shall see that the situation in the Bloch space is very different
and the results of Korenblum and Roberts do not carry over to this setting. Although
we have not been able to find complete geometric descriptions of singular measures µ for
which the corresponding singular inner functions Sµ are cyclic or satisfy the permanence
property in B, we are still able to provide several related conditions which allows us to
answer various open questions and problems posed in [12], [3], [4] and [17].

We declare a continuous non-decreasing and sub-additive function w on [0, 1] with
w(0) = 0 to be a majorant. A closed set E ⊂ ∂D of Lebesgue measure zero is said to have
finite w-entropy if ∫

∂D
logw (dist (ζ, E)) dm(ζ) > −∞.

Of course, when w(t) = tα for some 0 < α < 1, one retains the classical Beurling-Carleson
sets. Various descriptions of sets having finite w-entropy have recently been treated in
[22] and in [24]. Sets of finite w-entropy are precisely the boundary zero sets of analytic
functions in D which extend continuously to ∂D whose modulus of continuity do not exceed
w on D, see [13] for classical Beurling-Carleson sets and [30] for general majorants. As
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mentioned above, a singular inner function is cyclic in the Bergman space if and only if its
associated singular measure does not charge any Beurling-Carleson set. It turns out that
if a singular inner function is cyclic in the Bloch space, its associated singular measure can
not charge a far wider range of sets.

Theorem 1.3. Let w be a majorant. Assume that there exists 0 < γ < 1 such that w(t)/tγ

is non-increasing and that w satisfies the Dini-condition∫ 1

0

w(t)

t
dt <∞.

Assume µ is carried on a countable union of sets having finite w-entropy. Then the asso-
ciated singular inner function Sµ satisfies the permanence property: [Sµ]B ∩H∞ = SµH

∞.

We shall in fact deduce Theorem 1.3 from a slightly stronger statement in Section 3
(see Theorem 3.1 therein), which essentially asserts that inner factors of certain weighted
BMOA spaces gives rise to the permanence property. In order for Sµ to be cyclic in B,
Theorem 1.3 says that µ cannot charge any set of finite w-entropy. Note that the class
of eligible majorants w for which our Theorem holds, goes far beyond classical Beurling-
Carleson sets, as it also applies to slowly increasing majorants of type w(t) = log−α(e/t),
with α > 1. Since any function cyclic in B must necessarily be cyclic in the Bergman
spaces, we have that Sµ is cyclic in B implies that µ cannot charge Beurling-Carleson sets.
The question whether the converse is true was raised in 1991 by Brown and Shields [12].
Theorem 1.3 above shows that this is not the case, but we shall below illustrate that this
actually fails in a very strong sense. Before stating our next result, note that if Sµ ∈ W 1,
then so are the reproducing kernels of KSµ , and since they span a dense subspace of K1

Sµ
,

part (ii) of Theorem 1.2 implies that the permanence property holds whenever Sµ ∈ W 1.

Theorem 1.4. Let w be a majorant with w(t)/t → ∞ as t → 0+. Then there exists a
singular probability measure µ = µ(w) on ∂D satisfying the following properties:

(i) For any arc I ⊂ ∂D, we have µ(I) ≤ w(|I|).

(ii) Sµ ∈ W 1, hence it satisfies the permanence property, that is, [Sµ]B ∩H∞ = SµH
∞.

If we take w(t) = tα, 0 < α < 1, condition (i) implies that µ charges no Beurling-
Carleson set [29] while (ii) shows that Sµ is not cyclic in B. Hence not every cyclic singular
inner function in the Bergman space is cyclic in B, answering the problem left open in [12].
This brings to light a new remarkable discrepancy on Mz-invariant subspaces between the
Hardy spaces and Bergman spaces. Although Beurling’s Theorem on the Hardy spaces
naturally carries over their corresponding limiting case BMOA (see [1]), the Korenblum-
Roberts Theorem on the Bergman spaces breaks down in B. It turns out that the negative
answer to the above mentioned question has an immediate consequence to another related
problem in the context of model spaces, mentioned in [17]. As a consequence of Theorem 1.2
and Theorem 1.4 with w(t) = t log(e/t), we obtain the following conclusion.
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Corollary 1.5. There exists a singular inner function Θ for which the following distinctive
phenomenons occur:

(i) KΘ ∩
⋃

p>1W
p = {0}.

(ii) The reproducing kernels of KΘ belong to W 1 and hence bounded analytic functions
in KΘ ∩W 1 form a dense subset in KΘ.

It was also asked in [3] whether the condition |f(z)| ≳ log−1(e/(1− |z|)) for any z ∈ D of
a Bloch function f , ensures that f is cyclic in B. Our Theorem 1.4 shows that this is not
the case, answering Problem 1 in [3] in the negative. In fact, given any majorant w with
w(t)/t → ∞ as t → 0+, Theorem 1.4 provides a positive singular measure µ such that Sµ

is not cyclic in B while condition (i) readily translates to the estimate

|Sµ(z)| ≳ exp

(
−cw(1− |z|)

1− |z|

)
, z ∈ D,

for some numerical constant c > 0. We conclude that there cannot be any bound from
below of a Bloch function which ensures it to be cyclic in B. This pathological behavior is
very different from the context of Bergman-type spaces, see [7]. As previously mentioned,
Sµ satisfies the permanence property in Bergman spaces if and only if µ is concentrated
on a countable union of Beurling-Carleson sets. Our next result says that the situation
in the Bloch space is completely different and no condition on the support of µ alone can
describe singular inner functions satisfying the permanence property in B.

Theorem 1.6. Let E ⊂ ∂D be a closed set of Lebesgue measure zero. Then there exists a
singular probability measure µ supported on E, such that

(i) µ(I) ≥ |I|, for any dyadic arc I with I ∩ E ̸= ∅,

(ii) Sµ ∈ W 1, hence it satisfies the permanence property, that is, [Sµ]B ∩H∞ = SµH
∞.

In order to construct a cyclic singular inner function in B, the authors in [3] provided
a sufficient condition for functions in B to be cyclic. Our next result gives a different
sufficient condition which in a certain sense generalizes the above mentioned result.

Theorem 1.7. Let f ∈ H∞ without zeros in D, ∥f∥H∞ ≤ 1. Let ν = νf denote its
associated Herglotz-Nevanlinna measure. Assume there exists a constant C = C(f) > 0,
such that for any pair of contiguous arcs I, I ′ ⊂ ∂D of same length |I| = |I ′|, we have∣∣∣∣ν(I)|I|

− ν(I ′)

|I ′|

∣∣∣∣ ≤ C inf exp

(
−ν(J)

|J |

)
, (1)

where the infimum is taken over all arcs J ⊂ ∂D with J ⊃ I ∪ I ′. Then f is cyclic in B.
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Note that condition (1) clearly implies that ν is a Zygmund measure on ∂D, that is,
the expression in the left hand side of (1) is uniformly bounded over the collection of pairs
of contiguous arcs of the same length. However, condition (1) is considerably stronger as it
asserts that if the density of the measure over a an arc is large, then the oscillation of the
densities of the measure on subarcs must be substantially smaller. It is worth mentioning
that the construction in [3] of a singular measure µ for which Sµ is cyclic in B actually
implies that µ satisfies the stronger condition

sup
|I|≤δ

∣∣∣∣µ(I)|I|
− µ(I ′)

|I ′|

∣∣∣∣ ≤ C inf
|J |≥δ

exp

(
−µ(J)

|J |

)
,

which readily implies (1). It turns out that if one removes the infimum in condition (1),
then one retains a description of bounded analytic functions which are invertible in B.
Theorem 1.8. Let f ∈ H∞ without zeros in D, ∥f∥H∞ ≤ 1. Let ν = νf denote its asso-
ciated Herglotz-Nevanlinna measure. Then 1/f ∈ B if and only if there exists a constant
C = C(f) > 0 such that for any pair of contiguous arcs I, I ′ ⊂ ∂D of the same length, we
have ∣∣∣∣ν(I)|I|

− ν(I ′)

|I ′|

∣∣∣∣ ≤ C exp

(
−ν(I)

|I|

)
. (2)

For a description of elements in H∞ ∩ B0 of similar flavour, we refer the reader to
the work of Bishop in [6]. We now turn our attention to the problem of determining
the relationship between invertibility and cyclicity, which is a vastly investigated topic in
various spaces of analytic functions. It it is well-known that in the setting of commutative
Banach algebras of analytic functions with units, the notions of cyclicity and invertibility
are equivalent, while moving towards classes of analytic function for which the algebra
property fails, such as the classical Dirichlet spaces and the Hardy spaces, invertibility
is strictly stronger than cyclicity, see [11]. However, the situation for Bergman spaces
attracted considerable amount of attention and remained open for quite some time until
it was resolved by Borichev and Hedenmalm in [8]. In their deep work, they constructed
invertible functions in the Bergman Spaces, which are not cyclic therein, showing that
the two notions are quite different in that setting. Our next result asserts that a similar
phenomenon occurs in the Bloch space. This answers Problem 2 from [3] in the negative.

Theorem 1.9. There exists f ∈ B with 1/f ∈ B such that f is not cyclic in B.
The crucial property of a function f as above is that |f ′(z)| is as huge as possible for
a considerably large set of points z ∈ D. This aligns well with the principal philosophy
surrounding the work in [8], that an impediment to cyclicity of a Bergman space function
is that the function enjoys maximal growth at a ”massive” set in D.

Our final result should be viewed as a pre-cautionary warning when considering weak-
star closures of Mz-invariant subspaces generated by Bloch functions. In fact it may be
viewed as a Bloch space version of Theorem 1.2 by Borichev and Hedenmalm in [9]. It
asserts that sequential limits are not enough in order to capture the behavior of Mz-
invariant subspaces in B. Recall that classical outer functions in B are always cyclic
therein.
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Theorem 1.10. There exists an outer function f ∈ B with 1/f ∈ H∞, such that the set
of all weak-star sequential limits in B of functions of the type f(z)Q(z), where Q is an
analytic polynomial, is a proper subspace of B.

The paper is organized as follows. Section 2 is devoted to establish Theorem 1.1 and
Theorem 1.2 in the more general framework of so-called regular spaces. In Section 3, we
deduce Theorem 1.3 on the the permanence property induced by certain boundary zero
sets, while Section 4 contains the proofs of Theorem 1.4 and Theorem 1.6, which illustrate
that the results of Korenblum and Roberts in Bergman spaces do not extend to the Bloch
space. Finally, Section 5 is devoted to establishing our results on the theme of invertibility
versus cyclicity, containing Theorem 1.7, Theorem 1.8, Theorem 1.9 and Theorem 1.10.

