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Abstract. In this paper we investigate the bifurcation diagram of the period function associated to a
family of quadratic centers, namely the dehomogenized Loud’s systems. The local bifurcation diagram
of the period function at the center is fully understood using the results of Chicone and Jacobs [4]. Most
of the present paper deals with the local bifurcation diagram at the polycycle that bounds the period
annulus of the center. The techniques that we use here are different from the ones in [4] because, while
the period function extends analytically at the center, it has no smooth extension to the polycycle. At
best one can hope that it has some asymptotic expansion. Another major difficulty is that in order to
prove that a parameter is not a bifurcation value it is necessary that the asymptotic development is
uniform with respect to the parameters. We study also the bifurcations in the interior of the period
annulus and we show that there exist three germs of curves in the parameter space that correspond
to this type of bifurcation. Moreover we determine some regions in the parameter space for which the
corresponding period function has at least one or two critical periods. Finally we propose a complete
conjectural bifurcation diagram of the period function of the dehomogenized Loud’s systems. Our results
can also be viewed as a contribution to the proof of Chicone’s conjecture [2].

1 Introduction and main results

In this work we study the bifurcation diagram of the period function associated to a family of quadratic
centers. Chicone [2] has conjectured that if a quadratic system has a center with a period function which is
not monotonic then, by an affine transformation and a constant rescaling of time, it can be brought to the
Loud normal form

(1)

{
ẋ = −y +Bxy,
ẏ = x+Dx2 + Fy2,

and that the period function of these centers has at most two critical periods. In fact, there is much analytic
evidence that the conjecture is true (see [5, 14, 18] for instance). On the other hand, it is proved in [7] that
if B = 0 then the period function of the center at the origin of system (1) is monotonous. So, from the
point of view of the study of the period function, the most interesting stratum of quadratic centers is the
family (1) with B 6= 0, which can be brought to B = 1 by means of a rescaling, i.e., to

(2)

{
ẋ = −y + xy,
ẏ = x+Dx2 + Fy2.
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Figure 1: Numerical bifurcation diagram by Chicone and Jacobs.

This is precisely the family of quadratic centers that we study in this paper and, following the terminology
in [4], we call them dehomogenized Loud’s systems. Compactifying R2 to the Poincaré disc, the boundary
of the period annulus of the center has two connected components, the center itself and a polycycle. We
call them respectively the inner and outer boundary of the period annulus. It follows (see Lemma 2.7) that
the bifurcation diagram of the period function consists of three parts:

(a) Bifurcations of the period function at the inner boundary (i.e., the center).

(b) Bifurcations of the period function at the outer boundary (i.e., the polycycle).

(c) Bifurcations of the period function in the interior of the period annulus.

For the precise definitions see section 2. The local bifurcation diagram of the period function at the inner
boundary is fully understood for the quadratic centers using the results of Chicone and Jacobs [4]. They
determined the parameter values from which the maximal number (two) of critical periods bifurcate from
the inner boundary and showed that at most one critical period bifurcates from the isochronous centers.
Around 1990, Chicone and Jacobs made public a numerical computation of the complete bifurcation diagram
(see Figure 1). It presents a strange ellipse-like figure corresponding to the bifurcation parameters of the
period function at the outer boundary. The major part of this paper is devoted to the precise determination
of this set.

Consider the dotted curve ΓU and the one in bold ΓB represented in Figure 2 (here the subscripts B
and U stand for bifurcation and unspecified respectively). The curve ΓU corresponds, except for the segment
(−1,−1/2)×{1/2}, to bifurcations of the phase portrait that affect the outer boundary of the period annulus
(see section 3.1). The curve ΓB is the union of some explicit straight segments and a curve that joins the
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Figure 2: Bifurcation diagram of the period function at the outer boundary

points (−3/2, 3/2) and (−1/2, 1). To be more precise, let us advance that this curve is defined as the zero
level set of an explicit function that we introduce in section 3.2.1. To draw it in Figure 2 we have computed
it numerically. Analytically, among other properties that are gathered in Proposition 3.11, we have proved
that it is the graphic of an analytic function D = G(F ). From Proposition 3.11 it follows in particular
that ΓB is a Jordan curve. We can consider therefore the bounded and unbounded components of R2 \ ΓB ,
which we denote by DB and IB (for decreasing and increasing) respectively. With this notation we can now
state our main result:

Theorem A. Denoting µ = (D,F ), let {Xµ, µ ∈ R2} be the family of vector fields in (2) and consider the

period function of the center at the origin. Then the open set R2 \ {ΓB ∪ ΓU} corresponds to local regular

values of the period function at the outer boundary of the period annulus. In addition,

(a) If µ0 ∈ IB \ ΓU then the period function of Xµ0
is monotonous increasing near the outer boundary.

