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1. Introduction

The continuous theories of inhomogeneities were introduced by W. Noll [27]. In
fact, Noll defined the notion of uniformity of a hyperelastic material body using
only the constitutive law, which expresses the mechanical response of the elastic
body in terms of the gradient of the deformation. Thus, a body is uniform if we can
connect two arbitrary different points via a material isomorphism, that is, a linear
isomorphism between the corresponding tangent spaces such that the mechanical
response at both points is the same. The notion of material symmetry at a point
also appears in a very natural way as a linear transformation of the tangent space
at the point which does not change the mechanical response. These notions can
be translated in a modern geometrical language in terms of Lie groupoids and Lie
groups. Indeed, the uniformity permits to construct a G-structure on the body
manifold whose integrability is equivalent to the local homogeneity of the material
body.

The work by Noll was extended by C.C. Wang [34] in a setting of principal
bundles, but without an explicit mention of the theory of G-structures (see also
[4]). The first time that the theory of G-structures appears explicitly linked to
uniformity occurs in a paper by Elzanowski, Epstein and Sniatycki [9]. In that
paper, the authors have also considered several types ofG-structures corresponding
to different kinds of materials. However, a systematic study of the integrability of
the so-called material G-structures is not available up to our knowledge. This
is just the aim of the present paper. For a material G-structure we mean a G-
structure on a material body where G is a Lie subgroup of the special general



376 D. Maŕın and M. de León Mediterr. j. math.

group Sl (3,R). We use a classification of these subgroups usually attributed to S.
Lie [23], [28], [34]. The first remarkable fact is the difficulty to obtain integrability
conditions for some of these G-structures in contrast with the low dimension that
we are considering. The second point to remark is the additional difficulties arising
from the fact that we are considering subgroups of Sl (3,R) instead of subgroups
of Gl (3,R). All these difficulties are conveniently discussed along the paper.

The paper is structured as follows. In Section 2 we discuss G-structures
defined by tensors in a general setting (the manifold is not necessarily three-
dimensional). We give a slight generalization of some results contained in [11]
for nonlinear “tensors”. Moreover, we establish some properties concerning G-
structures obtained by intersecting and enlarging. These results will be very useful
later. The integrability of general G-structures is studied in Section 3. We pro-
pose a new method to do this, using local G-connections instead of global ones.
The method leads us to integrability conditions involving linear partial differential
equations whereas the usual procedures lead to more complicated PDE’s. Section
4 is devoted to discuss some G-structures defined by tensors, in particular, vector
fields, one-forms, two-forms, metrics and tensor fields of type (1,1). We use the
results previously obtained by E.T. Kobayashi [13], [14] and J. Lehmann-Lejeune
[17] for 0-deformable tensor fields. We notice the amazing similarity between the
definition of 0-deformability in [12] and the notion of uniformity. In Section 5 we
recall the formulation of the continuous theories of inhomogeneities in geometrical
terms. Thus, the uniformity of the body permits to associate with it a Lie groupoid,
in such a way that, fixing a linear frame at a point (a reference crystal) one ob-
tains a G-structure, where G is the isotropy group at that point. Notice that this
G-structure is defined modulo conjugation, but this is sufficient for our purposes,
since the integrability is not affected by conjugation. In Section 6, after recalling
the classification of the connected subgroups of Sl (3,R) modulo conjugation, we
give a geometrical interpretation of the corresponding G-structures, and we simul-
taneously obtain in many cases the integrability condition. When the integrability
condition is expressed in terms of the vanishing of some tensor fields, they would
be just the inhomogeneity tensors for the corresponding material. Finally, in Sec-
tion 7, we recall a classic theorem due to Chevalley and we give some applications.
Using the natural representation, it implies that for each algebraic subgroup G of
Gl(n,R), every N (G)-structure is given by the projectivization of a tensor field
which is sum of 0-deformable tensor fields, where N (G) is the normalizer of G in
Gl(n,R).

2. G-structures defined by tensors

Along this paper, {e1, . . . , en} will denote the canonical basis of Rn and {e1, . . . , en}
its dual basis. The space of tensors of type (r, s) will be denoted by T s

r R
n =

(Rn)⊗r ⊗ ((Rn)∗)⊗s. We also notice that the action of Gl(n,R) over End(Rn) =
Rn ⊗ (Rn)∗ is the functorial action induced by the adjoint representation A �→
(B �→ ABA−1).
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Let M be a n-dimensional manifold and denote by FM its linear frame
bundle. FM is a principal bundle over M with projection π : FM −→ M and
structure group Gl(n,R). A G-structure P on M is just a G-reduction of FM (see
[1], [6], [8], [11], [16]).

Assume that Gl(n,R) acts on a manifold F on the left. Fixing an element
u ∈ F we denote by Gu the isotropy group at u, and by Fu the orbit of the action
through u. Thus, we have

Gu = {a ∈ Gl(n,R) | au = u},
Fu = {au | a ∈ Gl(n,R)}.

Definition 2.1. An F -tensor on FM is a differentiable mapping t : FM −→ F
such that t(za) = a−1t(z), for all a ∈ Gl(n,R) and z ∈ FM .

The following result gives the family of G-structures defined by tensors. It is
a slight generalization of that proved in [11].

Theorem 2.2. Giving a Gu-structure on M is the same as giving a F -tensor on
FM which satisfy the following two conditions:

1. t takes values in Fu;
2. t is a differentiable map of FM into Fu.

The proof is omitted, since it is a direct translation of that in [11]. We only
remark that the relation between t and the Gu-structure is given by the formula
Pu = t−1(u).

Remark 2.3. In the case where Fu is an embedded submanifold of F , then a
F -tensor t which take values in Fu is automatically differentiable as a map t :
FM −→ Fu. This is the case if Fu is locally compact. For instance, if G is a real
algebraic subgroup of Gl(n,R) (see [11]).

Remark 2.4. If u1 and u2 are in the same orbit, say u1 = au2, for some a ∈
Gl(n,R), then Gu1 = aGu2a

−1 and Pu1 = Pu2a, that is, Pu1 and Pu2 are conjugate.

Since Gl(n,R) acts on F we can construct the associated bundle E = (FM×
F )/Gl(n,R) over M with typical fiber F . Let us recall that E consists of the
equivalence classes of pairs (p, ξ) ∈ FM × F such that (p, ξ) ∼ (pa, a−1ξ).

Proposition 2.5. (see [11] for the linear case). There exists a one-to-one correspon-
dence between F -tensors and sections of E.

Proof. In fact, given a F -tensor t we define σt : M −→ E by σt(x) = [p, t(p)],
where p is a linear frame at x. �
Remark 2.6. The above correspondence is nothing but the extension of the classical
definition of tensor fields. Given a basis p of the tangent space TxM we associate
the components (t(p)) to the tensor t, which change according to the well-known
rule. It should be remarked that, if p ∈ P , where P is the Gu-structure defined by
t, then σt(x) = [(p, u)] (see [15]).
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Corollary 2.7. Assume that H is a closed subgroup of Gl(n,R). Then there exists
a one-to-one correspondence between H-structures and sections of the principal
bundle FM/H.

Proof. Take F = Gl(n,R)/H and u = [e], where e denotes the neutral element of
Gl(n,R). Thus, Gl(n,R) acts on the homogeneous space F in the obvious manner,
and we have Fu = F . Since FM/H ∼= (FM × Gl(n,R)/H)/Gl(n,R) we deduce
the result. �

Remark 2.8. It should be noticed that Theorem 2.2, Proposition 2.5 and Corollary
2.7 are still true for arbitrary principal bundles, with the obvious extension of the
notion of F -tensor. In this way, every H-reduction of the structure group G of
a principal bundle P to a closed subgroup H may be viewed as defined by a
G/H-tensor on P .

Let F and F ′ be two manifolds on which Gl(n,R) acts on the left, and
φ : F −→ F ′ a Gl(n,R)-invariant differentiable mapping, i.e., φ(aξ) = aφ(ξ), for
all x ∈ F, a ∈ Gl(n,R). Given a point u ∈ F we denote by Gu and G′

u′ the isotropy
groups of u and u′ = φ(u), respectively. It is easy to check that φ induces a mapping
between the associated fiber bundles, namely Φ : E = (FM × F )/Gl(n,R) −→
E′ = (FM × F ′)/Gl(n,R) given by Φ([p, a]) = [p, φ(a)]. Thus, given a section σ
of E we obtain a section Φ ◦ σ of E′. Therefore, we have obtained a way to relate
Gu and G′

u′-structures. If P is a Gu-structure defined by a F -tensor t, we obtain
a G′

u′-structure defined by a F ′-tensor t′ according to Proposition 2.5. In fact, t
induces a section σt of E and t′ is given by the section Φ◦σt. Notice that Gu ⊂ G′

u′ .
The above procedure corresponds to enlarge the structure group. Conversely, given
a G′

u′-structure, we can detect its reducibility to a Gu-structure by checking if the
section σt′ factorizes through E.

Example. Consider the natural action of Gl(n,R) on R
n and denote by Sk(Rn) the

Stiefel manifold of k frames of Rn. By Gk(Rn) we will denote the Grassmannian
of k planes in Rn. There exists a canonical mapping φ : Sk(Rn) −→ Gk(Rn) which
assigns to each k frame u the k-plane u′ = 〈u〉 generated by it. Let u be the k frame
consisting of the k first elements of the standard basis of R

n. A direct computation
shows that

Gu =
{(

Ik B
0 C

)
| A ∈ Gl(k,R), C ∈ Gl(n− k,R)

}
,

where Ik denotes the identity matrix of order k. Moreover, we get

G′
u′ =
{(

A B
0 C

)
| A ∈ Gl(k,R), C ∈ Gl(n− k,R)

}
. (2.1)

Alternatively, we can describe G′
u′ as follows:

G′
u′ = {a ∈ Gl(n,R) | ∃Λ ∈ Gl(k,R), au = Λu}.

For k = 1, we have that G1(Rn) is the projective space PRn and G′
u′ = {a ∈

Gl(n,R) | ∃λ ∈ R∗, au = λu} = {λa | λ ∈ R∗, a ∈ Gl(n,R)} = R∗Gu.
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It should be noticed that the action of Gl(n,R) is transitive and hence the
orbits of u and u′ are the whole manifolds Sk(Rn) and Gk(Rn), respectively.

To end this example, take a section σt′ of E′ = (FM × Gk(Rn))/Gl(n,R)
associated with a F ′

u′-tensor t′. σt′ maps each point x ∈ M into a k-plane in
TxM or, in other words, a k-dimensional distribution on M . Conversely, given a
k-dimensional distribution on M , we can construct the corresponding F ′

u′-tensor.

Next, consider two G-structures P1 and P2 defined by a F1-tensor t1 and a
F2-tensor t2, respectively. We assume that there is a section of FM which takes
values into P1 ∩ P2. Here F1 and F2 are manifolds on which Gl(n,R) acts on the
left. We assume that P1 = t−1(u1) and P2 = t−1(u2), where u1 ∈ F1 and u2 ∈ F2.
The corresponding structure groups are the isotropy groups Gu1 and Gu2 . Define
an action of Gl(n,R) on the product manifold F = F1 × F2 in the natural way,
namely a(ξ1, ξ2) = (aξ1, aξ2). Fixing a point u = (u1, u2) ∈ F , we deduce that

Gu = Gu1 ∩Gu2 , Fu ⊂ Fu1 × Fu2 .

Define now a F -tensor t on FM by

t(p) = (t1(p), t2(p)).

A direct computation shows that t takes values in Fu. We assume that t is smooth
as a mapping from FM into Fu (this happens if Fu is an embedded submanifold of
F1 × F2, for instance). Moreover, we have t−1(u) = t−1

1 (u1)∩ t−1
2 (u2), from which

we deduce that t defines a (Gu1 ∩Gu2)-structure on M .
Conversely, given a F -tensor t, we can recover t1 and t2 by composing t with

the canonical projections F −→ F1 and F −→ F2. Thus, we have proved the
following.