2 Beurling-type theorems and model spaces

In this section, we shall keep a broad point of view and illustrate a close relationship
between Beurling-type theorems on Mz-invariant subspaces generated by inner functions
Θ and the ample of functions with sufficiently regular boundary values belonging the model
space KΘ.

2.1 Regular spaces

A Banach space X of analytic functions in D will be referred to as a regular space if the
following three properties hold:

(i) X ⊆ H1.

(ii) The set of analytic polynomials and the set of functions analytic in a neighborhood
of D are dense in X.

(iii) For any ℓ in the dual space X∗, we have lim supn→∞ |ℓ(zn)|1/n ≤ 1.

Assumption (i) ensures that the boundary values of functions in X are integrable on ∂D
and by the closed graph theorem, there exists a constant C > 0 such that ∥f∥1 ≤ C∥f∥X
for any f ∈ X. Assumption (ii) implies that X is a separable Banach space, thus Helly’s
selection theorem ensures that any closed and bounded set in the norm of its Banach space
dual X∗ is sequentially compact wrt to the weak-star topology. In conjunction with (iii),
we may substitute the abstract Banach space dual-pairing between X,X∗ with the more
practical Cauchy dual X ′, considered via the H2-pairing

lim
r→1−

∫
∂D
f(rζ)g(rζ)dm(ζ), f ∈ X, g ∈ X ′.

Note that condition (i) also gives the containment H∞ ⊂ X ′. For our purposes, we shall
equip X ′ with the weak-star topology. Let us briefly verify that X = W 1 is indeed a
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regular space. Note that if g ∈ W 1, then∫
∂D

|g(rζ)− g(0)|dm(ζ) ≤
∫
∂D

∫ r

0

|g′(sζ)|dsdm(ζ) ≤ ∥g∥W 1 , 0 < r < 1.

HenceW 1 ⊂ H1 as required. It is clear that analytic polynomials are dense inW 1. Finally
since the Cauchy-dual relation (W 1)′ ∼= B holds, condition (iii) is also fulfilled as the Taylor
coefficients of Bloch functions are well-known to be bounded, see [4]. We thus conclude
that X = W 1 indeed is a regular space. More generally, classical examples of regular
spaces are provided by the analytic Sobolev spaces W p with p ≥ 1 and their counter-parts
involving multiple derivatives.

2.2 Mz-invariant subspaces in duals of Regular Spaces

Let X be a regular space and let X ′ denote its Cauchy dual. In this subsection we collect
several general properties of Mz-invariant subspaces in X ′. Given a function f ∈ X ′, we
denote by [f ]X′ the weak-star closure inX ′ of the smallestMz-invariant subspace containing
f . We declare f ∈ X ′ to be cyclic in X ′ if [f ]X′ = X ′. Similarly, given an inner function
Θ, we say that Θ satisfies the permanence property in X ′ if

[Θ]X′ ∩H∞ ⊆ ΘH∞.

The permanence property was recently introduced in the papers [25] and [27], in more
specific context than ours. We also mention that it implicitly appeared in the earlier work
of J. Roberts [28], in the context of Bergman spaces. Let X be a regular space, let Θ
be an inner function and let P be the set of analytic polynomials. Observe that X ∩K1

Θ

regarded as a subset of X is precisely the pre-annihilator of ΘP ⊂ X ′, denoted by ΘP⊥.
A standard argument involving the Hahn-Banach separation theorem gives the following
equality of sets

(X ∩K1
Θ)

⊥ = (ΘP⊥)
⊥ = [Θ]X′ . (3)

Since the Cauchy reproducing kernels are inX, weak-star convergence inX ′ implies conver-
gence on compact subsets of D. Hence the permanence property always holds for Blaschke
products. In what follows, we shall thus restrict our attention to the permanence prop-
erty for singular inner functions. Recall that H∞ is the Cauchy dual of the Banach space
L1(dm)/H1

0 , where H
1
0 denotes the subspace of functions in H1 vanishing at the origin.

Our first simple observation is that for regular spaces X, the weak-star topology in X ′ is
coarser than the weak-star topology in H∞.

Lemma 2.1. Let X be a regular space. Then H∞ ⊂ X ′ holds, and whenever {fn}n
converges to f in weak-star of H∞, then fn converges to f in weak-star of X ′.

Proof. Both these statements follow immediately from the assumption X ⊆ H1 of regular
spaces.
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Our next observation allows us to substitute multiples of analytic polynomials by multi-
ples of H∞-functions when considering (weak-star) cyclicity of a bounded analytic function
in X ′.

Proposition 2.2. Let f ∈ H∞. Then the weak-star closure in X ′ of fH∞ := {fh : h ∈
H∞} equals [f ]X′.

Proof. It suffices to verify that fh ∈ [f ]X′ for any h ∈ H∞. Let {Qn}n be a sequence of
polynomials which converge weak-star in H∞ to h. Then since f ∈ H∞, Qnf converges
weak-star in H∞ to fh. The conclusion now follows from Lemma 2.1.

Our next results illustrates a certain ordering for Mz-invariant subspaces generated by
bounded analytic functions.

Proposition 2.3 (Division principle). Let f, g ∈ H∞ with the property that f/g ∈ H∞.
Then [f ]X′ ⊆ [g]X′. In particular, whenever f is weak-star cyclic in X ′, then g is weak-star
cyclic in X ′.

Proof. Set h = f/g ∈ H∞ and note that it suffices to show that f = hg ∈ [g]X′ . This
however follows from the same argument as in Proposition 2.2.

For singular inner functions Sµ, the division principle implies that whenever Sµ is cyclic
in X ′, then so is any divisor Sµ0 of Sµ, where 0 ≤ µ0 ≤ µ. In the opposite direction, a
monotonicity principle for the permanence property of singular inner functions in X ′ holds.

Proposition 2.4 (Monotonicity principle). Let {µn}n be a sequence of positive, finite,
Borel, singular measures with µn ≤ µn+1, n ≥ 1, such that µn → µ weak-star in the space
of complex finite Borel measures on ∂D. Then if for any n ≥ 1, the associated singular
inner functions Sµn satisfies the permanence property in X ′, then so does Sµ.

Proof. Note that by monotonicity each Sµn is a divisor of Sµ hence K1
Sµn

⊆ K1
Sµ

for each n.
Since Sµn satisfies the permanence property for any n ≥ 1, then according to Proposition
2.3, we obtain

[Sµ]X′ ∩H∞ ⊆ [Sµn ]X′ ∩H∞ ⊆ SµnH
∞, n ≥ 1.

Let f ∈ [Sµ]X′ ∩H∞ be arbitrary and note that by the above containment, we can for any
n find a bounded analytic function hn such that f = Sµnhn. Now since ∥hn∥∞ = ∥f∥∞,
for n ≥ 1, we may extract a subsequence {hnk

}k which converges pointwise in D to some
h ∈ H∞. Since Sµn converges pointwise in D to Sµ, we conclude that f = Sµh. Thus Sµ

satisfies the permanence property in X ′ as desired.

Our final lemma asserts that Mz-invariant subspaces generated by bounded analytic
functions are invariant under the multiplication of outer functions in H∞. In particular,
outer functions in H∞ always cyclic in X ′.

Lemma 2.5. Let F ∈ H∞ be an outer function and g ∈ H∞. Then [Fg]X′ = [g]X′.
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Proof. The containment Fg ∈ [g]X′ follows from the proof of Proposition 2.2 and gives
the inclusion ⊆. For the converse inclusion, we apply Theorem 7.4 in [20] which yields a
sequence of bounded analytic functions {Fn}n satisfying the following properties

(i) |Fn(z)F (z)| ≤ 1, z ∈ D,

(ii) Fn(ζ)F (ζ) converges pointwise to 1 for m-a.e ζ ∈ ∂D.

Then FgFn converges weak star in H∞ to g. The result now follows from Lemma 2.1 and
Proposition 2.2.

2.3 Proof of Theorem 1.2 in the context of Regular Spaces

Our main purpose is to establish the connection between the containment of a regular
space X in the model spaces KΘ to Mz-invariant subspaces generated by Θ in X ′ in the
weak-star topology. However, the assumption X ⊆ H1 actually makes the model spaces
K1

Θ more appropriate in this regard. We recall that the reproducing kernels of K1
Θ are

explicitly given by

κΘ(z, λ) :=
1−Θ(λ)Θ(z)

1− λz
, λ, z ∈ D

and their linear span forms a dense subset in K1
Θ. Our first observation is related to

cyclicity of inner functions Θ in X ′ and the existence of non-trivial functions in X ∩K1
Θ.

We remark that similar results were known for a wide range of analytic Sobolev spaces X
in [17] and more recently, it has appeared implicitly in a more general setting similar to
ours in [25].

Proposition 2.6. Let X be a regular space. An inner function Θ is weak-star cyclic in
X ′ if and only if X ∩K1

Θ contains no non-trivial function.

Proof. Any g ∈ X ∩K1
Θ is annihilated by polynomial multiples of Θ, hence if we assume

that Θ is weak-star cyclic in X ′, then g ≡ 0. Conversely, if Θ is not weak-star cyclic in X ′,
then there exists a non-trivial g ∈ X such that∫

∂D
g(ζ)Θ(ζ)ζndm(ζ) = 0, n ≥ 0.

The F. and M. Riesz Theorem implies that there exists g0 ∈ H1 with g0(0) = 0 such that
g = Θg0 at almost every point of ∂D. Hence g ∈ H1 ∩ΘzH1 = K1

Θ.

Next we shall relate the density of regular spaces in the model spaces K1
Θ to the per-

manence property of Θ in X ′. The following result is very similar to Theorem 1.3 in [25],
but we shall need a more general version for our setting.

Proposition 2.7. Let X be a regular space and let Θ be an inner function. Then X ∩K1
Θ

is dense in K1
Θ if and only if Θ satisfies the permanence property in X ′.

11



Proof. Suppose that X ∩K1
Θ is dense in K1

Θ and let f ∈ [Θ]X′ ∩H∞. According to (3), f
must necessarily annihilate the family of reproducing kernels {kΘ(·, λ)}λ∈D of K1

Θ, that is

f(λ) = Θ(λ)

∫
∂D

Θ(ζ)f(ζ)

1− ζλ
dm(ζ), λ ∈ D.