(b) If µ0 ∈ DB \ ΓU then the period function of Xµ0
is monotonous decreasing near the outer boundary.

Finally, the parameters in ΓB are local bifurcation values of the period function at the outer boundary of the

period annulus.

We have not determined the character of the parameters in ΓU . We conjecture that they are not bifurca-
tion values at the outer boundary except for the the segment {0}×[0, 1/2]. The numerical picture of Chicone
and Jacobs fits relatively well with the bifurcation curve ΓB . There are however some striking differences.
In particular, unlike the numerical picture, most parts of the bifurcation curve are straight segments.

One encounters two major difficulties in the study of the bifurcation diagram of the period function at the
outer boundary of the period annulus. The first one is that, contrary to the situation in the inner boundary,
the period function does not extend smoothly on the outer boundary. At best one can hope that it has some
asymptotic development. The second one is that in order to prove that a parameter is not a bifurcation
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value one needs an asymptotic development which is uniform with respect to the parameters. This is not
easily achieved because the shape of the polycycle in the outer boundary changes as the parameters vary.

The paper is organized in the following way. In section 2 we introduce the precise definitions that we
shall use. Section 3 is devoted to the proof of Theorem A. In all the cases that we study (see Figure 3), the
polycycle in the outer boundary of the period annulus has one or two singular points, which are saddles.
In these cases, the symmetry of the Loud’s systems allows to split up the period function and to consider
only the time function associated to the passage around one saddle. The most complicated situations are
those in which the period annulus is unbounded because then the saddle is at infinity and one has to
consider meromorphic vector fields. In order to obtain the asymptotic development mentioned above we
use a result proved in [11], which provides the first terms in the expansion of this type of time function (see
Proposition 3.9). Theorem 3.3 deals with this situation and so it is the most difficult result to prove. In
section 4 we study the bifurcations of the period function in the interior of the period annulus and we show
that there exist three germs of curves with this type of bifurcation values. Next, in section 5, we determine
some regions in the parameter space for which the corresponding period function has at least one or two
critical periods. Finally in section 6 we propose a complete conjectural bifurcation diagram of the period
function of the dehomogenized Loud’s systems. We also pose some precise open questions remaining to
prove its validity. In particular, for certain values of the parameters, the polycycle in the outer boundary of
the period annulus has singular points at infinity that are resonant saddles or saddle-nodes. In these cases,
tools analogous to Proposition 3.9 still have to be developed. The global study of the bifurcation values of
the period function in the interior of the period annulus seems out of reach for the moment.

Acknowledgments: The authors thank Carmen Chicone and Marc Jacobs for kindly contributing their
unpublished numerical bifurcation diagram (Figure 1) and for their interest in our work. Discussions with
Robert Roussarie helped us to clarify some ideas. We also thank André Zegeling who gave us some initial
information when we started working on the subject.

2 Basic definitions

We say that a critical point p of a planar differential system is a center if it has a punctured neighbourhood
that consists entirely of periodic orbits surrounding p. The largest punctured neighbourhood with this
property is called the period annulus of the center and it will be denoted by P. Compactifying R2 to the
Poincaré disc, the boundary of P has two connected components, the center itself and a polycycle. We call
them respectively the inner and outer boundary of P.

Definition 2.1 Let Λ be an open subset of Rm and consider a continuous family of analytic planar vector
fields {Xµ, µ ∈ Λ}. Suppose that, for each µ ∈ Λ, Xµ has a center at pµ ∈ R2. We say that the family
of corresponding period annuli varies continuously if there exists a continuous family of analytic functions
{ξµ : µ ∈ Λ} such that, for each µ ∈ Λ, ξµ : [0, 1] −→ RP2 verifies:

(a) ξµ(0) = pµ and ξµ(1) belongs to the outer boundary of Pµ,

(b) ξµ(s) ∈ Pµ for all s ∈ (0, 1),

(c) ξ′µ(s) is transverse to Xµ

(
ξµ(s)

)
for all s ∈ (0, 1).