Proposition 2.9. The intersection of two G-structures defined by tensors is a new
G-structure defined by a tensor and with structure group the intersection of both
groups.

Finally, a direct application of Theorem 2.2 for arbitrary principal bundles
(see Remark 2.8) yields the following construction.

Let G and G1 be closed subgroups of Gl(n,R) such that G ⊂ G1 ⊂ Gl(n,R),
and assume that G1 acts on a manifold F , and G is the isotropy group of u ∈ F
under this action. Notice that we suppose that only G1 acts on F , not necessarily
on the whole group Gl(n,R).

Proposition 2.10. Giving a G-structure on M is the same as giving a G1-structure
P1 and a F -tensor t on P1 such that

1. t takes values in Fu.
2. t is a differentiable map of P1 into Fu.

Of course, Proposition 2.10 can be applied to the situation of a G1-structure
and a G2-structure defined by two tensors, by considering G1 ∩ G2 ⊂ G1 ⊂
Gl(n,R), and the action of G1 on F = F1 × F2. Thus, the (G1 ∩ G2)-structure



380 D. Maŕın and M. de León Mediterr. j. math.

is obtained by reducing first FM to G1, and, then, defining a F -tensor on the
G1-reduction P1.

Example. Consider the Grassmannian manifold F1 = Gk(Rn), and the natural
action of Gl(n,R) on it. Let u1 be the k-plane spanned by the first k elements of
the standard basis of R

k. Thus, Gu1 is given by (2.1). As we know, a Gu1-structure
is just a k-dimensional distribution D on M . Let F be the vector space of positive
definite symmetric covariant tensors of order 2 on Rk. Gu1 acts on Rk, but this is
not the case for Gl(n,R)! Let us consider an inner product u on Rk, say u ∈ F .
The isotropy group G of u is just

G =
{(

A B
0 C

)
| A ∈ O(k), C ∈ Gl(n− k,R)

}
. (2.2)

Therefore, a G-structure on M consists in a k-dimensional distribution D on M
endowed with an inner product on each subspace Dx, x ∈ M . In other words, if
we view a distribution on a manifold as a vector subbundle of the tangent bundle,
a G-structure on M consists of a vector subbundle with a fiber metric.

The above construction can be extended to include more general structures:

• Tangent H-structure on a k-distribution.
Assume that G is the group

G =
{(

A B
0 C

)
| A ∈ H ⊂ GL(k,R), C ∈ Gl(n− k,R)

}
.

Thus, giving aG-structure is equivalent to giving a k-dimensional distribution
on M , and a “H-structure” on each vector subspace Dx, x ∈M . This means
that if D is involutive then we have a H-structure on each leaf of the induced
foliation.

• Transverse H-structure to a k-distribution.
On the other hand, assume that

G =
{(

A B
0 C

)
| A ∈ GL(k,R), C ∈ H ⊂ Gl(n− k,R)

}
.

Now, giving a G-structure is equivalent to giving a k-dimensional distribution
onM , and a “H-structure” on each quotient vector space TxM/Dx, for all x ∈
M . This means that if D is involutive then we have a foliation with transverse
H-structure. In such a case, we say that the G-structure is projectable if there
exists a local reference {X1, . . . , Xn} on an open subset U in M such that

[Xi, Xa] = 0, 1 ≤ i ≤ k, 1 ≤ a ≤ n.

This implies that the local quotient manifold U ′/D admits a H-structure,
where U ′ is possible smaller than U .

We end the section with two examples of tangent and transverseH-structures.
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Example. Let H be the subgroup of Gl(2,R) given by

H =
{(

a 0
0 c

) ∣∣ aβ = cα
}
,

with α, β ∈ N. A direct inspection shows that H is the isotropy group of the tensor

e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
β

⊗ e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
α

.

1. A tangent H-structure on a 2-dimensional distribution on a 3-dimensional
manifold M is a G-structure with

G =




 a b e

0 d f
0 0 g


 ∈ Gl(3,R), aβ = dα


 ,

and it is given by a 2-dimensional distribution D and a tangent tensor field
T of type (α, β), i.e., a section of ξα,β = ξ⊗α ⊗ (ξ∗)⊗β where ξ is the vector
sub-bundle D →M of TM →M .

2. A transverse H-structure on a 1-dimensional distribution on a 3-dimensional
manifold M is a G-structure with

G =




 e f g

0 a b
0 0 d


 ∈ Gl(3,R), aβ = dα


 ,

and it is given by a 1-dimensional distribution L and a transverse tensor field
T of type (α, β), i.e., a section of ξα,β = ξ⊗α ⊗ (ξ∗)⊗β where ξ is the quotient
vector bundle TM/L→M of TM →M .

3. Integrability

A G-structure P on M is said to be integrable if it is locally equivalent to the
flat standard G-structure R

n × G → R
n, where dimM = n (see [11]). This is

equivalent to the existence of local coordinates (xi) such that the local section

(xi) �→ (xi,
∂

∂xi
) is adapted.

The main problem in the theory G-structures is to give geometric character-
izations of their integrability. For this purpose, it is very useful the notion of a
G-connection.

Definition 3.1. A linear connection ∇ in M is said to be a G-connection for a
G-structure P on M if the parallel transport maps adapted frames into adapted
frames.

Remark 3.2. Thus, a linear connection ∇ on M is a G-connection if its horizontal
distribution is tangent to the reduced sub-bundle, or equivalently, ∇ reduces to
a connection on P . If the G-structure P is defined by a tensor t then ∇ is a G-
connection if and only if ∇K = 0, where K is the tensor field on M defined from
t.
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Since the integrability problem is a local notion, we can consider only local
G-connections.

Proposition 3.3. A G-structure P is integrable if and only if around each point in
M there are an open neighborhood U and a locally flat G-connection ∇ on U (i.e.,
∇ is torsion less and with zero curvature).

Proof. [⇒]: Let (xi) be local coordinates such that (
∂

∂xi
) is an adapted local frame

of P . Then the connection ∇ defined by

∇ ∂

∂xi

∂

∂xj
= 0

is locally flat.
[⇐]: Since the curvature of ∇ is zero, the horizontal distribution defined by

∇ on FM is involutive. Let z(p) = (X1(p), . . . , Xn(p)) be an adapted frame of P
at p ∈M . The leaf through z(p) of the foliation defined by ∇ is totally contained
in P because of ∇ is a G-connection. Therefore, this leaf defines a smooth parallel
local section (X1, . . . , Xn) of P over a neighborhood of p. Since ∇ is torsionless
and ∇Xi

Xj = 0 we obtain that [Xi, Xj ] = 0, i.e., there are coordinates x1, . . . , xn

such that {Xi =
∂

∂xi
} is an adapted local frame of P . �

Remark 3.4. If ∇ depends smoothly on some parameters then the local frame
{X1, . . . , Xn} depends also smoothly on them.

We take an adapted frame X1, . . . , Xn on a coordinate neighborhood U and
define an auxiliary linear connection ∇̃ on U by means of

∇̃Xi
Xj = 0, ∀i, j = 1, . . . , n.

In other words, ∇̃ is the linear connection defined by the local parallelism {X1, . . . ,

Xn}. It is clear that ∇̃ is a G-connection (adapted to P ). Moreover, any linear
connection on U is of the form

∇ = ∇̃ + τ,

where τ is a tensor field of type (1, 2) on U . If we put τ (Xi, Xj) = τk
ijXk, for each

i = 1, . . . , n we can define the maps τi : U → gl(n,R) by putting

τi(x) = (τk
ij(x)). (3.1)

Proposition 3.5. With the above notations, ∇ is a G-connection if and only if for
all i = 1, . . . , n the maps τi take values in the Lie algebra g of G.

Proof. [⇒]: Let T t
i be the parallel transport operator with respect to ∇ along the

integral curves of Xi, then

τk
ijXk = ∇Xi

Xj =
d

ds
T −s

i (Xj(s)).
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If ∇ is G-connection then T −s
i (Xj(s)) = ak

ij(s)Xk, where the matrix ai(s) =

(ak
ij(s)) belongs to G. Therefore τk

ijXk =
(
d

ds
ak

ij(s)
)
Xk, and then

τk
ijXk =

(
d

ds
ak

ij(s)
)
Xk ∈ g.

[⇐]: Let c(s) be a curve on U and ċ(s) = c�(s)X�(s) its tangent vector,
where X�(s) = X�(c(s)). Let Y�(s) be the parallel transport along c of the frame
{X1(0), . . . , Xn(0)}. Put Yi(s) = aj

i (s)Xj(s). We will show that A(s) = (aj
i (s))

belongs to G. Indeed, we have

0 = ∇ċ(s)Yi(s) = c�(s)∇X�(s)a
j
i (s)Xj(s)

= c�(s)(aj
i (s)t

k
�j(s)Xk(s) +X�(a

j
i (s))Xj(s))

= (c�(s)aj
i (s)t

k
�j(s) + c�(s)X�(ak

i (s)))Xk(s).

Thus, we obtain the following identity:

c�(s)(A(s)t�(s)) +
dA

ds
= 0,

where t�(s) is the matrix with entries tk�i(s). Therefore we get

A(s) = exp
(
−
∫ s

0

c�(u)t�(u)du
)
.

We notice that the assumption t�(u) ∈ g implies
∫ s

0
c�(u)t�(u)du ∈ g, thus, A(s) ∈

G. Indeed, A(s) belongs to connected component of the identity of G. �

According to Proposition 3.5, if ∇ = ∇̃ + τ is a G-connection then we can
think the tensor field τ as a map τ : U → Hom(Rn, g). Using this notation, the
following result will be useful in order to characterize those G-connections ∇ which
are torsion free.

Proposition 3.6. The torsion tensor of the G-connection ∇ = ∇̃ + τ is given by
T∇ = T ∇̃ + ∂gτ , where ∂g : Hom(Rn, g) → Hom(

∧2
Rn,Rn) is the map defined by

(∂gτ )(x ∧ y) = τ (x)(y) − τ (y)(x).

It should be noticed that ∂g is just the operator defining the Spencer coho-
mology of the Lie algebra g (see [11]). In fact, after the identification of TxM with
Rn using the basis X1(x), . . . , Xn(x), we obtain

∂gτ
k
ij(x) = τk

ij(x) − τk
ji(x).

Thus, the equivalence class of T ∇̃ in Hom(
∧2

Rn,Rn)/Im ∂g, is just the first struc-
ture tensor of the G-structure and the kernel of ∂g is the first prolongation g(1) of
the Lie algebra g.
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As a consequence of Proposition 3.6 we deduce that if T ∇̃ does not take
values in Im ∂g then the G-structure P is not integrable. Indeed, if ∇ would be a
free torsion G-connection then

T ∇̃(Xi, Xj) = −[Xi, Xj ] = −γk
ijXk = −(∂gτ )k

ijXk.

Remark 3.7.
(i) If ∂g is surjective then the structure tensor is not an obstruction for the

integrability.
(ii) If ∂g is injective, then there is at most one tensor τ such that ∇ is a free tor-

sion G-connection. Moreover, any G-connection is determined by its torsion
tensor.

(iii) If ∂g is bijective then there is a unique (global) free torsion G-connection.

The next issue is to investigate if, in addition to the torsionless condition, we
can choose τ in such a way that the curvature R∇ of ∇ vanishes identically. In order
to do this, we try to modify ∇ by adding a new tensor field S : U → Hom(Rn, g)
such that ∇ = ∇ + S verifies both conditions. Concerning the first one, we have
that

T∇ = 0 ⇐⇒ ∂gS = 0 ⇐⇒ S ∈ ker ∂g = g(1).

On the other hand, recalling that ∇ = ∇+S = ∇̃+ τ +S and putting ∆ = τ +S,
we obtain the following result.