Hence f ∈ ΘH2, but since f ∈ H∞, we get that f ∈ ΘH∞ as desired. Conversely, if the
permanence property holds, then in fact we verify that the following stronger condition
holds:

[Θ]X′ ∩H2 ⊆ ΘH2. (4)

To see this, note that if f ∈ [Θ]X′ ∩H2, then [f ]X′ ⊆ [Θ]X′ . Let f = FΦ, where F is outer
and Φ inner. We want to show that Θ divides Φ in H2. For n ≥ 1, consider the outer
function Fn defined as |Fn| = min (n, |F |) on ∂D and note that if we set fn := FnΦ, then
fn/f ∈ H∞ and hence by the division principle Proposition 2.3, we get

[fn]X′ ⊆ [f ]X′ ⊆ [Θ]X′ , n ≥ 1.

However since fn = FnΦ is bounded for each n ≥ 1, Lemma 2.5 implies that [fn]X′ = [Φ]X′

and thus we conclude that Φ ∈ [Θ]X′ ∩H∞ ⊆ ΘH∞, proving the claim. With this at hand,
note that (4) in conjunction with (3) may be rephrased as

(X ∩K1
Θ)

⊥ ∩H2 ⊆ ΘH2.

Now since the Cauchy dual (K1
Θ)

′ is contained in K2
Θ (see [19]), we see that any annihilator

of X ∩K1
Θ is contained in K2

Θ ∩ ΘH2 = {0}. This is enough to conclude that X ∩K1
Θ is

dense in K1
Θ.

Proof of Theorem 1.2. Taking X = W 1, part (a) follows from Proposition 2.6, while (b)
follows from Proposition 2.7.

2.4 An abstract decomposition for singular measures

Inspired from the Korenblum-Roberts Theorem on Mz-invariant subspaces generated by
inner functions, this section is devoted to extending their result to the context of Regular
Spaces. Here we shall follow ideas developed by Roberts in [28], with certain required
adaptations in order to deal with our general framework.

Theorem 2.8 (Abstract decomposition). Let X be a regular space and let Sµ be a singular
inner function. Then there exists a unique decomposition of µ = µP + µC (up to sets of
µ-measure zero) into mutually singular parts µP , µC satisfying the following properties:

(i) SµP
has the permanence property in X ′, that is, [SµP

]X′ ∩H∞ ⊆ SµP
H∞,

(ii) SµC
is weak-star cyclic in X ′, that is, [SµC

]X′ = X ′.

12



Proof. Let µ|E denote the restriction of µ to the Borel set E. Consider the the following
collection of Borel subsets of ∂D

M(X ′, µ) :=
{
E ⊂ ∂D : E Borel set, µ(E) > 0,

[
Sµ|E

]
X′ ∩H∞ ⊆ Sµ|EH

∞} .
If the set M(X ′, µ) is empty, then we simply take µC = µ. For the being moment,
we shall assume that the collection M(X ′, µ) is non-empty, and our goal is to primarily
establish that M(X ′, µ) is closed under the formation of unions. To this end, pick two
sets E,F ∈ M(X ′, µ) which we may assume are not contained in one or another. Set
ν := µ|E∪F and note that the containment of K1

Sµ|E
⊂ K1

Sν
in conjunction with (3) implies

[Sν ]X′ ∩H∞ =
(
X ∩K1

Sν

)⊥ ∩H∞ ⊆ (X ∩K1
Sµ|E

)⊥ ∩H∞ =
[
Sµ|E

]
X′ ∩H∞ ⊆ Sµ|EH

∞.

Therefore, any f ∈ [Sν ]X′ ∩H∞ is divisible by Sµ|E , and by switching the roles of E and
F , we deduce in a similar way that f is also divisible by Sµ|F . Altogether, we obtain
f/Sν ∈ H∞ and therefore E ∪ F ∈ M(X ′, µ). Now consider the quantity

γ(X ′, µ) := sup {µ(E) : E ∈ M(X ′, µ)} ,

and observe that since M(X ′, µ) is closed under finite unions, we can find a sequence
of Borel sets {En}n with En ∈ M(X ′, µ) and En ⊂ En+1 for any n, such that µ(En) →
γ(X ′, µ) as n→ ∞. Set E := ∪nEn and we claim that our candidates are given by µP = µ|E
and µC = µ|∂D\E. We first check that E ∈ M(X ′, µ). To this end, let f ∈

[
Sµ|E

]
X′ ∩H∞

and note that since each En ∈ M(X ′, µ), an application of (3) implies[
Sµ|E

]
X′ ∩H∞ = (X∩K1

Sµ|E
)⊥∩H∞ ⊆ (X∩K1

Sµ|En

)⊥∩H∞ =
[
Sµ|En

]
X′ ∩H∞ ⊆ Sµ|En

H∞,

for all n. Hence for each n, there exists {hn}n ⊂ H∞ such that f = Sµ|En
hn. But since

∥hn∥∞ = ∥f∥∞, we may extract a subsequence {hnk
}k that converges pointwise in D to a

certain function h ∈ H∞. Now since the sequence of sets {En}n is increasing, we actually
obtain f = SµE

h. This proves that E ∈ M(X ′, µ) and consequently we have established
claim (i) with µP = µ|E.
We now proceed to establish claim (ii) by showing that if µC := µ|∂D\E then SµC

is weak-
star cyclic in X ′. To this end, suppose that SµC

is not weak-star cyclic in X ′, then there
exists a non-trivial g ∈ X such that∫

∂D
g(ζ)SµC

(ζ)ζndm(ζ) = 0, n ≥ 0.

By the F. and M. Riesz Theorem, there exists a function h1 ∈ H1 with h1(0) = 0 such that

g(ζ) =
h1(ζ)

SµC
(ζ)

=
h2(ζ)

Sν(ζ)
, m− a.e. ζ ∈ ∂D.

Here h2 ∈ H1, h2(0) = 0, 0 ≤ ν ≤ µC and the quotient h1/h2 is a singular inner function
dividing SµC

(possibly a unimodular constant). Now if ν ≡ 0, then g ∈ H1 ∩ H1 on ∂D

13



with g(0) = 0, which implies g ≡ 0, thus contradicting the assumption that g is non-
trivial. Hence we may assume that ν ̸= 0, and our aim is to establish that Sν satisfies the
permanence property, which will contradict the maximality of SµP

. To this end, note that∫
∂D
g(ζ)Sν(ζ)ζ

ndm(ζ) =

∫
∂D
h2(ζ)ζ

ndm(ζ) = 0, n ≥ 0,

hence by the F. and M. Riesz Theorem, we have g ∈ K1
Sν

:= H1 ∩ SνH1
0 . Now if u ∈

[Sν ]X′ ∩H∞, then according to (3) we actually get∫
∂D
g(ζ)u(ζ)ζndm(ζ) = 0, n ≥ 0.

Applying the F. and M. Riesz Theorem once again, we can find h3 ∈ H1 with h3(0) = 0
such that

g(ζ) =
h3(ζ)

u(ζ)
=
h2(ζ)

Sν(ζ)
, m− a.e. ζ ∈ ∂D

which implies that u ∈ SνH
∞. Hence Sν satisfies the permanence property in X ′. We have

thus obtained the desired contradiction and it follows that SµC
is weak-star cyclic in X ′.

Obviously the same argument works in case the collection M(X ′, µ) is void. The claim
regarding uniqueness of the above decomposition of µ follows from maximality of µP with
respect to the permanence property in X ′.

Proof of Theorem 1.1. The following proof of Theorem 1.1 actually holds for any regular
space X. Note that statement (i) in Theorem 2.8 regarding the permanence property
is easily shown to remain true if SµP

is multiplied by a Blaschke product. The claim
on cyclicity in (ii) of Theorem 1.1 follows from the cyclicity of SµC

in conjunction with
Lemma 2.5. This completes the proof.

As a consequence of Theorem 2.8 in conjunction with the results in Section 2.3, we
conclude this section with the following description regular spaces in model spaces.

Corollary 2.9. Let X be a regular space, let Θ = BSµ where B is a Blaschke product
and Sµ is a singular inner function. Consider the decomposition µ = µP + µC given in
Theorem 2.8. Then the following holds:

Abundance of regular functions: X ∩K1
BSµP

is a dense subspace of K1
BSµP

,

Absence of regular functions: K1
SµC

∩X = {0}.

3 The permanence property and boundary zero sets

This section is devoted to showing that inner factors of certain weighted BMOA spaces
give rise to the permanence property in B, for which Theorem 1.3 will be derived as a
corollary.
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3.1 Inner factors in weighted BMOA

Let w be a majorant and denote by BMOw(∂D) the space of Lebesgue integrable functions
h on ∂D equipped with the semi-norm

∥h∥BMOw
:= sup

I

1

w(|I|)
1

|I|

∫
I

|h− hI |dm <∞.

We denote by Cw(∂D) the space of continuous functions h on ∂D equipped with the semi-
norm

∥h∥Cw
:= sup

ζ ̸=ξ

|h(ζ)− h(ξ)|
w(|ζ − ξ|)

<∞.

It is straightforward to verify the containment Cw(∂D) ⊆ BMOw(∂D) and it turns out that
these spaces share very intimate features. If the majorant w satisfies the Dini-condition∫ 1

0

w(t)

t
dt <∞, (5)

then functions in BMOw(∂D) extend continuously to ∂D with modulus of continuity not

exceeding a constant multiple of
∫ δ

0
w(t)
t
dt. Conversely, if the Dini-condition (5) on w fails

then BMOw(∂D) contains discontinuous and unbounded functions. See [31] for details
on these matters. Analytic counter-parts of the above defined spaces will be important,
namely we consider the spaces BMOAw := H2 ∩ BMOw(∂D) and Aw := H∞ ∩ Cw(∂D),
hence the containment Aw ⊆ BMOAw holds. Moving forward, we shall now restrict
our attention to majorants w satisfying the following condition. There exists a constant
0 < γ < 1 such that

w(t)/tγ is non-increasing on [0, 1]. (6)

We now state our main result in this section.

Theorem 3.1. Let w be a majorant satisfying condition (6) and the Dini condition (5).
Then any non-trivial singular inner factor Sµ of a function in BMOAw satisfies the per-
manence property in B, that is, [Sµ]B∩H

∞ = SµH
∞. In particular, no non-trivial singular

inner divisor of a function in BMOAw can be cyclic in B.

An important class of singular inner factors of BMOAw-functions are in fact provided
by singular inner factors of Aw-functions, which turn out to be intimately connected to
sets of finite w-entropy due to a deep result by Shirokov in [30]. For the moment being, we
shall primarily establish Theorem 3.1 and then illustrate how Theorem 1.3 can be derived
as a corollary. In the pursuit towards proving Theorem 3.1, we shall need a couple of
preparatory results. The first lemma can be found in a slight greater generality in [18] (see
Proposition 2.6 therein for further details).