�

Note that ξµ is the parametrization of a transverse section for Xµ in Pµ. In general, for each fixed µ ∈ Λ,
it is always possible to take such a transverse section. Definition 2.1 requires the existence of one that varies
continuously with the parameter. As we will see in section 3.1, the period annuli of the family that we study
vary continuously. Next remark shows however that this does not always occur.
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Remark 2.2 The period annuli of the center at the origin of the 1-parameter family of potential systems

{
ẋ = −y,
ẏ = x+ ax3 + x5,

do not vary continuously. Indeed, it is easy to show that, for a < 2, the period annulus Pa is the whole
plane, while for a ≥ 2 there exists a positive constant r (not depending on a) such that Pa is inside a disk
of radius r. �

Let {Xµ, µ ∈ Λ} be a continuous family of analytic vector fields with a center pµ. Assume that the
corresponding period annuli vary continuously and consider the family of transverse sections parametrized
by {ξµ, µ ∈ Λ}. For each (s;µ) ∈ (0, 1)×Λ, we denote the period of the periodic orbit of Xµ passing through
the point ξµ(s) by Pµ(s). We say then that Pµ is a parametrization of the period function of Xµ. Note
that Pµ is an analytic function on (0, 1). In order to study the qualitative properties of the period function
we consider Zµ(s) = P ′

µ(s), which is a function defined on (0, 1) for all µ ∈ Λ. The following definition deals
with a slightly more general situation, but it will be clear in a moment the convenience for this.

Definition 2.3 Let {Iµ, µ ∈ Λ} be a continuous family of intervals in R and consider a continuous family
of functions {Zµ : Iµ −→ R, µ ∈ Λ}. We say that µ0 ∈ Λ is a regular value of the family {Zµ, µ ∈ Λ} if there
exist a neighbourhood U of µ0 and an isotopy {hµ : Iµ −→ Iµ0

, µ ∈ U}, with hµ0
= id, such that

(3) sgn

(
Zµ(s)

)
= sgn

(
Zµ0

(
hµ(s)

))

for all s ∈ Iµ and µ ∈ U. A parameter µ0 which is not regular is called a bifurcation value. �

Note that the domain of definition of Zµ depends on µ. To be more precise, by a continuous family of
functions we mean with respect to the induced topology on ∪µ∈ΛIµ×{µ} as a subset of R × Λ.

Definition 2.4 Let {Xµ, µ ∈ Λ} be a continuous family of analytic vector fields with a center pµ and
assume that the corresponding period annuli vary continuously.

(a) We say that µ0 ∈ Λ is a regular (respectively, bifurcation) value of the period function if for some
parametrization of the period function Pµ we have that µ0 is a regular (respectively, bifurcation) value
of the family {P ′

µ : (0, 1) −→ R, µ ∈ Λ}.

(b) We say that µ0 ∈ Λ is a local regular value of the period function in the interior if there exists some
parametrization of the period function Pµ such that for any c ∈ (0, 1) there exists a continuously varying
neighbourhood Iµ(c) of c in (0, 1) such that µ0 is a regular value of the family {P ′

µ : Iµ(c) −→ R, µ ∈ Λ}.
A parameter which is not a local regular value in the interior is called a local bifurcation value in the

interior.

(c) We say that µ0 ∈ Λ is a local regular value of the period function at the inner (respectively, outer)
boundary if for some parametrization of the period function Pµ there exists a continuously varying
neighbourhood Iµ(c) of c = 0 (respectively, c = 1) such that µ0 is a regular value of the family
{P ′

µ : Iµ(c) ∩ (0, 1) −→ R, µ ∈ Λ}. A parameter which is not a local regular value at the inner (respec-
tively, outer) boundary is called a local bifurcation value at the inner (respectively, outer) boundary.