Proposition 3.8. The curvature of ∇ = ∇̃ + ∆ vanishes if and only if

Xi(∆j) −Xj(∆i) + [∆i,∆j ] − γk
ij∆k = 0, 1 ≤ i < j ≤ n, (3.2)

where the functions γk
ij are defined by [Xi, Xj ] = γk

ijXk.

Proof. Using that ∇Xi
Xj = ∆k

ijXk we obtain

∇Xi
∇Xj

Xk = ∆�
jk∇Xi

X� +Xi(∆m
jk)Xm = ∆�

jk∆m
i�Xm +Xi(∆m

jk)Xm

∇Xj
∇Xi

Xk = ∆�
ik∇Xj

X� +Xj(∆m
ik)Xm = ∆�

ik∆m
j�Xm +Xj(∆m

ik)Xm

∇[Xi,Xj ]Xk = ∇γ�
ijX�

Xk = γ�
ij∇X�

Xk = γ�
ij∆

m
�kXm,

so that

R∇(Xi, Xj)(Xk) =
(
Xi(∆m

jk) −Xj(∆m
ik) + ∆�

jk∆m
i� − ∆�

ik∆m
j� − γ�

ij∆
m
�k

)
Xm.

Therefore, using the matrix convention introduced in (3.1), we can write the con-
dition R∇ = 0 as the system (3.2). �

Remark 3.9. It should be noticed that the above conditions involve linear par-
tial differential equations whereas the usual procedures lead to more complicated
PDE’s.

As an application of this method we will give a characterization of the inte-
grability of the tangent G-structures.



Vol. 1 (2004) Classification of Material G-Structures 385

Assume G is the group

G =
{(

A B
0 C

)
| A ∈ H ⊂ GL(k,R), C ∈ Gl(n− k,R)

}

and let P be a G-structure. As we have seen in section 2, P is the reduction of a big-
ger geometrical structure which consists uniquely in a k-dimensional distribution
D. If P is integrable then D is involutive and it defines a foliation. Furthermore,
on each leaf Sc we have an H-structure which is also integrable.

Conversely, assume that the distribution D is involutive and that the induced
H-structure on each leaf Sc is integrable (here c denotes a transverse coordinate).
In this case, taking a local adapted frame X1, . . . , Xn we can find a map

τc : Sc → Hom (Rk, h)

such that the connection ∇ defined on Sc by

∇Xi
Xj = (τc)�

ijX�, i, j = 1, . . . , k,

is a locally flat H-connection.

Proposition 3.10. If in addition τc depends smoothly on c, then P is integrable.

Proof. Consider the inclusion ρ : h ↪→ g. We define a smooth map

τ : U → Hom(Rn, g)

by putting

τ (c, y)�
ij =
{
ρ(τc(y))�

ij if i ≤ k
0 if i > k

with j, 
 = 1, . . . , n. The connection ∇ defined by τ is a G-connection such that its
restriction to each leaf Sc is locally flat. Let Σ be a smooth transverse section to
the foliation induced by D (for instance, we can parametrize Σ by the transverse
coordinate c). Consider the restrictionX|Σ of the adapted frameX = (X1, . . . , Xn)
to Σ. Since the restriction of ∇ to the leaves is flat, we can extend X|Σ to a local
adapted frame X = (X1, . . . , Xn) defined on U by parallel transport along the
leaves, so that

∇Xi
Xj = 0, if 1 ≤ i, j ≤ k.

Using Frobenius’s Theorem we get coordinates x1, . . . , xn such that Xi =
∂

∂xi
for

i = 1, . . . , k. �

Since the uniqueness of τc implies that it varies smoothly with c, the following
result is a consequence of the second point of Remark 3.7.

Corollary 3.11. If ∂h is injective then P is integrable if and only if the distribution
D is involutive and the H-structures induced on leaves are all of them integrable.
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We will treat the case in which H is the following subgroup of Gl(2,R):

H =
{(

a b
0 c

) ∣∣ aβ = cα
}
,

with αβ �= 0 (see the example at the end of Section 2). This case will be very
useful in the following section.

Proposition 3.12. With the above notations a G-structure is integrable if and only
if the distribution D is involutive.

Proof. We will show that every H-structure is integrable. Let h be the Lie algebra
of H:

h =
{(

αa b
0 βa

) ∣∣ a, b ∈ R

}
.

An easy calculation show that ∂h is surjective and

h(1) = {(S1, S2) | S1 = b1B, S2 =
b1
α
A+ b2B}, (3.3)

where

A =
(
α 0
0 β

)
, B =

(
0 1
0 0

)

is a basis of h. Let X1, X2 be an adapted local frame of the H-structure, and
put [X1, X2] = γ1X1 + γ2X2. Since ∂h is surjective we find τ = (τk

ij) such that
∂hτ = (γ1, γ2). For instance, we can take

τ1 =
γ2

β
A+ γ1B, τ2 = 0.

Taking into account (3.3) and putting{
∆1 = τ1 + S1 = γ2

β A+ (b1 + γ1)B
∆2 = τ2 + S2 = b1

α A+ b2B,

the matrix differential equation

X1(∆2) −X2(∆1) + [∆1,∆2] − γ1∆1 − γ2∆2 = 0

is equivalent to the system

X1

(
b1
α

)
−X2

(
γ2

β

)
− γ1γ2

β
− γ2b1

α
= 0

X1(b2) −X2(b1 + γ1) + (α− β)
(
γ2b2
β

− (b1 + γ1)b1
α

)

−γ1(b1 + γ1) − γ2b2 = 0

where b1 and b2 are the unknown functions. The above system of PDE’s has always
solution since the first equation does not involve the unknown function b2. The so-
lution of this system can be obtained by solving two ordinary differential equations.
Therefore these solutions depend smoothly on some parameters. We conclude that
all theH-structures are integrable, and from Proposition 3.10 anyG-structure with
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a tangent H-structure is integrable if and only if the two-dimensional distribution
is involutive. �

Another interesting case is when H is given by

H =
{(

a 0
0 c

) ∣∣ aβ = cα
}
,

with αβ �= 0. One show that in this case ∂h is bijective and from Corollary 3.11
we obtain the following.

Corollary 3.13. A G-structure of this type is integrable if and only if the distribution
is involutive and the H-structures induced on the leaves are all of them integrable.
The latter occurs if and only if the unique torsionless H-connection (that exists)
on each leaf has zero curvature.

Another useful remark for our purposes is the following.

Remark 3.14. In several cases G is the intersection of G and Sl(n,R), thus, a
G-structure P will be obtained as intersection of a G-structure P and a Sl(n,R)-
structure given by a volume form Ω, with the compatibility condition that there ex-
ist on each point of M an adapted frame v1, . . . , vn of P such that Ω(v1, . . . , vn) =
1.

Concerning this situation we have the following result.

Proposition 3.15. A G-structure P is integrable if and only if the G-structure
P is integrable and there exist local coordinates x1, . . . , xn adapted to P (i.e.,

(
∂

∂x1
, . . . ,

∂

∂xn
) ∈ P ) such that L ∂

∂xi
Ω = 0 for all i = 1, . . . , n.

Unfortunately, this proposition is too difficult to apply in the form that it is
stated because in order to show the integrability of P we need to find a privileged
local coordinate system adapted to P . Therefore, we describe an alternative ap-
proach characterizing the integrability of P . Instead of expressing this condition
in a privileged coordinate system adapted to P as in Proposition 3.15, we can
reformulate it in terms of an arbitrary coordinate system x1, . . . , xn adapted to P ,
i.e. such that

(
∂

∂xi

)
∈ P . We write Ω = b(x1, . . . , xn)dx1 ∧ · · · ∧ dxn and consider

the G-connection ∇̃ defined by ∇̃ ∂

∂xi

∂
∂xj = 0. Any torsion free G-connection ∇ can

be written as ∇ = ∇̃+τ , where τ : U → g(1) ⊂ Hom(Rn, g). From Proposition 3.8,
the vanishing of the curvature of ∇ is equivalent to the system of PDE’s:

∂τj
∂xi

− ∂τi
∂xj

+ [τi, τj ] = 0.

Finally, ∇ is a G-connection if and only if ∇Ω = 0. Since

(∇ ∂

∂xi
Ω)(

∂

∂x1
, . . . ,

∂

∂xn
) =

∂b

∂xi
−

n∑
j=1

Ω(
∂

∂x1
, . . . ,∇ ∂

∂xi

∂

∂xj
, . . . ,

∂

∂xn
)

=
∂b

∂xi
− b tr (τi),
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we can characterize the equation ∇Ω = 0 as
∂ log(b)
∂xi

= tr (τi) for all i = 1, . . . , n.

Remark 3.16. In several cases, straightforward computations show that if τ takes
values in g(1) then tr(τk) = 0 for some k. Therefore, assuming that P is integrable, a
necessary condition for the integrability of P is that b(x1, . . . , xn) does not depend
on xk, or equivalently,

L ∂

∂xk
Ω = 0.

4. Some examples of G-structures defined by tensors

The main purpose of this paper is a systematic study of those G-structures asso-
ciated to uniform elastic bodies. Before to do that, we will discuss G-structures
defined by tensors of type (r, s), with r + s ≤ 3. The results will be useful in the
next sections.

• If F = T 0
1 R3 then, since Gl(3,R) acts transitively on F , we can take u = e1.

Therefore the isotropy group G of u consists of matrices of the form
 1 a b

0 c d
0 e f


 (4.1)

The associated fiber bundle is TM . Thus, a G-structure is given by a vector
field X without zeros. Hence every G-structure is integrable, since we can

always choose local coordinates x1, x2, x3 such that X =
∂

∂x1
.

• If F = T 1
0 R3 then we can take u = e1, and in this case G is the group of

matrices obtained by transposing (4.1). The associated fiber bundle is the
cotangent bundle T ∗M . Therefore a G-structure is given by a one-form ω
without zeros. Its integrability is equivalent to the existence of local coordi-
nates such that ω = dx1, i.e., ω is locally exact, or equivalently, ω is closed.

• If F = T 1
1 R

3, then the action of Gl(3,R) on F is by conjugation, so that the
corresponding orbits are not trivial: u1, u2 ∈ F are in the same orbit if and
only if they have the same canonical form over R. We will study the different
possibilities in dimension 3. The minimum polynomial is one of the following
types:
(a) ((x− α)2 + β2)(x− λ), β �= 0 with canonical form over R


 α β 0

−β α 0
0 0 λ




(b) (x − λ)(x − µ)(x − ν), where λ, µ, ν are three different eigenvalues; in
this case the Jordan form is diagonal.
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(c) (x− λ)2(x− µ), λ �= ν with Jordan form
 λ 1 0

0 λ 0
0 0 µ




(d) (x− λ)(x− µ), λ �= ν with diagonal Jordan form
 λ 0 0

0 λ 0
0 0 µ




(e) (x− λ)3, with Jordan form
 λ 1 0

0 λ 1
0 0 λ




(f) (x− λ)2, with Jordan form
 λ 1 0

0 λ 0
0 0 λ




(g) (x− λ), in this case we have a homothetic transformation.
The isotropy groups of theses matrices consist of the matrices of the

following form:

(a)


 a 0 0

0 b c
0 −c b


 (b)


 a 0 0

0 b 0
0 0 c




(c)


 a b 0

0 a 0
0 0 c


 (d)


 a 0 0

0 b c
0 d e




(e)


 a b c

0 a b
0 0 a


 (f)


 a 0 b

c d e
0 0 d




The case (g) is trivial since the homothetic transformation commutes
with every element in Gl(3,R).

Remark 4.1. We notice that the isotropy group is determined by the relations
between λ, µ and ν and the fact that β �= 0, but not by the particular values
of them. For instance, we can take λ = 0, µ = 1, ν = −1, α = 0 and β = 1.
Then the non trivial orbits of F = T 1

1M are given by u ∈ F fulfilling one and
only one of the following equations:

u3 + u = 0, u3 − u = 0, u3 − u2 = 0, u2 − u = 0, u3 = 0, u2 = 0.
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The associated fiber bundle is T 1
1M = TM ⊗ T ∗M . Therefore, a G-

structure with G a subgroup of the above list is given by a tensor field h of
type (1,1) such that for each x ∈M hx : TxM → TxM has constant canonical
form u. These G-structures were extensively treated in the literature. The
tensor field h is called a 0-deformable vector one-form (or (1, 1)-type tensor
field) [17]. The general notion of 0-deformability can be found in [12].