Lemma 3.2. Let w be a majorant satisfying condition (6). Then the BMOw semi-norm
is equivalent to the Garsia-type semi-norm, that is,

∥h∥BMOw
≍ sup

z∈D

1

w(1− |z|)

∫
∂D
|h(ζ)− P (h)(z)|Pz(ζ)dm(ζ)
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where P (h) denotes the Poisson extension of h on D and Pz(ζ) = (1 − |z|2)|1 − zζ|−2,
z ∈ D, ζ ∈ ∂D, is the Poisson kernel on D.

With Lemma 3.2 at hand, we may derive the following result on the Cauchy projection.

Lemma 3.3. Let w be a majorant satisfying condition (6) and the Dini condition (5).
Then the Cauchy projection P+ maps BMOw(∂D) continuously into W 1.

Proof. Fix an arbitrary h ∈ BMOw(∂D) and observe that

P+(h)
′(z) =

∫
∂D

ζh(ζ)

(1− ζz)2
dm(ζ) =

∫
∂D

ζ (h(ζ)− P (h)(z))

(1− ζz)2
dm(ζ), z ∈ D.

According to Lemma 3.2, we have

|P+(h)
′(z)| ≤

∫
∂D

|h(ζ)− P (h)(z)|
|1− ζz|2

dm(ζ) ≲ ∥h∥BMOw

w(1− |z|)
1− |z|

, z ∈ D.

It now readily follows that∫
D
|P+(h)

′(z)|dA(z) ≲ ∥h∥BMOw

∫ 1

0

w(t)

t
dt,

which shows that P+ : BMOw(∂D) → W 1 continuously.

The following result on division and multiplication by inner functions on weighted
BMOA spaces due to K. Dyakonov in [18] plays a crucial role in our developments.

Theorem 3.4 (Dyakonov). Let w be a majorant satisfying condition (6). Let g ∈ BMOAw

and let Θ be an inner function. Then gΘ belongs to BMOw(∂D) if and only if gΘ belongs
to BMOAw.

It follows from the work in [18] that if w satisfies condition (6), then BMOAw enjoys
the factorization property. More specifically, whenever g ∈ BMOAw and Θ is an inner
function with g/Θ ∈ H∞, then in fact g/Θ ∈ BMOAw.

Proof of Theorem 3.1. Let Θ := Sµ be a singular inner factor of a function g ∈ BMOAw.
By means of applying the factorization property of BMOAw, we may without loss of
generality assume that g = GΘ, where G is an outer function in BMOAw. Now applying
Theorem 3.4 to the function G, we conclude that GΘ belongs to BMOw(∂D) and thus so
does GΘ. Hence if kλ denotes the Cauchy kernel at the point λ ∈ D, then the function gλ :=
GΘkλ also remains in BMOw(∂D). Applying Lemma 3.3, we conclude that P+(gλ) ∈ W 1.
Given H ∈ L∞(∂D, dm), we denote by TH the Toeplitz operator with symbol H defined
as TH(f) := P+(Hf). If κΘ(·, λ) denotes the reproducing kernel of the model space KΘ at
the point λ ∈ D, we have that

TG (κΘ(·, λ)) (z) = TG(kλ)(z)−Θ(λ)P+(gλ)(z), z ∈ D,

belongs to W 1 ∩KΘ. This follows from the following properties of Toeplitz operators with
co-analytic symbols:
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(a) TH : W p → W p for any H ∈ H∞ and 1 < p <∞.

(b) TH : KΦ → KΦ for any H ∈ H∞ and any inner function Φ.

For instance, see [14]. Property (a) is actually more than what is needed here, but it
certainly guarantees that Tf (kλ) belongs to W

1 for each λ ∈ D, while property (b) shows
that TG (κΘ(·, λ)) belongs to KΘ. Consequently, we conclude that TG (κΘ(·, λ)) belong to
W 1∩KΘ. We now proceed by verifying that the linear spanM of the set {TG(κSΘ

(·, λ))}λ∈D
is dense in KΘ. To this end, let f ∈ KΘ be an element which annihilates M. Then

0 =

∫
∂D
TG(κΘ(·, λ))(ζ)f(ζ)dm(ζ) =

∫
∂D
κΘ(ζ, λ)G(ζ)f(ζ)dm(ζ), λ ∈ D.

Since the linear span of the reproducing kernels are dense in KΘ, we conclude that there
exists a function h ∈ H2 such that Gf = Θh. Now recalling that G was outer, we conclude
that f ∈ ΘH2 ∩KΘ = {0}, and thus M is dense in KΘ. Now since KΘ is dense in K1

Θ, we
also conclude that M is dense in K1

Θ. Recalling that W 1 is the Cauchy pre-dual of B, it
now follows from Proposition 2.7 that [Θ]B ∩H∞ ⊆ ΘH∞, hence the proof is complete.

We now turn our attention to the proof of Theorem 1.3.

Proof of Theorem 1.3. We shall primarily assume that the positive finite singular measure
µ on ∂D is supported on a single (closed) set E of finite w-entropy. According to Shirokov’s
Theorem in [30], there exists an outer function f ∈ Aw such that the product fSµ belongs
to Aw ⊂ BMOAw. Hence by Theorem 3.1 Sµ satisfies the permanence property in B.
Now assume that µ is concentrated on countable union of sets {En}n having finite w-
entropy, which we may assume are increasing: En ⊆ En+1 for any n. Consider µn := µ|En

and observe that µn converges to µ in the weak-star topology of finite complex Borel
measures on ∂D. Since each Sµn satisfies the permanence property in B, so does Sµ by the
monotonicity principle in Proposition 2.4. The proof is now complete.

4 The permanence property and W 1

4.1 The permanence property and invisibility

Let µ be a positive finte Borel singular measure on ∂D. It was already mentioned in the
introduction that the permanence property holds for singular inner functions in W 1. Our
first observation in this section provides a simple way for inducing the permanence property
in B of singular inner functions. Let µ be a positive finite singular Borel measure on ∂D
and assume

sup
{
µ(E) : Sµ|E ∈ W 1

}
> 0. (7)
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We may pick a sequence of Borel sets {EN}N with the property that each Sµ|EN
∈ W 1

and such that µ(EN) converges to the supremum above. Observe that whenever ϕ, ψ are
bounded functions inW 1, so is their product ϕψ, and thus we may without loss of generality,
assume that the EN ⊆ EN+1 for any N . Now let E := ∪NEN and set µ0 := µ − µ|E and
observe that by maximality, there exists no non-trivial ν0 ≤ µ0 with Sν0 ∈ W 1. Measures
satisfying the above condition are declared to be W 1 invisible. As previously observed in
the introduction, each SµEN

satisfies the permanence property in B and thus according to
the monotonicity principle in Proposition 2.4, so does Sµ|E . Our discussion can thus be
summarized in the following result.

Proposition 4.1. Let µ be a positive finite singular Borel measure on ∂D and µ|E denote
the corresponding piece in the decomposition of µ appearing in the previous paragraph.
Then Sµ|E satisfies the permanence property in B, that is,

[
Sµ|E

]
B ∩H∞ ⊆ Sµ|EH

∞. As a
consequence, if Sµ is cyclic in B, then µ is W 1 invisible.

4.2 Singular inner functions in W 1

This section is devoted to study singular inner functions in W 1. For any arc I ⊆ ∂D, we
denote its associated Carleson square by QI = {z ∈ D : z/|z| ∈ I, 1− |z| ≤ |I|} , and we
let TI = {z ∈ QI : 1− |z| ≥ |I|/2} be the top-half of QI .

Lemma 4.2. There exists a universal constant C > 0, such that for any singular measure
µ on ∂D and any arc I ⊂ ∂D with µ(I) = 0, the associated singular inner function Sµ

satisfies ∫
QI

∣∣S ′
µ(z)

∣∣dA(z) ≤ C|I|.

Proof. Let {Ik}k∈Z denote the Whitney decomposition of I satisfying

dist(Ik, ∂I) = |Ik| =
1

3 · 2|k|
|I|, k ∈ Z.

We first observe that there exists an absolute constant C > 0 such that∫
QI\

⋃
k QIk

|S ′
µ(z)|dA(z) ≤

∫
QI\

⋃
k QIk

dA(z)

1− |z|2
≤ C|I|. (8)

It remains to estimate the integral of |S ′
µ| on ∪kQIk . To this end, for each Whitney arc

Ik, we denote by ξk its center and let zk = (1− |Ik|)ξk. Note that there exists an absolute
constant c > 0 such that c−1|ζ−zk| ≤ |ζ−z| ≤ c|ζ−zk| for any z ∈ QIk and any ζ ∈ ∂D\I.
Since µ(I) = 0 the Poisson extension P (µ) of µ satisfies

P (µ)(z) =
1− |z|2

1− |zk|2

∫
∂D\I

1− |zk|2

|ζ − z|2
dµ(ζ) ≍ (1− |z|)P (µ)(zk)

|Ik|
, z ∈ QIk .
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Now using this in conjunction with the obvious estimate

(1− |z|2)|S ′
µ(z)| ≤ 2P (µ)(z) exp(−P (µ)(z)), z ∈ D,

it follows that there exists a universal constant C > 0 such that∫
QIk

|S ′
µ(z)|dA(z) ≲

P (µ)(zk)

|Ik|

∫
QIk

exp

(
−C(1− |z|)P (µ)(zk)

|Ik|

)
dA(z).

A straightforward computation of the integral above gives∫
QIk

|S ′
µ(z)|dA(z) ≲ |Ik|.

Summing over k completes the proof.

We shall now locate the critical domain of integration in order for Sµ to belong to W 1,
which will be convenient for our further developments.

Corollary 4.3. Let µ be a positive singular Borel measure supported on a closed set E ⊂
∂D. Then Sµ belongs to W 1 if and only if∑

I∈D
I∩E ̸=∅

∫
TI

∣∣S ′
µ(z)

∣∣dA(z) <∞,

where D denotes the collection of dyadic arcs on ∂D.
Proof. It is sufficient to show that the above condition implies that Sµ ∈ W 1. To this end,
let G denote the collection of maximal dyadic arcs which do not intersect E. Observe that
we can write ∫

D

∣∣S ′
µ(z)

∣∣dA(z) = ∑
I∈D

I∩E ̸=∅

∫
TI

∣∣S ′
µ(z)

∣∣dA(z) +∑
I∈G

∫
QI

∣∣S ′
µ(z)

∣∣dA(z)
Note that Lemma 4.2 gives∑

I∈G

∫
QI

∣∣S ′
µ(z)

∣∣dA(z) ≤ C
∑
I∈G

|I| <∞,

which is enough to prove the desired claim.

As a consequence, we obtain the following sufficient condition for membership of Sµ inW 1.

Corollary 4.4. Let µ be a positive finite singular Borel measure supported on a Beurling
Carleson set of the unit circle. Then Sµ belongs to W 1.