(d) We say that the period function of Xµ0
is monotonous increasing (respectively, decreasing) at the inner

boundary if for some parametrization of the period function Pµ there exists ε > 0 such that P ′

µ0
(s) > 0

(respectively, P ′

µ0
(s) < 0) for all s ∈ (0, ε). The monotonicity in the outer boundary is defined exactly

the same way using (1 − ε, 1) instead of (0, ε).
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Remark 2.5 In the above definitions one can replace “some parametrization” by “any parametrization”.
Indeed, assume for instance that µ0 ∈ Λ is a regular value using Pµ and consider another parametrization,

say P̃µ. Then, following the notation of Definition 2.3, take h̃µ := τµ0
◦ hµ ◦ τ−1

µ where τµ is the Poincaré

mapping from the transverse section given by ξµ to the one given by ξ̃µ. Now, taking Pµ(s) = P̃µ

(
τµ(s)

)

and τ ′µ(s) > 0 into account, it is easy to verify that µ0 is a regular value using P̃µ. �

Remark 2.6 There are two situations in which it is very easy to decide whether a parameter µ0 is a local
regular value or not:

(a) If any neighbourhood of µ0 contains two parameters µ+ and µ− such that Xµ+
and Xµ−

have different
monotonicity at the inner (respectively, outer) boundary, then µ0 is a local bifurcation value at the
inner (respectively, outer) boundary.

(b) If for some parametrization of the period function Pµ there exists a neighbourhood U of µ0 and ε > 0
such that P ′

µ(s) 6= 0 for all µ ∈ U and s ∈ (0, ε) (respectively, s ∈ (1 − ε, 1)), then µ0 is a local regular
value in the inner (respectively, outer) boundary.

�

Lemma 2.7. Let {Xµ, µ ∈ Λ} be a continuous family of analytic vector fields with a center pµ and assume

that the corresponding period annuli vary continuously. Then the bifurcation diagram of the period function

is the union of the local bifurcation diagrams at the inner and outer boundary and in the interior.

Proof. It is obvious that a regular value is a local regular at the inner and outer boundary and in the interior.
Let us prove the converse. Let µ0 ∈ Λ be a local regular value at the inner boundary, the outer boundary and
the interior. Note that by Remark 2.5 we can assume that we use the same parametrization, say Pµ, of the
period function. By the local regularity at the inner and outer boundary, there is a neighbourhood U of µ0

and continuously varying neighbourhoods Iµ(0) and Iµ(1), of the inner and outer boundary respectively,
on which an isotopy hµ as in the Definition 2.3 exists for Zµ = P ′

µ. By analyticity, P ′

µ0
(s) has at most a

finite number of zeros, say c1, . . . , ck, in an open neighbourhood J of (0, 1) \
(
Iµ(0) ∪ Iµ(1)

)
. Using the

local regularity of µ0 in the interior, for each i = 1, 2, . . . , k, there exists a continuously varying closed
interval Iµ(ci) containing ci and an isotopy hµ such that the equality (3) holds for all s ∈ Iµ(ci) and µ ∈ U.
Reducing U and each Iµ(ci) if necessary, we can assume in addition that Iµ(c1), . . . , Iµ(ck) are pairwise
disjoint and that

P ′

µ(s) 6= 0 for s ∈ J \
( k⋃

i=1

Iµ(ci)
)

and µ ∈ U .

On the other hand, reducing also Iµ(0) and Iµ(1) if necessary, we can assume that Iµ(c1), . . . , Iµ(ck) do not
intersect Iµ(0) and Iµ(1) neither. It remains therefore to define the isotopy in a finite disjoint union of open
intervals. In each of these intervals we define it as an affine map whose values at the endpoints are already
defined.

The above result shows that if Pµ varies continuously, then in order to obtain the bifurcation diagram
it is enough to study the three possible types of local bifurcations given in (b) and (c) of Definition 2.4.
However, dealing with a family of centers such that the period annuli do not vary continuously, it may occur
that some bifurcation does not correspond to any of these three types. In fact this is the case of the period
function of the centers in Remark 2.2 (see [12] for details).

As we already mention, the local bifurcation diagram at the inner boundary is fully understood for the
quadratic centers (see section 4) thanks to the results of Chicone and Jacobs [4]. Let us point out that their
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definition of bifurcation value at the inner boundary is not equivalent to ours. Their definition allows to
describe better the bifurcation, but its usefulness is strongly based on the fact that the period function of
a nondegenerate center can be extended analytically to the inner boundary. In general this is not possible
in the outer boundary, which is the case that we study. We want, on the other hand, a unified definition
for both boundaries because otherwise a result as Lemma 2.7 is very difficult to obtain. This is the reason
why we use here a different definition. We point out however that, for the quadratic centers, the bifurcation
values at the inner boundary are the same with both definitions (see Remark 4.2).