Definition 4.2. A section σ of a vector bundle ξ = (E, π,M,F ) is said to
be 0-deformable if for each x, y ∈ M there exist a linear isomorphism αx,y :
Fx → Fy such that αx,y(σ(x)) = σ(y).

Remark 4.3.
(i) We notice the similarity of this definition with the notion of material

uniformity of a body B (see Section 5).
(ii) A finite set of 0-deformable cross-sections Σξ = (σ1, . . . , σm) of ξpi,qi =

ξ⊗pi ⊗ (ξ∗)⊗qi defines a Σ-bundle (see [12]) where ξ = (E, π,B, F ) is a
vector bundle. In fact, the definition of Σ-bundle involves:
(a) a smooth vector bundle ξ = (E, π,B, F ).
(b) a finite ordered set of cross-sections Σξ = (σ1, . . . , σm), where σi ∈

Sec ξpi,qi ,
subject to the following condition: there are a finite ordered system
ΣF = (u1, . . . , um) of tensors ui ∈ F pi,qi and a coordinate representa-
tion {Uα, ψα} of ξ such that

ψpi,qi
α (x, ui) = σi(x) ∈ ξpi,qi

x , x ∈ Uα, i = 1, . . . ,m.

Then we will say that the section σi is 0-deformable to ui. A Σ-bundle
gives a reduction of the structure group from GL(F ) to an algebraic
subgroup. If ξ is the tangent bundle we obtain in this way a G-structure
with G an algebraic subgroup of Gl(n,R).

Coming back to the case of a 0-deformable vector one-form h we are
interested in the characterization of the integrability of the G-structure de-
fined by h. The following theorem was proved by E.T. Kobayashi [14] (see
also [17]).

Theorem 4.4. Let h be a 0-deformable vector one-form on a manifold M ,
with characteristic polynomial∏

i

pi(x)di ,

where pi(x) are irreducible and coprime polynomials in x over R. The mini-
mum polynomial is ∏

i

pi(x)vi .

We assume that for each i we have vi = 1 or vi = di. Then the G-structure
defined by h is integrable if the Nijenhuis tensor of h, Nh is zero, where Nh
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is a vector 2-form defined by
1
2
Nh(X,Y ) = [hX, hY ] − h[hX, Y ] − h[X,hY ] + h2[X,Y ].

Remark 4.5.
(i) In dimension three the above theorem gives a sufficient condition for

the integrability in all the cases except when u2 = 0.
(ii) Nh = 0 is always a necessary condition for the integrability.

• If F = T 2
0 R3 = S2R3 ⊕

∧2
R3, the action of an element A ∈ Gl(3,R) on

f ∈ F is given by At f A. There are two fundamental cases that we will
discuss separately:

- u ∈ S2
R

3, then applying Sylvester’s Theorem we deduce that u is in the
orbit of ε1e1 ⊗ e1 + ε2e

2 ⊗ e2 + ε3e
3 ⊗ e3 for some ε1, ε2, ε3 ∈ {−1, 0, 1},

i.e., the range and the signature determine the orbit of u. The associated
fiber bundle is T 2

0M , and a G-structure with G the isotropy group of u
is given by a symmetric (0,2)-tensor field which is 0-deformable to u. If
u = e1 ⊗ e1 + e2 ⊗ e2 ± e3 ⊗ e3 we obtain, respectively, a Riemannian or
Lorentzian metric g on M . The integrability of this structure is charac-
terized by the vanishing of the scalar curvature of g, but, in dimension
three, this is equivalent to the vanishing of the Ricci tensor of g.

- u ∈
∧2

R3 \ {0}. By Darboux’s Theorem u is in the orbit of e1 ∧ e2.
Therefore a G-structure with

G =
{(

A 0
v c

) ∣∣ A ∈ Sl(2,R), c ∈ R
∗
}

is given by a two-form η without zeros. The integrability is also charac-
terized by Darboux’s Theorem: the G-structure is integrable if and only
if dη = 0.

• The case F = T 0
2 R

3 is formally analogous to the above case, but the integra-
bility condition is different.

• Finally, we will consider the case F =
∧3

R3 ⊂ T 3
0 R3. We can take u =

e1 ∧ e2 ∧ e3, G = Gu = Sl(3,R) and Q = Ω3(M). Therefore a G-structure
over M is given by a three-form without zeros, i.e., a volume form Ω on M .
As we know, every Sl(3,R)-structure is integrable.

5. Uniformity and homogeneity of simple materials

A body B is a 3-dimensional differentiable manifold which can be covered with
just one chart. An embedding Φ : B −→ R3 is called a configuration of B. The
body is identified with any one of its configurations, say Φ0 : B −→ R3, called
a reference configuration. Given any arbitrary configuration Φ : B −→ R

3, the
change of configurations κ = Φ ◦ Φ−1

0 is called a deformation. We fix a reference
configuration Φ0 and, from now on, B and its image Φ0(B) will be identified.
The mechanical behavior of a hyperelastic material body is characterized by one
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function W which depends, at each point of B, only on the value of the derivative
of the deformation evaluated at that point (see [25], [26], [27], [31], [32], [33], [34]).
W measures the strain energy per unit volume of reference configuration. In a more
general material bodies, W can depend also of higher order gradients or even more
complicated microstructures (see [18], [19], [20], [21], [22]).

B is said to be materially uniform if for two arbitrary points X, Y ∈ B there
exists a local diffeomorphism φ from a neighborhood of X onto a neighborhood of
Y such that φ(X) = Y and

W (j1Y,κ(Y )κ) = W (j1Y,κ(Y )κ · j1X,Y φ), (5.1)

for all j1Y,κ(Y )κ. The 1-jet j1X,Y φ will be called a material 1-jet. It should be noticed
that j1X,Y φ may be identified with the linear isomorphism dφ(X) : TXB −→ TY B.
dφ(X) is usually called a material isomorphism [32].

Denote by Ω(B) the collection of all material 1-jets. Thus, Ω(B) ⊂ Π1(B,B),
where Π1(B,B) is the Lie groupoid of all invertible 1-jets on the manifold B
(see [24] for a general reference on Lie groupoids). We have canonical mappings
α : Π1(B,B) −→ B and β : Π1(B,B) −→ B defined by

α(j1X,Y φ) = X, β(j1X,Y φ) = Y,

respectively. Their restrictions to Ω(B) will be denoted by the same symbols. A
direct computation from (5.1) shows the following result.

Proposition 5.1. If B is uniform, then Ω(B) is a groupoid with source and target
mappings α and β, respectively. In fact, Ω(B) is a subgroupoid of the Lie groupoid
Π1(B,B) of all invertible 1-jets on the manifold B.

Definition 5.2. A material symmetry at a point X is a 1-jet j1X,Xφ of a local
diffeomorphism at X such that

W (j1X,κ(X)κ) = W (j1X,κ(X)κ · j1X,Xφ), (5.2)

for all j1X,κ(X)κ.

From (5.2) we deduce that the collection G(X) of all material symmetries at
X has a structure of group which is called the symmetry group at X. If j1X,Y φ is a
material 1-jet joining two points X and Y , we deduce that the symmetry groups
at X and Y are conjugate:

G(Y ) = j1X,Y φ ◦G(X) ◦ (j1X,Y φ)−1.

Definition 5.3. We say that B enjoys smooth uniformity if Ω(B) is a Lie groupoid,
which will be called the material Lie groupoid.

In such a case, there exist local sections of the projection (α, β) : Ω(B) −→
B × B given by (α, β)(j1X,Y φ) = (X,Y ). Such a local section, say P : B × B −→
Ω(B) assigns to each pair (X,Y ) of material points a material 1-jet connecting
them. Such a section P is called a local material uniformity. If there exists a global
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section of (α, β), then B enjoys smooth global uniformity, or, equivalently, the Lie
groupoid Ω(B) is smoothly transitive.

By applying well-known results on Lie groupoids and frame bundles, we get
the following (see [11]).

Proposition 5.4. If B enjoys smooth uniformity, then:
1. G(X0) is a Lie group.
2. α−1(X0) is a principal G(X0)-bundle over B whose canonical projection is

the restriction of β.

Proof. (1.): Since (α, β) is a submersion, we deduce that G(X0) = (α, β)−1(X0) is
a closed submanifold of Ω(B). Hence, it is a Lie group.

(2.): First of all, since α is a submersion, we deduce that α−1(X0) is a closed
submanifold of Ω(B). Moreover, since (α, β) is a submersion, there exist an open
covering {Ua} of B and local sections σa,b : Ua×Ub −→ Ω(B) of (α, β). IfX0 ∈ Ua0 ,
we define

σa(X) = σa0,a(X0, X) forX ∈ Ua.

In other words, σa assigns (in a differentiable way) to each material point X a
material 1-jet connecting X0 and X. Thus, we have obtained a family of local
sections {σa} of β : α−1(X0) −→ B which define a principal G(X0)-bundle. �

Next, we fix a point X0 at B. The tangent bundle TX0B is a linear approx-
imation of an infinitesimal piece of material around X0. But TX0B is completely
characterized by a basis. This fact leads us to the following definition.

Definition 5.5. A linear frame Z0 at a material point X0 will be called a reference
crystal (at X0).

A reference crystal Z0 is just a 1-jet j10,X0
ψ of a local diffeomorphism from

0 ∈ R3 into X0. Thus, we can transport Z0 to any point of B by composing it with
smooth material uniformities. The next result is also standard in the literature
(see [11]).

Theorem 5.6.

1. G = Z−1
0 ◦G(X0) ◦ Z0 is a Lie subgroup of Gl(3,R).

2. Denote by ω(B) the set of all linear frames at all the points of B obtained by
translating Z0. Then ω(B) is a G-structure on B.

Proof. (1.): Put GL(B,X0) = {j1X0,X0
φ} ⊂ Π1(B,B)}. GL(B,X0) is a Lie group

which is isomorphic to Gl(3,R). Since the mapping

GL(B,X0) −→ Gl(3,R), j1X0,X0
φ � Z−1

0 ◦ j1X0,X0
φ ◦ Z0,

is smooth, it follows that G = Z−1
0 ◦G(X0) ◦ Z0 is a Lie subgroup of Gl(3,R).

(2.): Take the family of local sections {σa} obtained in Proposition 5.4. A
family of local sections {τa} of ω(B) for the open covering {Ua} is obtained as
follows:

τa(X) = σa(X) ◦ Z0 forX ∈ Ua.
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An straightforward computation shows that ω(B) is in fact a G-reduction of FB.
�

This G-structure will be called material.

Remark 5.7.
(i) If we perform a change of reference configuration, the G-structure remains

the same, provided that the point X0 and the reference crystal Z0 are dragged
by the change of configuration.

(ii) If we choose a different point X ′
0, we obtain the same G-structure provided

that the reference crystal is the one obtained using a material uniformity
from X0 to X ′

0.
(iii) If we change the reference crystal Z0 to Z ′

0 = Z0A, where A ∈ Gl(3,R),
we obtain a conjugate G-structure ω(B)A, with conjugate structure group
A−1GA.

Definition 5.8. A body B is said to be homogeneous if there exists a global defor-
mation κ such that Q defined by

Q(X) = j10,X(κ−1 ◦ τκ(X)), ∀X ∈ B,

is a uniform reference, where τκ(X) : R3 → R3 denotes the translation by κ(X).
B is said to be locally homogeneous if around each point X of B there exists an
open neighborhood U which is homogeneous.

The following result gives a geometric characterization of the local homo-
geneity.

Theorem 5.9. B is locally homogeneous if and only if the associated material G-
structure is integrable.