Proof. It is well known that a closed set E ⊂ ∂D of Lebesgue measure zero is a Beurling
Carleson set if and only if ∑

I∈D
I∩E ̸=∅

|I| <∞,

see [10]. The claim now follows from Schwarz Lemma and Corollary 4.3.
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4.3 No estimate from below implies cyclicity in B
This subsection is devoted to Theorem 1.4, which essentially asserts that no condition on
the modulus of continuity on µ alone is an impediment for Sµ to be a member in W 1.
According to the discussion in the introduction, this implies that there cannot be any
estimate from below of a singular inner function which ensures it to be cyclic in B.

Proof of Theorem 1.4. We shall divide the proof in three different steps.

Step 1: Construction of µ

Let {nl}l be an increasing sequence of positive integers to be specified later according to

the majorant w. Set µ(∂D) = 1 and consider the subcollection G1 = {I(1)j }j of every other

dyadic arc of generation n1. In other words |I(1)j | = 2−n1 and dist(I
(1)
j , I

(1)
j+1) = 2−n1 for any

j. On these arcs, we set µ(I
(1)
j ) = 2|I(1)j | for each j, and note that∑

j

µ(I
(1)
j ) = 2

∑
j

|I(1)j | = 1.

Hence µ spreads its mass precisely on the collection G1. Next we consider the subcollection
G2 = {I2j }j of dyadic arcs of generation n2 contained in ∪I(1)j , in such a way that inside

each I
(1)
k , we pick every other dyadic arc of generation n2 to include in our subcollection.

Thus |I(2)j | = 2−n2 and dist(I
(2)
j , I

(2)
j+1) ≥ 2−n2 for each j. With this at hand, we now set

µ(I
(2)
j ) = 22|I(2j | for each j and observe that for any arc I

(1)
k ∈ G1, we have∑

I
(2)
j ⊂I1k

µ(I
(2)
j ) = 22

∑
I
(2)
j ⊂I

(1)
k

|I(2)j | = 2|I(1)k | = µ(I
(1)
k ).

Hence inside each I
(1)
k , we again evenly distribute the mass of µ on every other dyadic arc

of generation n2, and denote this joint collection by G2 = {I(2)j }. We proceed by induction.
Assume the first l − 1 collections of dyadic arcs have been constructed. Then we consider
the collection Gl = {I(l)k } of every other dyadic arc contained in an arc of Gl−1 and set

µ(I
(l)
j ) = 2l|I(l)j |, for each j. Hence for each I

(l−1)
k ∈ Gl−1 we have∑

I
(l)
j ⊂I

(l−1)
k

µ(I
(l)
j ) = 2l

∑
I
(l)
j ⊂I

(l)
k

|I(l)j | = 2l−1|I(l−1)
k | = µ(I

(l−1)
k ).

Note also that for each l ≥ 1, we have∑
k

|I(l)k | = 2−l. (9)

Now extend µ to a Borel measure on ∂D. Note that by construction, µ is supported inside
E := ∩l ∪j I

(l)
j , which has Lebesgue measure zero and thus µ is indeed a positive finite

singular measure.
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Step 2: Verifying condition (i)

We shall now specify a choice for the sequence of positive integers {nl}l so that condition
(i) holds. To this end, notice that since w(t)/t → ∞ as t → 0+, for any non-negative
integer l, we can pick nl in such a way that

w(2−nl)

2−nl
≥ 2l6.

With this choice, we have

µ(I
(l)
j ) = 2l|I(l)j | = 2l2−nl ≤ w(2−nl)/6 = w(|I(l)j |)/6.

We first check that condition (i) holds for dyadic arcs I. We fix an arbitrary dyadic arc I
of length 2−n and pick a positive integer l such that nl−1 ≤ n < nl. We have

µ(I) =
∑
j:Ilj⊂I

µ(I
(l)
j ) =

∑
j:Ilj⊂I

2l
∣∣∣I(l)j

∣∣∣ ≤ 2l−1|I| ≤ w(2−nl−1)

2−nl−1

|I|
3

≤ w(|I|)
3

,

where in the last step we have used the property that w(s)/s ≤ 2w(t)/t whenever s < t,
which easily follows from the sub-additivity of majorants. Let I ⊂ ∂D be an arbitrary arc
and pick n > 0 such that 2−n < b − a ≤ 2−(n−1). Since I is contained in at most three
dyadic arcs of length 2−n, the estimate (i) holds.

Step 3: Verifying condition (ii)

To this end, for each pair of positive integers (k, l) we consider the set

Ω
(l)
k :=

{
z ∈ D : 2−nl+1 < 1− |z| ≤ 2−nl , z/|z| ∈ I

(l)
k

}
and note that according to (iii) of Corollary 4.3 it suffices to prove that∑

k,l

∫
Ω

(l)
k

∣∣S ′
µ(z)

∣∣dA(z) <∞. (10)

For z ∈ D \ {0} let Iz denote the arc centered at z/|z| of length 1 − |z|. Observe that

there exists a positive constant c > 0 such that for z ∈ Ω
(l)
k , we have that P (µ)(z) ≥

cµ(Iz)/|Iz| ≥ c2l. Using the formula S ′
µ(z) = Sµ(z)H(µ)′(z), z ∈ D, where H(µ) denotes

the Herglotz transform of µ, we get∑
k,l

∫
Ω

(l)
k

∣∣S ′
µ(z)

∣∣dA(z) ≤∑
k,l

e−c2l
∫
Ω

(l)
k

|H(µ)′(z)|dA(z). (11)

The rest of the proof shall be devoted to establishing the following estimate∫
Ω

(l)
k

|H(µ)′(z)|dA(z) ≲ 2l |I(l)k | = µ(I
(l)
k ), k, l ≥ 1. (12)
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Indeed, once (12) is established we simply use the fact that
∑

k µ(I
(l)
k ) = 1 and apply the

estimate (11) to deduce that∑
k,l

∫
Ω

(l)
k

∣∣S ′
µ(z)

∣∣dA(z) ≲∑
l

e−c2l
∑
k

µ(I
(l)
k ) <∞,

which gives (10) and finishes the proof. So it only remains to show that estimate (12)

holds. For z ∈ Ω
(l)
k we write

H(µ)′(z) =
∑
j

∫
I
(l+1)
j

2ζdµ(ζ)

(ζ − z)2
=

∑
j:I

(l+1)
j ⊆I

(l)
k

∫
I
(l+1)
j

2ζdµ(ζ)

(ζ − z)2
+

∑
j:I

(l+1)
j ∩I(l)k

=∅

∫
I
(l+1)
j

2ζdµ(ζ)

(ζ − z)2

= (I) + (II).

We shall first treat the term (II). Note that if z ∈ Ω
(l)
k and ζ ∈ I

(l+1)
j with I

(l+1)
j ∩ I(l)k = ∅,

then |ζ − z| ≳ |I(l)k |. Then

|(II)| ≲
∑

j:I
(l+1)
j ∩I(l)k

=∅

µ(I
(l+1)
j )

dist(I
(l+1)
j , I

(l)
k )2

= 2l+1
∑

j:I
(l+1)
j ∩I(l)k

=∅

|I(l+1)
j |

dist(I
(l+1)
j , I

(l)
k )2

≲
2l

|I(l)k |
.

This implies ∫
Ω

(l)
k

|(II)|dA ≲ 2l|I(l)k |,

and hence we may now devote our attention to estimating (I). To this end, we shall
decompose it into two pieces by rewriting

(I) =
∑

j:I
(l+1)
j ⊆I

(l)
k

∫
I
(l+1)
j

2ζ

(ζ − z)2
2l+1dm(ζ)+

∑
j:I

(l+1)
j ⊆I

(l)
k

∫
I
(l+1)
j

2ζ

(ζ − z)2
(
dµ(ζ)− 2l+1dm(ζ)

)
= A+B.

Denote by ξ
(l+1)
j the center of I

(l+1)
j and observe that since µ(I

(l+1)
j ) = 2l+1|I(l+1)

j |, we can
add a cancellative term to B and write

B =
∑

j:I
(l+1)
j ⊆I

(l)
k

∫
I
(l+1)
j

(
2ζ

(ζ − z)2
−

2ξ
(l+1)
j

(ξ
(l+1)
j − z)2

)(
dµ(ζ)− 2l+1dm(ζ)

)
.

Now using the mean value Theorem together and the fact that |ζ−z| ≳ |ξ(l+1)
j −z| whenever

ζ ∈ I
(l+1)
j and z ∈ Ω

(l)
k , we get

|B| ≲
∑

j:I
(l+1)
j ⊆I

(l)
k

µ(I
(l+1)
j ) + 2l+1|I(l+1)

j |
|ξ(l+1)

j − z|3
|I(l+1)

j | =
∑

j:I
(l+1)
j ⊆I

(l)
k

2l+2|I(l+1)
j |2

|ξ(l+1)
j − z|3

. (13)
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A straightforward calculation shows that∫
Ω

(l)
k

dA(z)

|ξ(l+1)
j − z|3

≲
1

|I(l+1)
j |

. (14)

Combining this with (13), we conclude∫
Ω

(l)
k

|B|dA ≲ 2l
∑

j:I
(l+1)
j ⊆I

(l)
k

|I(l+1)
j | ≤ 2l|I(l)k |.

Hence it only remains to estimate the quantity A. Denote by I + |I| the arc I rotated by

|I|-units and observe that by construction of the dyadic arcs I
(l+1)
j , we have⋃

j:I
(l+1)
j ⊆I

(l)
k

I
(l+1)
j ∪

(
I
(l+1)
j + |I(l+1)

j |
)
= I

(l)
k .

Applying the mean value Theorem as before, we get∣∣∣∣∣
∫
I
(l+1)
j

ζdm(ζ)

(ζ − z)2
−
∫
I
(l+1)
j +|I(l+1)

j |

ζdm(ζ)

(ζ − z)2

∣∣∣∣∣ ≲ |I(l+1)
j |2

|z − ξ
(l+1)
j |3

, z ∈ Ω
(l)
k , j, l, k ≥ 1.

Hence∫
Ω

(l)
k

∣∣∣∣∣A− 2l
∫
I
(l)
k

2ζdm(ζ)

(ζ − z)2

∣∣∣∣∣dA(z) ≲∫
Ω

(l)
k

2l
∑

j:I
(l+1)
j ⊆I

(l)
k

∣∣∣∣∣
∫
I
(l+1)
j

ζdm(ζ)

(ζ − z)2
−
∫
I
(l+1)
j +|I(l+1)

j |

ζdm(ζ)

(ζ − z)2

∣∣∣∣∣dA(z) ≲
2l

∑
j:I

(l+1)
j ⊆I

(l)
k

|I(l+1)
j |2

∫
Ω

(l)
k

dA(z)∣∣ξl+1
j − z

∣∣3 ≲ 2l
∑

j:I
(l+1)
j ⊆I

(l)
k

|I(l+1)
j | ≤ 2l|I lk|.