Remark 5.10. According to Remark 5.7 the above definition does not depend on
the chosen crystal reference.

6. Classification of material G-structures

Our purpose is to study systematically the possible material G-structures associ-
ated to elastic bodies.

For physical reasons (see [32], [34]) we are only interested in G-structures with
G a Lie subgroup of the special linear group Sl(3,R). The first step is to classify
the subgroups of Sl(3,R). A classification modulo conjugation is usually attributed
to S. Lie [23], [28], [32], [34]. We reproduce here the list as it is presented in Wang
[34]. This list gives the classification of the Lie subalgebras of the Lie algebra sl(3)
of Sl(3,R) and their corresponding connected Lie subgroups, see Appendix A.

There are three types of solids, namely:
• isotropic solids belong to type 16,
• transversely isotropic solids belong to type 8 with parameter α = 0, and
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• crystalline solids belong to type 5 with α = β = γ = 0.
All other types are fluid crystals. For instance,

• isotropic fluids belong to type 9, and
• fluid crystal of first kind (respectively, second kind) belong to type 11 (re-

spectively, 10).
The first five families consist of three fundamental types, denoted by A,B

and C, respectively:
• type A is characterized by considering α, β and γ as variables; these families

are algebraic subgroups.
• type B is characterized by considering α, β and γ as fixed parameters, with

(α, β, γ) �= (0, 0, 0) and α + β + γ = 0. These families define an element
[α, β] of PR

1. The corresponding subgroup of the list is not algebraic, but it
is contained in a bigger “natural” algebraic subgroup if the parameters are
integer.

• type C is obtained by taking α = β = γ = 0 yielding algebraic families.
The types 6-8 contain two different cases:

• type A is characterized by taking α and β as variables. These families are
algebraic subgroups.

• type B is characterized by taking α and β as fixed parameters. These families
are algebraic if and only if α = 0.
The other families consist of a unique type, and they are algebraic except

families 17, 18, 21, 22 and 25.
In what follows, we will discuss theG-structures withG an algebraic subgroup

of Sl(3,R). We remark that the Lie subgroups included in the list are connected,
however we will consider the corresponding natural algebraic subgroups.

Given such a G-structure, and according to Remark 3.14, sometimes we will
consider an enlarged structure P with structural group G ⊂ Gl(3,R) such that
G ∩ Sl(3,R) = G. The relation between the integrability of P and P is given by
Proposition 3.15. Thus, in some cases we have only characterized the integrability
of P .

The group 1A

The group G1A is just the isotropy group of the linear subspaces 〈e3〉 ⊂ 〈e2, e3〉
and the tensor w = e1 ∧ e2 ∧ e3 on R3. Then such a G1A-structure P is given by
a one-dimensional distribution L, a two-dimensional distribution D with L ⊂ D,
and a volume form Ω.

Proposition 6.1. P is integrable if and only if D is involutive.

Proof. If D is involutive and X, Y, Z is an adapted local basis, i.e., L = 〈X〉,
D = 〈X,Y 〉, then we have [X,Y ] = αX+βY . Therefore there exist local functions
f and g such that [fX, gY ] = 0. Thus, there are local coordinates y1, y2, y3 such

that fX =
∂

∂y1
and gY =

∂

∂y2
. If Ω = b(y1, y2, y3)dy1 ∧ dy2 ∧ dy3, we define new



396 D. Maŕın and M. de León Mediterr. j. math.

coordinates x1 =
∫
b(y1, y2, y3)dy1, x2 = y2, x3 = y3, and hence (x1, x2, x3) are

adapted coordinates. The converse is trivial. �

The group 1B

As we have said before we only discuss the algebraic case. Thus, α, β and γ are
integer parameters. We can only consider the following six cases:

• α, γ > 0, then the tensor

t = e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
γ

⊗ e3 ⊗ · · · ⊗ e3︸ ︷︷ ︸
α

is invariant with respect to the natural action of GL(3,R). In fact, the
isotropy group of t and w is just the group G1B. Therefore, in this case a G1B-
structure P is given by a tensor field T of type (γ, α) which is 0-deformable to
t, and a volume form Ω. In addition we have a two-dimensional distribution
D on B such that T is tangent to D.

From Propositions 3.12 and 3.15, we deduce the following.

Proposition 6.2. The G1B-structure P is integrable if and only if the distribu-
tion D is involutive. In this case, let us denote by (x1, x2, x3) local coordinates
adapted to P . If P is integrable then necessarily L ∂

∂x2
Ω = L ∂

∂x3
Ω = 0.

Proof. It only remains to prove the last assertion, which follows directly from
Remark 3.16 and the following computation of g(1) = ker ∂g, where ∂g :
Hom(R3, g) → Hom(

∧2
R3,R3) is given by ∂g((τi)) = (τk

ij − τk
ji) and τi =

 αai 0 0
bi βai 0
ci di γai


. From the following table,

τk
12 − τk

21 τk
13 − τk

31 τk
23 − τk

32

k = 1 0 − αa2 0 − αa3 0 − 0
k = 2 βa1 − b2 0 − b3 0 − βa3

k = 3 d1 − c2 γa1 − c3 γa2 − d3

we deduce that if τ = (τi)3i=1 ∈ g(1), then a2 = a3 = 0 and therefore tr τ2 =
tr τ3 = 0. �

• β, γ > 0, then
t = e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸

γ

⊗ e3 ⊗ · · · ⊗ e3︸ ︷︷ ︸
β

is a tensor of type (γ, β) defined on the subspace 〈e2, e3〉. Our group is
just the isotropy group of t and w. A G-structure is now given by a two-
dimensional distribution D and a tangent tensor field D of type (γ, β) which
is 0-deformable to t. The integrability condition is the same as in the prece-
dent case. However, it should be noticed that now T is not a global tensor
field on B.
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• α, β > 0, then the subspace 〈e3〉 and the transverse tensor

t = u1 ⊗ · · · ⊗ u1︸ ︷︷ ︸
β

⊗u2 ⊗ · · · ⊗ u2︸ ︷︷ ︸
α

where u1, u2 is a basis of the quotient vector space R3/〈e3〉, together with
the three-form w determine the group G1B. Therefore a G1B-structure P is,
in this case, given by a one-dimensional distribution L, a transverse tensor
field T to L which is 0-deformable to t, and a volume form Ω.

Proposition 6.3. P is integrable if and only if it is projectable, i.e., the co-
efficients of T in a system of coordinates x1, x2, x3 adapted to the foliation
induced by L does not depend on the tangent coordinate x3. Moreover, assume
that (x1, x2, x3) are local coordinates adapted to P and P is integrable. Then
L ∂

∂x2
Ω = L ∂

∂x3
Ω = 0.

Remark 6.4. An alternative description of P is a tangent H-structure on a
two-dimensional distribution as in the precedent case, so that we can also
apply Proposition 6.2.

• α = 0, β, γ �= 0, then we have that e1, 〈e3〉 and w determine G1B as the
isotropy group. Therefore, a G1B-structure P is given by a one-form ω with-
out zeros, a one-dimensional distribution L such that ω|L = 0, and a volume
form Ω.

Proposition 6.5. P is integrable if and only if ω is closed.

Proof. If dω = 0 then we have that the two-dimensional distribution D =
{ω = 0} is involutive and, by a similar argument as in Proposition 6.1, there

are local coordinates (y1, y2, y3) such that L = 〈 ∂

∂y3
〉, D = 〈 ∂

∂y2
,
∂

∂y1
〉 and

Ω = dy1 ∧ dy2 ∧ dy3. Thus ω = λdy1. Since ω is closed, we deduce that

λ = λ(y1) and, by defining x1 =
∫
λ(y1)dy1, x2 =

y2

λ(y1)
and x3 = y3, we

obtain adapted coordinates (x1, x2, x3). The converse is trivial. �

• β = 0, α, γ �= 0,then G1B is the isotropy group of the vector subspace
〈e1, e3〉, the tangent covector e2 in this subspace, and the tensor w. Thus,
a G1B-structure P is given by a two-dimensional distribution D, a tangent
one-form ω|D on D, and a volume form Ω.

Proposition 6.6. P is integrable if and only if D is involutive and dω|D = 0.

Proof. As in Proposition 6.5. �

• γ = 0, α, β �= 0, then the group G1B is the isotropy group of e3, the subspace
〈e2, e3〉 and the tensor w. Therefore, in this case, a G1B-structure P is given
by a two-dimensional distribution D, a vector field X without zeros belonging
to D, and a volume form Ω.
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Proposition 6.7. P is integrable if and only if D is involutive and LXΩ = 0.

Proof. As in Proposition 6.1. �

The group 1C

The group G1C is the isotropy group of the tensors e3, e1 and w on R3. Therefore
a G1C -structure P is given by a one-form ω, a vector field X such that ω(X) = 0,
and a volume form Ω.

Proposition 6.8. P is integrable if and only if ω is closed and LXΩ = 0.

Proof. If dω = 0 then the two-dimensional distribution D = {ω = 0} is involutive.
Take a vector field Y such that D = 〈X,Y 〉. Since D is involutive, there are
functions f and g, g �= 0, such that Y ′ = fX + gY verifies [X,Y ′] = 0. Thus,

there exist local coordinates (y1, y2, y3) such that X =
∂

∂y2
and Y ′ =

∂

∂y3
. We

deduce that ω = λdy1. Since ω is closed, λ = λ(y1) and we can assume without
loss of generality that λ = 1 (otherwise we only need to make a new change of
coordinates). Now Ω = b(y1, y2, y3)dy1 ∧ dy2 ∧ dy3, and by applying the argument
in Proposition 6.1 we proof is completed. The converse is trivial. �

The group 2A

The group G2A is the isotropy group of the subspaces 〈e3〉, 〈e2〉 and of the tensor w.
Thus, a G2A-structure P is given by two transverse one-dimensional distributions
L1 and L2 and a volume form Ω.

Assume that the two-dimensional distribution L1⊕L2 is involutive. Given an
adapted local basis Y1, Y2, Y3, i.e., such that Yi ∈ Li for i = 1, 2 and Ω(Y1, Y2, Y3) =
1, we define

τ (Y1, Y2, Y3) = Y1(α) + Y2(h) + αh− αβ,

where [Y1, Y2] = αY1 + βY2 and LY1Ω = hΩ. Given another adapted local basis

Y ′
1 = f1Y1, Y ′

2 = f2Y2, and Y ′
3 =

1
f1f2

Y3, a direct computation shows that

τ (Y ′
1 , Y

′
2 , Y

′
3) = f1f2τ (Y1, Y2, Y3).

Proposition 6.9. P is integrable if and only if the two-dimensional distribution
L1⊕L2 is involutive and τ (Y1, Y2, Y3) vanishes for an arbitrary adapted local frame
Y1, Y2, Y3.

Proof. One direction is obvious. For the other direction, we only need to prove
that given an adapted local frame Y1, Y2, Y3 as above, there exist local functions
λ1 and λ2 such that [λ1Y1, λ2Y2] = 0 and Lλ1Y1Ω = 0. To prove this we proceed
as follows. If [Y1, Y2] = αY1 + βY2 and LY1Ω = hΩ, then

Y1(λ2) + βλ2 = 0, Y2(λ1) − αλ1 = 0, Y1(λ1) + hλ1 = 0.
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The first equation can always be integrated and the compatibility condition for
the last two equations is just

(−αh+ βα)λ1 = αY1(λ1) + βY2(λ1)
= [Y1, Y2]λ1

= Y1Y2λ1 − Y2Y1λ1

= Y1(αλ1) + Y2(hλ1)
= (Y1α+ Y2h)λ1 + αY1λ1 + hY2λ1

= (Y1α+ Y2h)λ1.

To end the proof, we remark that if [λ1Y1, λ2Y2] = 0 and Lλ1Y1Ω = 0, then there

exist local coordinates (y1, y2, y3) such that λ1Y1 =
∂

∂y1
, λ2Y2 =

∂

∂y2
, L ∂

∂y1
Ω = 0,

L ∂
∂y2

Ω = 0, and now, after an appropriate change of coordinates, the proof can be
easily completed. �

The group 2B

We can only consider the algebraic case, i.e., with α, β and γ integer parameters.
• If αβγ �= 0 then we have a tangent H-structure defined by tangent tensors

to the vector subspace 〈e1, e2〉. We can consider the following two subcases:
– If β and γ are both positive, we have

e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
γ

⊗ e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
β

and e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
β

⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
γ

as invariant tangent tensors of G2B.
– If β > 0 and γ < 0, then

(e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
−γ

) � (e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
β

)

is an invariant tangent tensor.
Thus, the group G2B is the intersection of G2A with the isotropy group

of the above tangent tensors. Therefore, a G2B-structure P is given by a one-
dimensional distribution L, a two-dimensional distribution D with L ⊂ D, a
tangent tensor field on D which is 0-deformable to the above tensors and a
volume form.

From Proposition 3.10 and Corollaries 3.11 and 3.13, we have the fol-
lowing.

Proposition 6.10. P is integrable if and only if D is involutive and the H-
structures induced on the leaves of the foliation defined by D are all of
them integrable (the last condition occurs if and only if the unique torsion
free H-connection on each leaf has zero curvature). Assume that P is in-
tegrable with adapted local coordinates (x1, x2, x3). If P is integrable then
L ∂

∂x2
Ω = L ∂

∂x3
Ω = 0.
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Proof. It only remains to prove the last assertion, which follows from Re-
mark 3.16 and the computations made in the proof of Proposition 6.2. �

• If αβγ = 0 we consider the following subcases:
– α = 0, a G2B-structure P is given by two one-dimensional distributions
L1, L2, a 1-form ω such that L1 ⊕L2 = {ω = 0} and a volume form Ω.

Proposition 6.11. P is integrable if and only if the conditions in Propo-
sition 6.9 hold and dω = 0.

Proof. From Proposition 6.9 we conclude that there exist local coor-
dinates x1, x2, x3 adapted to corresponding G2A-structure, and hence
ω = λdx1. Since dω = 0, after an appropriate change of coordinates we
can assume that λ = 1 and Ω = dx1 ∧ dx2 ∧ dx3. �

– β = 0, which is equivalent to case γ = 0. A G2B-structure P is given by
a one-dimensional distribution L, a vector field X and a volume form
Ω.

Proposition 6.12. P is integrable if and only if

LXL ⊂ L and LXΩ = 0.

The group 2C

The group G2C is the isotropy group of the vectors e2, e3 and the tensor w.
Thus a G2C-structure P is given by two vector fields X1, X2 which are linearly
independent, and a volume form Ω. We notice that P can be alternatively described
by X1, X2 and a one-form ω such that ω(Xi) = 0, for i = 1, 2. In fact, given Ω we
put ω = ιX1ιX2Ω, and given ω, we define Ω by Ω(X1, X2, Z) = ω(Z) for all vector
field Z.

Proposition 6.13. The following statements are equivalent:

1. P is integrable
2. [X1, X2] = 0 and LX1Ω = LX2Ω = 0.
3. [X1, X2] = 0 and dω = 0.

The group 3A

The group G3A is the isotropy group of the subspaces 〈e1, e2〉, 〈e2, e3〉 and the
tensor w. Therefore a G3A-structure P is given by two distributions of dimension
two D1, D2 and a volume form Ω.

Proposition 6.14. P is integrable if and only if D1 and D2 are both involutives.

Proof. Assume that D1 and D2 are both involutive. Then, by applying Proposi-
tion 6.1 to L = D1 ∩ D2 ⊂ D1 and Ω, we obtain local coordinates (y1, y2, y3)

such that D1 = 〈 ∂

∂y1
,
∂

∂y2
〉 and D1 ∩D2 = 〈 ∂

∂y3
〉. So, D2 = 〈 ∂

∂y3
,
∂

∂y2
+ a

∂

∂y1
〉,
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for some function a. Since D2 is involutive, we deduce that
∂a

∂y3
= 0. It is clear

that
λ
∂

∂y1
+ µ

∂

∂y3
,

∂

∂y3
,

∂

∂y2
+ a

∂

∂y1

is an adapted local frame for all functions λ and µ, λ �= 0. Now, the equation[
λ
∂

∂y1
+ µ

∂

∂y3
,

∂

∂y2
+ a

∂

∂y1

]
= 0

is equivalent to the following system of PDE’s:(
∂

∂y2
+ a

∂

∂y1

)
λ = − ∂a

∂y1
λ,

(
∂

∂y2
+ a

∂

∂y1

)
µ = 0. (6.1)

In addition, we have that
[
∂

∂y3
,

∂

∂y2
+ a

∂

∂y1

]
= 0 if and only if λ and µ do not

depend on y3. Thus (6.1) have solution which are independent of y3 if and only if
a does not depend on y3. In such case, the other two brackets[

∂

∂y3
, λ

∂

∂y1
+ µ

∂

∂y3

]
and

[
∂

∂y3
,

∂

∂y2
+ a

∂

∂y1

]

also vanish and the proof is completed. The converse is trivial. �

The group 3B

We only consider the algebraic case. This case is similar to the case 2B but now
the tensor fields are transverse to the one-dimensional distribution L instead of
tangent to the two-dimensional distribution D. Concerning the integrability we
obtain the following result.

Proposition 6.15. P is integrable if and only if it is projectable, i.e. the coefficients
of the transverse tensor field T in a system of coordinates (x1, x2, x3) adapted to
the foliation induced by L do not depend on the tangent coordinate x3. Assume that
P is integrable with adapted local coordinates (x1, x2, x3). Then P is integrable if
and only if L ∂

∂x1
Ω = L ∂

∂x2
Ω = L ∂

∂x3
Ω = 0.

Proof. The last assertion is a consequence of Proposition 3.15, Remark 3.16 and the

following computation of g(1): if τ = (τi)3i=1 with τi =


 αai bi ci

0 βai 0
0 0 γai


 ∈ g,

then

τk
12 − τk

21 τk
13 − τk

31 τk
23 − τk

32

k = 1 b1 − αa2 c1 − αa3 c2 − b3
k = 2 βa1 − 0 0 − 0 0 − βa3

k = 3 0 − 0 γa1 − 0 γa2 − 0

Consequently, if τ ∈ g(1) then a1 = a2 = a3 = 0 and therefore tr τ1 = tr τ2 =
tr τ3 = 0. �



402 D. Maŕın and M. de León Mediterr. j. math.

The group 3C

The group G3C is the isotropy group of the covectors e2, e3 and the tensor w.
Thus a G3C-structure P is given by two one-forms ω1 and ω2 which are linearly
independent, and a volume form Ω. As in the case 2C we have an alternative
description of P , giving ω1, ω2 and a vector field X such that ω1(X) = ω2(X) = 0.

Proposition 6.16. P is integrable if and only if ω1 and ω2 are closed.

Proof. From Proposition 6.14 we conclude that there exist local coordinates y1, y2,
y3 such that ωi = λidy

i for i = 1, 2 and Ω = dy1∧dy2∧dy3. Since dωi = 0, then λi

only depends on yi; after the change of coordinates given by xi =
∫
λi(yi)dyi, for

i = 1, 2, and x3 =
y3

λ1λ2
the proof can be completed. The converse is trivial. �

The group 4A

The group G4A is the isotropy group of the subspaces 〈e1, e2〉, 〈e2〉, 〈e3〉 and the
tensor w. Therefore a G4A-structure is given by one two-dimensional distribution
D, two one-dimensional distributions L1 and L2 such that L1 ⊂ D and L2∩D = 0,
and a volume form Ω.

Proposition 6.17. If P is integrable then D is involutive and the induced G2A-
structure is integrable.

Remark 6.18. The converse does not hold. For instance take on R3 the G4A-
structure given by L1 = 〈Y1〉, L2 = 〈Y2〉 and Ω such that Ω(Y1, Y2, Y3) = 1 where

Y1 =
∂

∂y1
, Y2 =

∂

∂y2
, Y3 = y2 ∂

∂y1
+

∂

∂y2
+

∂

∂y3
.

The group 4B

The group G4B is the subgroup of G2B which leaves the subspace 〈e1, e2〉 invariant.
Thus, a G4B-structure consist of a G2B-structure (L, T,Ω) and a two-dimensional
distribution D′ which is complementary of L.

A necessary condition for the integrability of a G4B-structure is given by
Propositions 6.10-6.12.

The group 4C

The group G4C is the isotropy group of the vectors e2, e3 and the covector e1.
Therefore a G4C-structure P is given by two vector fields which are linearly inde-
pendent, and one-form ω such that ω(X1) = 0 and ω(X2) = 0.

Proposition 6.19. P is integrable if and only if [X1, X2] = 0 and dω = 0.

The group 5A

The group G5A is the isotropy group of the subspaces 〈e1〉, 〈e2〉, 〈e3〉 and the tensor
w. Alternatively, G5A can be described as the isotropy group of a diagonalizable
endomorphism f with three distinct eigenvalues, and w. Then, a G5A-structure
P is given by three one-dimensional distributions L1, L2 and L3, and a volume
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form Ω. Alternatively, P can be described by a tensor field h of type (1, 1) which
is 0-deformable to f , and the volume form Ω.

Remark 6.20. The Lie algebra g is of finite type, indeed g(1) = 0, and then there
is at most a free torsion G5A-connection ∇. In fact, since the Nijenhuis tensor Nh

of h vanishes one can constructs local G5A-connections without torsion and, since
the uniqueness, they coincide on the overlappings.

Proposition 6.21. Let P be a G5A-structure and P an associated G5A-structure.
Then the following statements are equivalent:

1. P is integrable.
2. The distributions Li ⊕ Lj are both involutive.
3. Nh = 0.

Moreover, P is integrable if and only if Nh = 0 and the G5A-connection ∇ has
zero curvature.

The group 5B

We only consider the algebraic case, i.e., α, β and γ are integer parameters. Re-
ordering if it is necessary, we can assume that β ≥ 0 and α ≤ 0. Then, the tensor

t = e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
β

⊗ e2 ⊗ · · · ⊗ e2︸ ︷︷ ︸
−α

is invariant by G5B. In fact, G5B is the isotropy group of the subspaces 〈ei〉, for
i = 1, 2, 3, and the tensors t and w. Therefore, a G5B-structure P is given by
three complementary one-dimensional distributions Li, a tensor field T which is 0-
deformable to t, and a volume form Ω. According to the precedent section we obtain
that if X1, X2, X3 is an adapted local frame to P and we put [Xi, Xj ] = γk

ijXk,
then the integrability of P implies the following conditions:

γ3
12 = 0, γ2

13 = 0, γ1
23 = 0 (6.2)

and
γγ1

12 + αγ3
23 = 0, γγ2

12 − βγ3
13, βγ1

13 − αγ2
23 = 0. (6.3)

Remark 6.22.
(i) Equations (6.2) imply that the distributions Li ⊕ Lj are both involutive.
(ii) In this case ∂g is injective, therefore if Equations (6.2) and (6.3) hold, then

there exist a unique torsionless G5B-connection ∇.

Proposition 6.23. P is integrable if and only if Li ⊕ Lj is involutive, Equations
(6.3) hold for any local adapted frame to P , and the curvature of ∇ vanishes.

Remark 6.24. The case α = 0 corresponds to a subgroup ofG19 which is conjugated
with the special Lorentz group as we will see later. In this case, a G5B-structure
is given by a Lorentzian metric g, its associated volume form, and a vector field
X such that g(X,X) = 1. Then P is integrable if and only if the Ricci tensor of g
is zero and ∇X = 0, where ∇ is the Levi-Civita connection of g.
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The group 5C

The group G5C is the trivial group. Then a G5C-structure P is just a linear par-
allelism X1, X2, X3 on B.

Proposition 6.25. P is integrable if and only if [X1, X2] = [X1, X3] = [X2, X3] = 0,
or, equivalently, if and only if the flat connection defined by the parallelism is
symmetric.