In the penultimate step, we have used (14). In order to finish the proof, it just remains to
verify that ∫

Ω
(l)
k

∣∣∣∣∣
∫
I
(l)
k

ζdm(ζ)

(ζ − z)2

∣∣∣∣∣dA(z) ≲ |I(l)k |. (15)

To this end, let I
(l)
k = (a

(l)
k , b

(l)
k ) and observe that fixed z ∈ D, the primitive of ζ/(ζ − z)2

is explicitly given by log(ζ − z)− z/(ζ − z), which allows us to compute∫
I
(l)
k

ζdm(ζ)

(ζ − z)2
= log

(
b
(l)
k − z

a
(l)
k − z

)
+

z|I(l)k |
(b

(l)
k − z)(a

(l)
k − z)

.
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Then ∣∣∣∣∣
∫
I
(l)
k

ζdm(ζ)

(ζ − z)2

∣∣∣∣∣ ≲ |I(l)k |
|b(l)k − z||a(l)k − z|

, z ∈ Ω
(l)
k ,

and thus ∫
Ω

(l)
k

∣∣∣∣∣
∫
I
(l)
k

ζdm(ζ)

(ζ − z)2

∣∣∣∣∣dA(z) ≲ |I(l)k |
∫
Ω

(l)
k

dA(z)

|b(l)k − z||a(l)k − z|
.

Since either |z − b
(l)
k | ≥ |I(l)k |/2 or |z − a

(l)
k | ≥ |I(l)k |/2 for any z ∈ Ω

(l)
k , we deduce∫

Ω
(l)
k

dA(z)

|b(l)k − z||a(l)k − z|
≲ 1.

This gives (15) and finishes the proof.

4.4 The permanence property discriminates no compact set

Here we devote our attention to the proof of Theorem 1.6, which roughly asserts that any
compact set on the unit circle of Lebesgue measure zero can support a singular measure
µ for which the associated singular inner function is a member of W 1. This implies that
no condition on the carrier set of a singular measure µ alone can describe the permanence
property of Sµ in the Bloch space.

Proof of Theorem 1.6. The proof is divided in three steps.

Step 1: Constructing a covering of E

We first construct by induction an appropriate sequence of coverings of E by dyadic arcs.
Set G0 := {∂D} and assume that a covering Gk = {I(k)j : j ≥ 1} of E by dyadic arcs has

already been constructed and E∩I(k)j ̸= ∅ for any j ≥ 1. For any I ∈ Gk we denote by G̃(I)
the collection of maximal dyadic subarcs J̃ of I such that at least one of the two dyadic
children of J̃ does not intersect E. Note that G̃(I) = {I} if one of the two dyadic children

of I ∈ Gk does not intersect E. Moreover, by maximality of the collection G̃(I), for each

J̃ ∈ G̃(I) there exists exactly one dyadic child J of J̃ with J ∩ E ̸= ∅. Now consider

G(I) :=
{
J : J dyadic child of some J̃ ∈ G̃(I), with J ∩ E ̸= ∅

}
.

The set Gk+1 :=
⋃

I∈Gk
G(I) is again a covering of E that will be denoted by Gk+1 = {I(k+1)

j :
j ≥ 1}. Since E is a closed set of Lebesgue measure zero, for any arc I ∈ Gk, the union of

the arcs of the collection G̃(I) covers almost every point of I. Hence the collection {Gk}k
satisfies the following packing condition: for any I

(k)
l ∈ Gk we have

∑
J∈Gk+1

J⊂I
(k)
l

|J | =
∑
j≥1

I
(k+1)
j ⊆I

(k)
l

|I(k+1)
j | = |I(k)l |

2
, k, l ≥ 1. (16)
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Observe that by construction E = ∩k∪J∈Gk
J . Indeed, the inclusion ⊆ follows from the fact

that each Gk is a covering of E, while if ζ0 /∈ E, then there exists a dyadic arc I0 containing
ζ0 with I0∩E = ∅. Hence for every sufficiently large k, we must have ζ0 ∈ I0 ⊂ ∩J∈Gk

∂D\J ,
which establishes the reverse inclusion ⊇.

Step 2: Constructing the measure µ:

We now construct µ by declaring its mass on dyadic arcs. Initially, we set µ(∂D) = 1. Now
let I ⊂ ∂D be a dyadic arc and assume, by means of induction, that µ(I) has already been
defined in such a way that µ(I) = 0 whenever I ∩ E = ∅. Denote by I+, I− the dyadic
children of I. If both I+, I− happens to meet E, then we distribute the mass evenly by
declaring

µ(I+)

|I+|
=
µ(I−)

|I−|
=
µ(I)

|I|
.

If not, say I+ ∩ E = ∅, then we distribute all the mass to I− by setting

µ(I−)

|I−|
= 2

µ(I)

|I|
, µ(I+) = 0.

Indeed, this is consistent since

µ(I)

|I|
=

1

2

µ(I+)

|I+|
+

1

2

µ(I−)

|I−|
.

Observe that by construction, the support of µ is equal to E = ∩k ∪J∈Gk
J which has

Lebesgue measure zero. Hence µ is a non-trivial singular measure. Moreover, it is clear
that for any dyadic arc I with I ∩ E ̸= ∅, we have µ(I) ≥ |I|. Observe also that by

construction, for any I
(k)
j ∈ Gk, we have

µ(I
(k)
j )

|I(k)j |
≥ 2k, j, k ≥ 1. (17)

Step 3: Verifying condition (ii)

It now remains to prove that the associated singular inner function Sµ belongs to W 1. To

this end, for each k ≥ 1 and I
(k)
j ∈ Gk consider the region

Ω
(k)
j := Q

I
(k)
j

\
⋃

J̃∈G̃(I(k)j )

QJ̃ .

According to (iii) of Corollary 4.3, it is sufficient to establish that∑
k,j

∫
Ω

(k)
j

∣∣S ′
µ

∣∣dA <∞.
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Next we shall make yet another reduction. Let I = I
(k)
j and denote by µI the restriction

of µ to I. According to Lemma 4.2, there exists an absolute constant C > 0 such that∫
QI

|S ′
µ∂D\I

(z)|dA(z) ≤ C|I|.

Hence using (16), we get∑
k,j

∫
Ω

(k)
j

|S ′
µ
∂D\I(k)

j

(z)|dA(z) ≤ C
∑
k,j

|I(k)j | =
∑
k≥1

2−k = C.

With this observation at hand, it then suffices to show that∑
k,j

∫
Ω

(k)
j

|S ′
µ
I
(k)
j

(z)|dA(z) <∞. (18)

Using (17) in conjunction with standard estimates of Poisson kernels, there exists a uni-
versal constant c > 0 such that

|S ′
µ
I
(k)
j

(z)| ≤ e−c2k |H(µ
I
(k)
j
)′(z)|, z ∈ Ω

(k)
j , k, j ≥ 1. (19)

Thus (18) follows from the estimate∫
Ω

(k)
j

|H(µ
I
(k)
j
)′(z)|dA(z) ≲ µ(I

(k)
j ) j, k ≥ 1.

whose proof is quite similar to the proof of estimate (12). We omit the details.

5 Cyclicity and invertibility

5.1 A sufficient condition for cyclicity

This subsection is devoted to proving Theorem 1.7. A finite complex Borel measure ν on
∂D (not necessarily singular) is said to be a Zygmund measure if

∥ν∥∗ := sup

∣∣∣∣ν(I)|I|
− ν(I ′)

|I ′|

∣∣∣∣ <∞,

where the supremum is taken over all pairs of contiguous arcs I, I ′ of the same length. For
the sake of future references, we shall state the following result due to Duren, Shapiro and
Shields in [16] below, see also [15].
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Lemma 5.1. A finite complex Borel measure ν on ∂D is a Zygmund measure if and only
if its Herglotz transform defined as

H(ν)(z) =

∫
∂D

ζ + z

ζ − z
dν(ζ), z ∈ D,

belongs to B. In this case, there exists a universal constant C > 0 such that

|H(ν)(z)−H(ν)(w)| ≤ C∥ν∥∗β(z, w), z, w ∈ D,

where β(z, w) denotes the hyperbolic distance on D between the points z and w. Moreover,
the following asymptotic relation holds:

P (ν)(z) =
ν(Iz)

|Iz|
+O (1) ∥ν∥∗, z ∈ D. (20)

where Iz ⊂ ∂D denotes the arc centered at z/|z| of length 1− |z|.

We will also use an auxiliary result that has appeared in the setting of Rd in [15]. We
shall need it in the context of the unit circle where its proof is an exercise left to the reader.

Lemma 5.2. Let ν be a finite Borel measure on ∂D. Then there exists an absolute constant
C > 0, such that

(1− |z|)|H(ν)′(z)| ≤ C

∫ 2π

0

(1− |z|)
|eit − |z||3

|ν(I(z, t))− ν(I(z,−t))|dt, z ∈ D,

where I(z, t) denotes the smallest arc joining z/|z| to zeit/|z| if z ̸= 0 and I(0, t) is the arc
joining 1 and eit.

Given an arc I ⊂ ∂D and C > 0 let CI denotethe arc with the same center as I and
length C|I|. We will also need the following technical result.

Lemma 5.3. Let ν be a positive finite Borel measure on ∂D. Assume there exists a constant
C = C(ν) > 0 such that ∣∣∣∣ν(I)|I|

− ν(I ′)

|I ′|

∣∣∣∣ ≤ Ce−ν(I)/|I|, (21)

for any pair of contiguous arcs I, I ′ ⊂ ∂D of the same length. Then for any ε > 0, there
exists δ > 0 such that for any integer n with |n| ≤ δeν(I)/|I| we have∣∣∣∣ν(2nI)|2nI|

− ν(I)

|I|

∣∣∣∣ ≤ min{εn, 1}. (22)

Proof. Note that the assumption gives that ν is a Zygmund measure. Moreover (21) gives
that there exists a constant C1 > 0 such that∣∣∣∣ν(2I)2I

− ν(I)

|I|

∣∣∣∣ ≤ C1e
−max{ν(2I)/|2I|,ν(I)/|I|},
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for any arc I ⊂ ∂D. Using the elementary estimate |ex − ey| ≤ emax{x,y}|x − y|, x, y ∈ R,
we deduce ∣∣eν(2I)/|2I| − eν(I)/|I|

∣∣ ≤ C1,

for any arc I ⊂ ∂D. Hence for any integer k we have∣∣∣eν(2kI)/|2kI| − eν(I)/|I|
∣∣∣ ≤ C1|k|. (23)

Now if |n| ≤ (2C1)
−1eν(I)/|I|, we obtain∣∣eν(2nI)/|2nI| − eν(I)/|I|

∣∣ ≤ 1

2
eν(I)/|I|. (24)

Hence ∣∣∣∣ν(2nI)|2nI|
− ν(I)

|I|

∣∣∣∣ ≤ 1.

Note that to check (22) we can assume that ν(I)/|I| is large. Fix ε > 0. Let
M = M(ε) > 0 be a large number to be fixed later. Use (23) to pick δ > 0 such that
ν(2kI)/|2kI| > M if k is an integer with |k| < δeν(I)/|I|. Then assumption (21) gives that∣∣∣∣ν(2kI)|2kI|

− ν(2k−1I)

|2k−1I|

∣∣∣∣ ≲ e−M , if |k| ≤ δeν(I)/|I|.

We deduce that∣∣∣∣ν(2nI)|2nI|
− ν(I)

|I|

∣∣∣∣ ≤ n∑
k=1

∣∣∣∣ν(2kI)|2kI|
− ν(2k−1I)

|2k−1I|

∣∣∣∣ ≲ e−Mn, if |n| ≤ δeν(I)/|I|.

and taking M ≲ log(1/ε), estimate (22) follows.

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. It is sufficient to find a sequence of bounded analytic functions hn
such that:

(i) supn∥hnf∥B <∞,

(ii) hn(z)f(z) → 1 for any z ∈ D.

Set rn := 1 − 2−n and consider hn(z) := 1/f(rnz), z ∈ D. Note that condition (ii) is
trivially satisfied, hence it remains to verify (i). Observe that we can write

(1− |z|)
(

f(z)

f(rnz)

)′

= (1− |z|)
(
f ′(z)

f(rnz)

)
− (1− |z|)

(
rnf(z)f

′(rnz)

f 2(rnz)

)
=: A+B.

We proceed by estimating both terms separately.
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Step 1: Estimation of B

Set f = exp(−H(ν)) where H(ν) is the Herglotz transform of the Herglotz-Nevanlinna
measure ν of f . Observing that ν is necessarily a Zygmund measure, we may apply
Lemma 5.1 to deduce

(1− |rnz|)
∣∣∣∣rnf ′(rnz)

f(rnz)

∣∣∣∣ ≤ ∥H(ν)∥B ≲ ∥µ∥∗, z ∈ D,

and thus

|B| ≲ 1− |z|
1− |rnz|

|f(z)|
|f(rnz)|

=
1− |z|
1− |rnz|

exp (P (ν)(rnz)− P (ν)(z)) , z ∈ D, (25)

where P (ν) denotes the Poisson extension of ν. Now for |z| ≤ rn, we clearly have
β(z, rnz) ≲ 1. An application of Lemma 5.1 then gives |P (ν)(rnz)− P (ν)(z)| ≲ 1 if
|z| ≤ rn. and hence

sup
|z|≤rn

|B| ≲ 1.

We may thus fix z ∈ D with |z| ≥ rn. Note that in order to estimate the right hand side
of (25), we may without loss of generality assume that P (ν)(rnz) is large, which according
to Lemma 5.1 is equivalent to ν(Irnz)/|Irnz| being large. Doing so, we pick a large number
R > 0 for which ν(Irnz)/|Irnz| > R, to be specified momentarily. Observe that condition
(1), then implies that ∣∣∣∣ν(I)|I|

− ν(I/2)

|I/2|

∣∣∣∣ ≤ Ce−R (26)

for any arc I ⊆ Irnz. Let N := N(n, z) denote the largest positive integer satisfying

N ≤ log

(
|Irnz|
|Iz|

)
= log

(
1− |rnz|
1− |z|

)
.

By means of iterating the estimate (26) N times, we obtain∣∣∣∣ν(Iz)|Iz|
− ν(Irnz)

|Irnz|

∣∣∣∣ ≤ CNe−R ≤ Ce−R log

(
1− |rnz|
1− |z|

)
.

Yet another application of Lemma 5.1 allows us to express

P (ν)(rnz)− P (ν)(z) =
ν(Irnz)

|Irnz|
− ν(Iz)

|Iz|
+O(∥ν∥∗)

and thus we get

|P (ν)(rnz)− P (ν)(z)| ≤ Ce−R log

(
1− |rnz|
1− |z|

)
+O(∥ν∥∗).
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Now it is just a matter of choosing R > 0 sufficiently large so that Ce−R < 1, which
ultimately yields

|B| ≲
(

1− |z|
1− |rnz|

)1−Ce−R

≲ 1.

Step 2: Estimation of A

By definition, we readily have

|A| ≲ (1− |z|)|H(ν)′(z)| exp (P (ν)(rnz)− P (ν)(z)) , z ∈ D. (27)

As observed previously β(z, rnz) ≲ 1 whenever |z| ≤ rn. Hence using that ν is a Zygmund
measure, we have (1 − |z|)|H(µ)′(z)| ≲ 1 and |P (ν)(rnz) − P (ν)(z)| ≲ 1 if |z| ≤ rn. This
gives

sup
|z|≤rn

|A| ≲ 1.

In what follows, we shall thus fix z ∈ D with |z| > rn and moreover, we may also assume
that P (ν)(rnz) is sufficiently large. Denote by I(z, t) the smallest arc on ∂D joining z/|z|
with zeit/|z|. An application of Lemma 5.2 gives

(1− |z|)|H(ν)′(z)| ≲
∫ 2π

0

(1− |z|)
|eit − |z||3

|ν(I(z, t))− ν(I(z,−t))|dt.

Decomposing the integral according to the intervals I(k) = {t ∈ [0, 2π] : |t| ≤ 2k(1− |z|)},
we get

(1− |z|)|H(ν)′(z)| ≲ (1− |z|)−2

∫
I(1)

|ν(I(z, t))− ν(I(z,−t))|dt

+
∑
k>0

2−3k(1− |z|)−2

∫
I(k+1)\I(k)

|ν(I(z, t))− ν(I(z,−t))|dt.

Let T = T (n, z) denote the integer part of log2(2
−n/(1 − |z|)). Observe that if t ∈ I(k)

with k ≤ T , then I(z, t) is contained in a fixed multiple of Irnz. This in conjunction with
the assumption (1) yields

|ν(I(z, t))− ν(I(z,−t))| ≲ |t| exp
(
−ν(Irnz)

|Irnz|

)
.

Hence we get∑
0≤k<T

2−3k(1− |z|)−2

∫
I(k)

|ν(I(z, t))− ν(I(z,−t))|dt ≲ exp

(
−ν(Irnz

|Irnz|

)
.

Fix t ∈ I(k + 1) \ I(k) with k > T . Note that the arc Irnz is contained in a fixed multiple
of I(z, t) ∪ I(z,−t). According to Lemma 5.3, there exists δ > 0 such that∣∣∣∣ν(I(z, t))|I(z, t)|

− ν(Irnz)

|Irnz|

∣∣∣∣ ≲ 1, if log2(
2k(1− |z|)

2−n
) ≤ δe

ν(Irnz)

|Irnz | . (28)
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The assumption (1) implies in this case∣∣∣∣ν(I(z, t))|I(z, t)|
− ν(I(z,−t))

|I(z,−t)|

∣∣∣∣ ≲ exp

(
−ν(I(z, t)

|I(z, t)|

)
.

Using estimate (28) in the right hand side term, we obtain∣∣∣∣ν(I(z, t))|I(z, t)|
− ν(I(z,−t))

|I(z,−t)|

∣∣∣∣ ≲ exp

(
−ν(Irnz)

|Irnz|

)
, if log2(

2k(1− |z|)
2−n

) ≤ δe
ν(Irnz)

|Irnz | .

Let T ∗ be the largest integer such that T ∗+ log2(
(1−|z|)
2−n ) ≤ δeν(Irnz)/|Irnz |. With this choice,

we get

T ∗∑
k=T

2−3k(1− |z|)−2

∫
I(k+1)

|ν(I(z, t))− ν(I(z,−t))|dt ≲ exp

(
−ν(Irnz)

|Irnz|

)
.

On the other hand, using that ν is a Zygmund measure we arrive at∑
k>T ∗

2−3k(1− |z|)−2

∫
I(k+1)

|ν(I(z, t))− ν(I(z,−t))|dt ≲ exp

(
−ν(Irnz)

|Irnz|

)
.

Finally, combining all terms in the sum, we obtain

(1− |z|)|H ′(ν)(z)| ≲ exp

(
−ν(Irnz)

|Irnz|

)
, |z| > rn.

With these estimates at hand, we may now return back to (27), deducing that |A| ≲
exp (−P (ν)(z)) ≤ 1. This completes the proof.

5.2 A characterization of invertibility in Bloch

Proof of Theorem 1.8. In order to prove the sufficiency, note that by means of writing
(1/f)′ = H(ν)′/f , it suffices to show that (1 − |z|2)|H(ν)′(z)| ≲ |f(z)|, z ∈ D. Again,
condition (2) readily implies that ν is a Zygmund measure. In view of the estimate (20)
in Lemma 5.1, it suffices to prove that

(1− |z|2)|H(ν)′(z)| ≲ e−ν(Iz)/|Iz |, z ∈ D. (29)

For z ∈ D and n ∈ Z, consider the intervals In = {t ∈ [0, 2π] : 2n−1(1 − |z|) ≤ t < 2n(1 −
|z|)}. According to Lemma 5.2 we have

(1− |z|2)|H(ν)′(z)| ≲
∑
n∈Z

∫
In

1− |z|
|eit − |z||3

|ν(I(z, t))− ν(I(z, t))|dt, z ∈ D.

We now estimate each term in the sum. Assumption (2) implies

|ν(I(z, t))− ν(I(z,−t))| ≤ C|t|e−ν(It(z))/|It(z)|, (30)
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where as before, It(z) denotes the arc It(z) = I(z, t) ∪ I(z,−t). Let ε > 0 be a small
number to be fixed later. Applying Lemma 5.3, we obtain a number δ > 0 such that∣∣∣∣ν(It(z))|It(z)|

− ν(Iz)

|Iz|

∣∣∣∣ ≤ εn, t ∈ In, |n| ≤ T := δeν(Iz)/|Iz |. (31)

It thus follows from (30) and (31) that∣∣∣∣ν(I(z, t))t
− ν(I(z,−t)

t

∣∣∣∣ ≲ eεne−ν(Iz)/|Iz |, t ∈ In, |n| ≤ T.