The group 6A

The group G6A is the isotropy group of the vector subspace 〈e1 ⊗ e1 + e2 ⊗ e2〉 ⊂
T 2

0 R3 and w. Thus, giving a G6A-structure P is equivalent to giving the projec-
tivization of a symmetric covariant tensor field of order 2 and constant rank 2,
and a volume form. But this is equivalent to give a one-dimensional distribution L
and a transverse almost complex structure J . We denote by P the G6A-structure
obtained from P without considering the volume form Ω. Using the fact that all
GL(1,C)-structure is integrable we obtain the following.

Proposition 6.26. P is integrable if and only if the transverse almost complex
structure J is projectable, i.e., the transverse tensor field J does not depend on the
tangent coordinates adapted to the foliation defined by L.

The group 6B

The only algebraic subgroup of type 6B is obtained with α = 0. In this case,
a G6B-structure is given by a one-dimensional distribution L and a Riemannian
metric g which is transverse to L. If in addition, we give a volume form Ω then we
obtain the corresponding G6B-structure P .

Proposition 6.27. P is integrable if and only if g is projectable, i.e., g is a transverse
bundle like metric to the foliation defined by L.

The group 7A

The group G7A is the isotropy group of the subspace 〈e1 ⊗ e1 + e2 ⊗ e2〉 ⊂ T 0
2 R

3

and the tensor w. Thus, a G7A-structure P is given by the projectivization of a
symmetric two-contravariant tensor field g of rank 2, and a volume form Ω. An
alternative description of P consists of a two-dimensional distribution D and a
tangent almost complex structure on D. From Proposition 3.10 we obtain the
following result.

Proposition 6.28. P is integrable if and only if D is involutive.

The group 7B

The only algebraic subgroup of type 7B is obtained by putting α = 0. This group
G7B is the isotropy group of the subspace 〈e1, e2〉, the tangent metric tensor e1 ⊗
e1+e2⊗e2 and the tensor w. Then, aG7B-structure P is given by a two-dimensional
distribution D with a tangent metric g and a volume form Ω.
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Proposition 6.29. P is integrable if and only if D is involutive and the scalar cur-
vature of the metric defined on each leaf of the induced foliation vanishes. Assume
that P is integrable with adapted local coordinates (x1, x2, x3). If P is integrable
then L ∂

∂x1
Ω = L ∂

∂x2
Ω = 0.

Proof. The last assertion is a consequence of Remark 3.16 and the following cal-

culation of g(1): If τ = (τi)3i=1 with τi =


 0 ai bi

−ai 0 ci
0 0 βi


 ∈ g, then

τk
12 − τk

21 τk
13 − τk

31 τk
23 − τk

32

k = 1 a1 − 0 b1 − 0 b2 − a3

k = 2 0 + a2 c1 + a3 c2 − 0
k = 3 0 − 0 β1 − 0 β2 − 0

Consequently, if τ ∈ g(1) then β1 = β2 = 0 and therefore tr τ1 = tr τ2 = 0. �

The group 8A

The group G8A is the isotropy group of the endomorphism f = e2 ⊗ e1 − e1 ⊗ e2
and the tensor w. Thus, a G8A-structure is given by a tensor field h of type (1,1)
which is 0-deformable to f . We notice that h3 +h = 0. These structures are called
f -structures in the literature [35]. If, in addition, we give a volume form Ω then
we obtain the corresponding G8A-structure P .

Proposition 6.30. P is integrable if and only if Nh = 0. In this case, there exist
adapted local coordinates x1, x2, x3 such that Ω = b(x1, x2, x3) dx1∧dx2∧dx3, for
some function b. Therefore, P is integrable if and only if the following conditions
hold:

∂2 log b
∂x1∂x3

= 0,
∂2 log b
∂x2∂x3

= 0,
∂2 log b
∂(x1)2

+
∂2 log b
∂(x2)2

= 0. (6.4)

Proof. The last assertion follows by applying the techniques described at the end
of Section 3. By some calculations similar to the ones made in the proof of Propo-
sition 6.29, we deduce that g(1) is given by
τ1 =


 α1 α2 0

−α2 α1 0
0 0 0


 , τ2 =


 α2 −α1 0

α1 α2 0
0 0 0


 , τ3 =


 0 0 0

0 0 0
0 0 β3




 .

In order to obtain the integrability of P we need to construct a tensor field τ : U →
g(1) such that ∂τj

∂xi − ∂τi

∂xj +[τi, τj ] = 0 and tr τi = ∂ log b
∂xi , where Ω = b(x1, x2, x3)dx1∧

dx2 ∧ dx3. Taking into account that [τi, τj ] = 0, ∂ log b
∂xi = tr τi = 2αi if i = 1, 2 and

∂ log b
∂x3 = tr τ3 = β3, the compatibility relations of the resulting system of PDE’s

can be expressed as (6.4). �
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The group 8B

The only algebraic subgroup of type 8B is obtained when α = 0. In this case G8B

is the subgroup of SO(3) that leaves invariant the vector e3. Thus, a G8B-structure
P is given by a Riemannian metric g, the Riemannian volume form Ω, and a vector
field X without zeros.

Proposition 6.31. P is integrable if and only if the Ricci tensor of g vanishes and
∇X = 0 where ∇ is the Levi-Civita connection of g.

The group 9

The group G9 is the special linear group Sl(3,R). Then a G9-structure is given
by a volume form Ω. If we look at the proof of Proposition 6.1, we deduce the
following result.

Proposition 6.32. Every Sl(3,R)-structure is integrable.

The group 10

The group G10 is the isotropy group of the subspace 〈e1, e2〉 of R
3 and the tensor

w. Then a G10-structure P is given by a two-dimensional distribution D and a
volume form Ω.

Proposition 6.33. P is integrable if and only if the distribution D is involutive.

The group 11

The group G11 is the isotropy group of the subspace 〈e3〉 of R
3 and the tensor

w. Thus, a G11-structure P is given by a one-dimensional distribution L and a
volume form Ω.

Proposition 6.34. P is always integrable.

The group 12

The group G12 is the isotropy group of the covector e3 and the tensor w. Therefore,
a G12-structure P is given by a one-form ω without zeros and a volume form Ω.

Proposition 6.35. P is integrable if and only if dω = 0.

The group 13

The group G13 is the isotropy group of the vector e3 and the tensor w. Then, a
G13-structure P is given by a vector field X without zeros and a volume form Ω.

Proposition 6.36. P is integrable if and only if LXΩ = 0.

The group 14

The group G14 is the isotropy group of the subspaces 〈e1, e2〉, 〈e3〉 of R3 and the
tensor w. Alternatively, it is the isotropy group of the endomorphism e1 ⊗ e1 and
the tensor w. Thus, a G14-structure P is given by a two-dimensional distribution
D, a complementary one-dimensional distribution L, and a volume form Ω. Alter-
natively, it is given by a tensor field h of type (1, 1) such that h3−h2 = 0, together
with the form Ω. Let P be the G14-structure obtained from P without considering
the volume form Ω.
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Proposition 6.37. P is integrable if and only if Nh = 0.

The group 15

The groupG15 is the isotropy group of the tensors u = e1∧e2 and v = e3. We notice
that w = u∧ v. Therefore a G15-structure P is given by a 2-form η and a 1-form ω
such that η ∧ ω �= 0 everywhere. Theses structures are called almost-cosymplectic
[3].

Proposition 6.38. P is integrable if and only if dη = 0 and dω = 0.

Proof. It is just the statement of Darboux’s Theorem (see [3]). �
The group 16

The group G16 is the special orthogonal group SO(3). Then a G16-structure P is
given by a Riemannian metric g on B and the Riemannian volume form Ω.

Proposition 6.39. P is integrable if and only if the curvature of the Levi-Civita
connection of g vanishes. This condition is equivalent to the vanishing of the Ricci
tensor of g.

The group 19

The group G19 is the isotropy group of the tensors

s = e2 ⊗ e3 + e3 ⊗ e2 − e1 ⊗ e1

and w. We notice that s is in the same orbit that −e1⊗e1−e2⊗e2 +e3⊗e3, which
is the model for the Lorentzian metrics, thus the group G19 is conjugated with the
special group SO(2, 1). Since we are discussing subgroups modulo conjugation we
can consider a G19-structure as given by a Lorentz metric g and its volume form.

Proposition 6.40. As in the Riemannian case, P is integrable if and only if the
Ricci tensor of g is zero.

The group 20

The group G20 is the isotropy group of the subspace of T 4
0 R3 generated by

t = (e2 ⊗ e3 + e3 ⊗ e2 − e1 ⊗ e1)⊗ e3 ⊗ e3 − e3 ⊗ e3 ⊗ (e2 ⊗ e3 + e3 ⊗ e2 − e1 ⊗ e1)

and the tensor w. Therefore a G20-structure P is given by the projectivization
of a tensor field T which is 0-deformable to t, and a volume form Ω. We can
use the conditions in Section 3, however we did not find any nice geometrical
interpretation.

The group 23

The group G23 is the subgroup of G19 which leaves the subspace 〈e2〉 invariant.
Via conjugation of G19 with the special group SO(2, 1), e2 becomes a vector in the
light cone. Thus, a G23-structure P is given by a Lorentzian metric g, its volume
form Ω and a one-dimensional distribution L contained in the light cone of g.

Proposition 6.41. P is integrable if and only if the Ricci tensor of g vanishes and
∇L ⊂ L, where ∇ is the generalized Levi-Civita connection of g.
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The group 24

The group G24 is conjugated with the isotropy group of the tensor w and the
endomorphism u = e2 ⊗ e1 + e3 ⊗ e2, with minimum polynomial u3 = 0. Then,
a G24-structure P is given by a tensor field h which is 0-deformable to u. If, in
addition, we give a volume form Ω then we obtain the corresponding G24-structure
P .

Proposition 6.42. P is integrable if and only if Nh = 0. Assuming that P is
integrable, then we deduce that P is integrable if and only if for an arbitrary system
of coordinates x1, x2, x3 adapted to P the following conditions hold:

L ∂
∂x1

Ω = 0, L ∂
∂x2

Ω = 0. (6.5)

Proof. Using the conjugation between G24 and G = Gu we can characterize the

integrability of P in terms of g =




 a b c

0 a b
0 0 a


 | a, b, c ∈ R


. First of all, we

compute g(1) by means of the following table

τk
12 − τk

21 τk
13 − τk

31 τk
23 − τk

32

k = 1 b1 − a2 c1 − a3 c2 − b3
k = 2 a1 − 0 b1 − 0 b2 − a3

k = 3 0 − 0 a1 − 0 a2 − 0

obtaining that

g(1) =


τ1 =


 0 0 a3

0 0 0
0 0 0


 , τ2 =


 0 a3 b3

0 0 a3

0 0 0


 , τ1 =


 a3 b3 c3

0 a3 b3
0 0 a3




 .

The integrability of P is equivalent to the existence of a tensor field τ : U → g(1)

verifying the system of PDE’s ∂τj

∂xi − ∂τi

∂xj + [τi, τj ] = 0, jointly to the equations
tr τi = ∂ log b

∂xi , being Ω = b(x1, x2, x3)dx1 ∧ dx2 ∧ dx3. Taking into account that
[τi, τj ] = 0, it is easy to check that the precedent system of PDE’s has always
solution provides that a3 = 1

3
∂ log b
∂x3 and the function b(x1, x2, x3) does not depend

on x1 nor x2, which is equivalent to (6.5). �

The group 26

The group G26 is another subgroup of G19. Under the same identifications as in
that case, and by similar computations we conclude that giving a G26-structure P
is the same that giving a Lorentzian metric g, its volume form Ω, and a isotropic
vector field X without zeros (i.e., such that g(X,X) = 0).