Now if 0 < ε < log 2, we deduce that∑
n:|n|≤T

∫
In

1− |z|
|eit − |z||3

|ν(I(z, t))− ν(I(z,−t))|dt ≲ e−ν(Iz)/|Iz |.

The tail of the sum is estimated using the fact that ν is a Zygmund measure. In fact, one
obtains ∑

n:|n|>T

∫
In

1− |z|
|eit − |z||3

|ν(I(z, t))− ν(I(z, t))|dt ≲ 2−T ≤ C(δ)e−ν(Iz)/|Iz |,

where C(δ) > 0 is a constant depending on δ. This proves the estimate (29) and therefore
completes the proof of the sufficiency. We now turn our attention to the necessity part of
the proof. Rewrite f ′ = H(ν)′f , we see that our assumption reads

(1− |z|2)|H(ν)′(z)| ≲ e−P (ν)(z), z ∈ D. (32)

It turns out that condition (32) implies that

P (ν)(z) =
ν(Iz)

|Iz|
+O (1) e−ν(Iz)/|Iz |, z ∈ D. (33)

This is completely analogous to the estimate (20) stated in Lemma 5.1 which holds for
Zygmund measures. Actually one can prove (33) mimicking the proof of (20) given in [15].
The details are omitted. Note that (32) gives that H(ν) ∈ B. According to Lemma 5.1, ν
is a Zygmund measure. Using this, we see that the estimate (32) implies

|P (ν)(zI)− P (ν)(zI′)| ≤ |H(ν)(zI)−H(ν)(zI′)| ≲ e−ν(I)/|I|,

for any pair of contiguous arcs I, I ′ ⊂ ∂D of the same length. This in conjunction with
(33) then shows that condition (2) holds, which finishes the proof.
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5.3 Invertibility does not imply cyclicity in B
This section is devoted to a self-contained proof of Theorem 1.9.

Proof of Theorem 1.9. Let E be a sequence of complex numbers containing the origin such
that both C \ E and C \ E−1 are open sets which do not contain arbitrarily large discs,
that is, there exists R0 > 0 such that no disc of radius R0 is contained in either C \ E or
C \ E−1. Here E−1 = {w ∈ C : 1/w ∈ E}. Let f : D → C \ E be an analytic universal
covering map. According to Bloch’s Theorem, we have that both f and 1/f belong to B.
Next we shall show that f is not cyclic in B.

Assume f has non-tangential limit, say L, at a point of the unit circle. Since f is a
covering map, L must be either infinity or a point in E. Since E is countable, Privalov’s
Theorem gives that f can only have non-tangential limit at a set of Lebesgue measure zero
of points of the unit circle. By Plessner’s Theorem (for instance, see p. 205 in [21]), its
non-tangential cluster set at almost every point of the unit circle is the whole extended
plane, that is,

∩0<r<1f(Γr(ξ)) = C ∪ {∞}, m- a.e. ξ ∈ ∂D. (34)

Here Γr(ξ) = {z ∈ D : |z − ξ| < M(1 − |z|), |z| > r} denotes the truncated Stolz angle of
some fixed aperture M > 1 with vertex at the point ξ ∈ ∂D.

Next we will show that A(f) = {fh ∈ B : h ∈ H∞} is weak-star closed in B. Since
A(f) is convex, it suffices by the Krein-Smulian Theorem to show that it is weak-star
sequentially closed. To this end, let hn ∈ H∞ such that fhn tends to F weak-star in B.
Then there exists a constant C > 0 such that

sup
z∈D

∣∣(1− |z|2)(f ′(z)hn(z) + f(z)h′n(z))
∣∣ ≤ C. (35)

Fix a ∈ C\E and use (34) to show that for almost every ξ ∈ ∂D there exist points zk(ξ) ∈ D
tending non-tangentially to ξ such that f(zk(ξ)) → a. Since (1−|z|2)|f ′(z)| ≥ dist(f(z), E),
z ∈ D (see [5]), we deduce that there exists a constant c > 0 such that

lim inf
k→∞

(1− |zk(ξ)|2)|f ′(zk(ξ))| > c (36)

Note that Bloch’s Theorem shows that if an analytic function F in the unit disc has
non-tangential limit at a given point ζ ∈ ∂D, then (1 − |z|)|F ′(z)| → 0 as z ∈ D tends
non-tangentially to ζ. Since hn has non-tangential limit along almost every radius, for each
integer n we have

lim(1− |z|)|h′n(z)| = 0, m- a.e. ξ ∈ ∂D,

where the limit is taken as z ∈ D tends to ξ non-tangentially. Applying (35) and (36) we
deduce that

lim sup
k→∞

|hn(zk(ξ))| ≤ C, m- a.e. ξ ∈ ∂D, n = 1, 2, . . . .

Hence ∥hn∥∞ ≤ C, n = 1, 2, . . . and we may extract a subsequence of {hn} which converges
pointwise in D to a function h ∈ H∞ and thus F = fh. We conclude that A(f) is weak-star
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closed in B. Now [f ]B ⊆ A(f) and it is clear that A(f) is a proper subspace of B. We
conclude that f is not cyclic in B.

5.4 A problem of weak-star sequential closure in B
In the proof of Theorem 1.10 we will need to construct functions in B which enjoy maximal
radial growth at considerable large subset of D.

Proposition 5.4. There exists f ∈ BMOA ⊂ B satisfying the following properties:

(i) The function 1/f belongs to H∞.

(ii) For some δ > 0, the set E(f) :=
{
z ∈ D : |f(z)| ≥ δ log( 1

1−|z|)
}

accumulates every-

where on the unit circle ∂D, that is, ∂D ⊂ E(f).

Observe that such an f must necessarily be outer, hence it is cyclic B. The set of points
for which the Bloch function f attains its maximal growth are located in the set E(f). In
the context of cyclic vectors in growth spaces, Hedenmalm and Borichev observed, roughly
speaking that cyclic functions therein cannot grow ”maximally” on too ”massive” sets. See
[9]. Our construction below is deeply inspired from this idea. Taking Proposition 5.4 for
granted, we first deduce Theorem 1.10.

Proof of Theorem 1.10. Let f ∈ BMOA be given by Proposition 5.4. Let {Qn}n be a
sequence of analytic polynomials with supn∥fQn∥B <∞. It follows that

sup
n

sup
z∈D

log−1

(
e

1− |z|

)
|f(z)Qn(z)| <∞.

However, this implies
sup
n

sup
z∈E(f)

|Qn(z)| <∞.

Now the assumption on E(f) in conjunction with the maximum principle implies that
supn∥Qn∥H∞ < ∞. By Helly’s selection theorem, we can extract a subsequence {Qnk

}k
which converges pointwise on D to some function h ∈ H∞. Hence any weak star sequential
limit of {fQn} is of the form fh with h ∈ H∞. But functions of that form have finite
radial limits at m-a.e on ∂D, hence the set {fh ∈ B : h ∈ H∞} is a proper subspace of B,
which completes the proof.

The proof of Proposition 5.4 is based on the following construction.

Lemma 5.5. Let 0 < δ < 1. Then there exists a positive finite Borel measure ν on ∂D
satisfying the following property: For any arc I ⊂ ∂D there exists a dyadic subarc J ⊂ I,
such that ν(J) ≥ |J |1−δ.
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Proof. Fix 0 < η < 1 to be specifiec later. We shall define the measure ν by declaring its
mass on dyadic arcs. First we set ν(∂D) = 1. Inductively, assume that ν(J) has already
been defined for some dyadic arc J ⊂ ∂D. We denote by J+, J− the right and left dyadic
children of J , respectively. We shall assign a larger portion of the available mass to the
right child than to the left by declaring

ν(J±)

|J±|
= (1± η)

ν(J)

|J |
.

Now it is a standard fact in measure theory that this construction gives rise to a uniquely
defined positive finite Borel measure ν on ∂D. Hence it suffices to verify that ν has the
required property. We may without loss of generality assume that I is a dyadic arc. Now
let Jn ⊂ I be the rightmost dyadic subarc of I with |Jn| = 2−n|I|. Then by construction,
we have

ν(Jn)

|Jn|
= (1 + η)n

ν(I)

|I|
≥ 1

|Jn|δ
=

2δn

|I|δ

whenever (1 + η)n/2nδ ≥ |I|1−δ/ν(I). However, choosing 0 < η < 1 so that 2δ < 1 + η, the
above inequality will certainly hold for sufficiently large n. This finishes the proof.

Proof of Proposition 5.4. Let ν be the positive finite Borel measure given by Lemma 5.5.
Consider an analytic selfmap b = bν of D defined via the Herglotz transform of ν:

1 + b(z)

1− b(z)
=

∫
∂D

ζ + z

ζ − z
dν(ζ), z ∈ D.

In other words, ν is the so-called Aleksandrov-Clark measure for b. Consider the function

f(z) = log

(
e

1− b(z)

)
, z ∈ D.

Note that since f has bounded imaginary part, it follows that f belongs to BMOA ⊂ B.
Moreover, the trivial fact that |1− b(z)| < 2 for z ∈ D, implies that 1/f ∈ H∞. It
remains to show that the closure of the corresponding set E(f) contains the entire unit
circle. Indeed, the reason for our choice of f stems from the observation that the set E(f)
contains

Ẽ(b) :=

{
z ∈ D : Re

(
1 + b(z)

1− b(z)

)
≥ (1− |z|)−δ

}
,

thus it suffices to check that the closure of the smaller set Ẽ(b) contains ∂D. To this end,
fix a small ε > 0 and let ζ ∈ ∂D be an arbitrary point. If 0 < δ′ < 1 is fixed, then
an application of Lemma 5.5 shows that for any arc I ⊂ ∂D containing ζ with length at
most ε/2, there exists a small dyadic arc J ⊂ I (not necessarily containing ζ), such that
ν(J) ≥ |J |1−δ′ . Let ξJ denote the center of the arc J and zJ := (1 − |J |)ξJ , and observe
that a trivial estimate of the Poisson kernel implies that

Re

(
1 + b(zJ)

1− b(zJ)

)
= P (ν)(zJ) ≥ c

ν(J)

|J |
≥ c

|J |δ′
= c(1− |zJ |)−δ′ ≥ (1− |zJ |)−δ,
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where c > 0 is an absolute constant and 0 < δ < δ′ sufficiently small. But this shows that
zJ ∈ Ẽ(b) with |zJ − ζ| ≤ 2|I| < ε. Hence it follows that for sufficiently small δ > 0, the
corresponding set E(f) accumulates to any point ζ ∈ ∂D, thus we conclude the proof of
Proposition 5.4.
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