Proposition 6.43. P is integrable if and only if the Ricci tensor of g vanishes and
∇X = 0, where ∇ is the generalized Levi-Civita connection of g.
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7. Chevalley’s Theorem

As we have shown, a G-structure defined by a 0-deformable tensor field is a re-
duction of the frame bundle FM to an algebraic subgroup G of Gl(n,R). We can
ask for a converse: given a G-structure with G an algebraic subgroup of Gl(n,R),
there exist a 0-deformable tensor field defining it?

An approach to this question is given by a Theorem of Chevalley whose proof
we sketch below. Before stating it, let us introduce some notions. Let V be a vector
space. A construction over V is a vector space obtained from V by iterating the
operations ∗,⊕,⊗, Sm and

∧m. If g ∈ GL(V ) then g acts in a natural way on each
construction over V following the rules:

(i) if v ∈ V then ρ(g)(v) = gv is the standard action,
(ii) if ω ∈ V ∗ then ρ(g)(ω) : v �→ ω(g−1v),
(iii) ρ(g)(a⊗ b) = ρ(g)(a) ⊗ ρ(g)(b),
(iv) ρ(g)(a⊕ b) = ρ(g)(a) ⊕ ρ(g)(b).
In other words, ρ defines the (faithful) tensorial representation ρ : GL(V ) →
GL(TV ), where TV =

⊕
r,s≥0 V

r,s (with V r,s = V ⊗r ⊗ (V ∗)⊗s) is the whole tensor
algebra over V .

Remark 7.1. Any construction W over V is a direct sum of finite dimensional
subspaces of the whole tensor algebra TV . Therefore, if M is a manifold of di-
mension n = dimV , the associated vector bundle (FM ×W )/Gl(n,R) is a direct
sum of tensor bundles over M . On the other hand, if u ∈ W and G = {g ∈
Gl(n,R) | ρ(g)u = u} (respectively, G = {g ∈ Gl(n,R) | ∃λ �= 0, ρ(g)u = λu})
then, according to Theorem 2.2, any G-structure is given by some W -tensor (re-
spectively PW -tensor) which is 0-deformable to u ∈W (respectively, [u] ∈ PW ).

It is easy to prove that if {Vi}i∈I is a family of constructions, and for every
i ∈ I, {Wij}j∈Ji

is a family of subspaces of Vi, then

H = {g ∈ GL(V ) | g(Wij) ⊂Wij , ∀i ∈ I, ∀j ∈ Ji}
is an algebraic subgroup of GL(V ). The following result is a weak converse (see
[2], [30]).

Theorem 7.2 (Chevalley). Let H be an algebraic subgroup of GL(V ). Then there
exist a finite-dimensional vector space W , a faithful representation α : GL(V ) →
GL(W ) and a subspace W0 ⊂W such that

H = {g ∈ GL(V ) |α(g)(W0) ⊂W0}.
In fact, W0 and W can be chosen such that dimW0 = 1.

Sketch of the proof (from [2], [5]). For the sake of shortness we will write G in-
stead of GL(V ) and we denote by K[G] the ring of regular functions over G with
values in the ground field K (K = R in what follows), i.e., K[G] = K[xij , 1 ≤
i, j ≤ n][∆−1] with ∆ = det(xij) and n = dimV .

Since G acts on itself by left translations, it induces a linear action on K[G]
by pull-back. More precisely, if g ∈ G and f ∈ K[G] then g∗f := (g−1)∗f : (xij) �→
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f(g−1·(xij)). The map g �→ g∗ defines a faithful representation α : G→ GL(K[G]).
The space W stated in the theorem will be a suitable subspace of K[G] with the
restricted representation α : G→ GL(W ).

Since H ⊂ G is algebraic, we can consider the ideal I(H) ⊂ K[G] defining H,
i.e. I(H) = {f ∈ K[G] | f(h) = 0 for all h ∈ H}. Using that K[G] is noetherian, we
can find a finite dimensional subspaceW ⊂ K[G] containing a system of generators
of I(H). Then, we define W0 as W ∩ I(H) and we have

H = {g ∈ G | g−1 ·H ⊂ H} = {g ∈ G |α(g)(I(H)) ⊂ I(H)}
= {g ∈ G |α(g)(W0) ⊂W0}.

Finally, if k = dimW0 > 1 then we can take α′ =
∧k α, W ′ =

∧k W and W ′
0 =∧k W0 which is one-dimensional. �

Remark 7.3. Denoting by G = GL(V ) and by E = End(V ) = V ⊗ V ∗, notice
that K[G] contains K[xij ] = K[E] ∼= S(E∗) =

⊕
s≥0(E

∗)⊗s ↪→ TV . On the other
hand, from the proof we can choose W ⊂ K[E]. Thus, we can take W ⊂ TV , but
the representation α : GL(V ) → GL(W ) is not the restriction of the tensorial
representation ρ : GL(V ) → GL(TV ) considered above.

Although in some references [7], [29] it seems that Chevalley’s theorem holds
for α = ρ, we have not found a proof of this. Therefore, we prefer do not use this
stronger version and, consequently, we show, in the same spirit, a slightly different
result:

Theorem 7.4. Let H be an algebraic subgroup of GL(V ). Then there exists a
finite dimensional subspace W ⊂ TV such that the normalizer N (H) = {g ∈
GL(V ) | g−1Hg = H} of H verifies:

N (H) = {g ∈ GL(V ) | ρ(g)(W ) ⊂W},

where ρ : GL(V ) → GL(TV ) denotes the tensorial representation. Moreover, we
can take W one-dimensional.

Proof. Consider the adjoint action of G onto itself and the induced representation
ρ′ : G → GL(K[G]) given by ρ′(g)(f) : (xij) �→ f(g−1 · (xij) · g) for any f ∈
K[G]. A straightforward calculation shows that, under the identifications made in
Remark 7.3, ρ′ coincides with the tensorial representation ρ : G→ GL(TV ).

Now, we proceed as above by considering the ideal I(H) of K[G] defining
the algebraic subgroup H ⊂ G. Again, since K[G] is noetherian there is a finite
dimensional subspace W of K[E] ⊂ K[G] which contains a system of generators
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of I(H). Identifying W as a subspace of TV , we have

{g ∈ G | ρ(g)(W ) ⊂W} = {g ∈ G | ρ′(g)(I(H)) ⊂ I(H)}
= {g ∈ G | ρ′(g)(f) ∈ I(H), ∀f ∈ I(H)}
= {g ∈ G | ρ′(g)(f)(h) = 0, ∀f ∈ I(H), ∀h ∈ H}
= {g ∈ G | f(g−1hg) = 0, ∀f ∈ I(H), ∀h ∈ H}
= {g ∈ G | g−1hg ∈ H, ∀h ∈ H}
= N (H).

which proves the result. The last assertion follows taking a suitable exterior power
of W . �

Theorem 7.5. Let G be an algebraic subgroup of Gl(n,R). Then, any N (G)-
structure can be given by the projectivization of an inhomogeneous tensor field

t =
m∑

i=1

ti, where each ti is a 0-deformable tensor field on M of type (ri, si).

Remark 7.6. In [10] the authors explore the possibility of the existence of non-
uniform materials which could enjoy, however, some kind of homogeneity. They
introduce the notion of unisymmetric materials as follows.

Definition 7.7. A material body is said to be unisymmetric if the material symme-
try groups of its points in one (and, therefore, in every) configuration are pairwise
conjugate.

Functionally graded materials (FGM for short), important for their industrial
applications, are of this type.

LetX1 andX2 be two points of a unisymmetric body B, and let A : TX1B −→
TX2B be a symmetry isomorphism such that G2 = AG1A

−1, where G1 and G2

are the material symmetry groups at X1 and X2, respectively. Then, the family
A12 of all possible symmetry isomorphisms between both points is

A12 = AN (G1), (7.1)

where N (G1) is the normalizer of G1 in Gl(n,R). If we proceed as in Section 5 for
uniform materials, and choose a point X0 and a particular linear frame Z0 at X0,
we can transport the material symmetry group G(X0) at X0 to R

n and obtain a
subgroup G of Gl(n,R). Using (7.1) we deduce that possible admissible references
at X0 is just Z0N (G), where N (G) is the normalizer of G. This means that
the geometric structure associated to a unisymmetric body is a N (G)-structure.
Accordingly to Theorem 7.4 this implies that, if G is an algebraic subgroup of
Gl(n,R) then the geometric N (G)-structure is defined by the projectivization of a
tensor. This fact probably deserves a more careful analysis to be done elsewhere.
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A. Connected Lie subgroups of the Sl(3, R)

Number Lie subgroups with det G = 1 Lie Subalgebras with tr H = 0 Dimension

1


 eαa 0 0

b eβa 0
c d eγa





 αa 0 0

b βa 0
c d γa


 5, 4, 3

2


 eαa 0 0

b eβa 0
c 0 eγa





 αa 0 0

b βa 0
c 0 γa


 4, 3, 2

3


 eαa b c

0 eβa 0
0 0 eγa





 αa b c

0 βa 0
0 0 γa


 4, 3, 2

4


 eαa 0 0

b eβa 0
0 0 eγa





 αa 0 0

b βa 0
0 0 γa


 3, 2, 1

5


 eαa 0 0

0 eβa 0
0 0 eγa





 αa 0 0

0 βa 0
0 0 γa


 2, 1, 0

6


 eαa cos(a) eαa sin(a) 0

−eαa sin(a) eαa cos(a) 0
b c eβa




 αa a 0

−a αa 0
b c βa


 4, 3

7


 eαa cos(a) eαa sin(a) b

−eαa sin(a) eαa cos(a) c
0 0 eβa




 αa a b

−a αa c
0 0 βa


 4, 3

8


 eαa cos(a) eαa sin(a) 0

−eαa sin(a) eαa cos(a) 0
0 0 eβa




 αa a 0

−a αa 0
0 0 βa


 2, 1

9


 a b c

d e f
g h i





 a b c

d e f
g h i


 8

10


 a b c

d e f
0 0 g





 a b c

d e f
0 0 g


 6

11


 a b 0

c d 0
e f g





 a b 0

c d 0
e f g


 6

12


 a b c

d e f
0 0 1





 a b c

d e f
0 0 0


 5
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Number Lie subgroups with det G = 1 Lie Subalgebras with tr H = 0 Dimension

13


 a b 0

c d 0
e f 1





 a b 0

c d 0
e f 0


 5

14


 a b 0

c d 0
0 0 e





 a b 0

c d 0
0 0 e


 4

15


 a b 0

c d 0
0 0 1





 a b 0

c d 0
0 0 0


 3

161 exp


 0 −a −b

a 0 −c
b c 0





 0 −a −b

a 0 −c
b c 0


 3

17


 ea 0 0

b e−2a c

aea 0 ea





 a 0 0

b −2a c

a 0 a


 3

18


 ea b 0

0 e−2a 0
aea c ea





 a b 0

0 −2a 0
a c a


 3

192 exp


 0 a b

b c 0
a 0 −c





 0 a b

b c 0
a 0 −c


 3

20


 1 0 a

aeb eb c
0 0 e−b





 0 0 a

a b c
0 0 −b


 3

21


 ea 0 0

b e−2a 0
aea 0 ea





 a 0 0

b −2a 0
a 0 a


 2

22


 ea 0 0

0 e−2a 0
aea b ea





 a 0 0

0 −2a 0
a b a


 2

23


 1 0 a

aeb eb 1
2
a2eb

0 0 e−b





 0 0 a

a b 0
0 0 −b


 2

1The explicit form of this subgroup is very complicated but is just the special orthogonal group.
2This subgroup is conjugate to the Lorentz group.
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Number Lie subgroups with det G = 1 Lie Subalgebras with tr H = 0 Dimension

24


 1 a 0

0 1 0
a b 1





 0 a 0

0 0 0
a b 0


 2

25


 ea 0 0

0 e−2a 0
aea 0 ea





 a 0 0

0 −2a 0
a 0 a


 1

26


 1 a 0

0 1 0

a 1
2
a2 1





 0 a 0

0 0 0
a 0 0


 1
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