3 Bifurcation at the outer boundary

This section is devoted to the proof of Theorem A and it is divided into four subsections. In the first one
we study the phase portrait of the dehomogenized Loud’s systems and we focus on the shape of the period
annulus of the center at the origin. In brief, we show that, apart from a parameter subset which consists
of some straight lines, there are four different types of period annuli. We turn then to the study of the
period function in each situation. We consider the two cases in which the period annulus is unbounded
in section 3.2, and the two cases in which it is bounded in section 3.3. Finally in section 3.4 we prove
Theorem A.

3.1 Study of the phase portrait

In the sequel, setting µ = (D,F ), we shall denote by {Xµ, µ ∈ R2} the family of vector fields corresponding
to the dehomogenized Loud’s systems, i.e.,

Xµ = y(1 − x)∂x + (x+Dx2 + Fy2)∂y.

For each value of µ, the vector field Xµ has a center at the origin, whose period function is our object of
study. In order to do this, we need to determine the period annulus Pµ of Xµ as well as its outer boundary,
which is a polycycle in some compactification of R2. Usually, one takes the Poincaré disk but, for the sake of
simplicity in the computations, we will use instead the real projective plane RP2. We consider RP2 covered

by the charts (x, y), (u, v) =
(

1
1−x ,

y
1−x

)
and (ζ, ω) =

(
1−x

y , 1
y

)
. The expressions of Xµ in (u, v) and (ζ, ω)

coordinates are given respectively by

Xµ(u, v) =
1

u

(
−uv∂u +

(
−u+ u2 +D(u− 1)2 + (F − 1)v2

)
∂v

)

Xµ(ζ, ω) =
1

ω

((
(1 − F )ζ +Dζ3 + (D + 1)ζω2 − (2D + 1)ωζ2

)
∂ζ

+ ω
(
−F − (ω − ζ)((D + 1)ω −Dζ)

)
∂ω
)
.

It is easy to check (see [17] for instance) that if F /∈ {0, 1, 1
2} then the vector field Xµ has a Darboux type

first integral given by

(4) Hµ(x, y) = (1 − x)−2F
(

1
2 y

2 − qµ(x)
)
,

where qµ(x) = a(µ)x2 + b(µ)x+ c(µ) with

(5) a(µ) :=
D

2(1 − F )
, b(µ) :=

D − F + 1

(1 − F )(1 − 2F )
and c(µ) :=

F −D − 1

2F (1 − F )(1 − 2F )
.

The line at infinity L∞ (with respect to the (x, y)-coordinates), the conic Cµ := { 1
2 y

2 − qµ(x) = 0} and
the line L1 := {x = 1} are invariant curves of Xµ. The determinant associated to the conic C = Cµ, which
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coincides with the discriminant of qµ(x), is given by

∆(µ) :=
(D + F )(D + 1 − F )

(1 − 2F )2(1 − F )F
.

Thus, we can see that C degenerates into two lines when (D+F )(D+1−F ) = 0. Indeed, it is easy to check
that the conic C splits into two real lines when F = −D and D /∈ [−1, 0]. On the other hand, if F = D + 1
(respectively, F = −D ∈ (0, 1)), then the conic C becomes two complex conjugated lines having the center
(x, y) = (0, 0) (respectively, (x, y) = (−1/D, 0)) as the unique real common point. In the other cases the
affine type of C can be determined by the sign of ∆ and a in the following way:

- If a < 0 and ∆ < 0 then the conic C has no real points.

- If a < 0 and ∆ > 0 then the conic C is an ellipse.

- If a > 0 then the conic C is a hyperbola and we have two subcases depending on the sign of ∆. If
∆ > 0 then C cuts the x-axis in two points which will be denoted in the sequel by p1 and p2 with
p1 < p2. If ∆ < 0 then the hyperbola C has no common point with {y = 0}.

- If a = 0 then the conic C is a parabola (this only occurs when D = 0).

It is well-known that every quadratic system has seven singularities (in the projective complex domain and
counting multiplicities). Taking the pairwise intersections of the invariant curves L1, L∞ and C we obtain
five singular points. Moreover, apart from the center at the origin (x, y) = (0, 0), we have the singular point
[−1, 0, D], which in general does not lye on none of the invariant curves L1, L∞ or C. Now we proceed to
study in some detail each singular point of Xµ:

- The two points L1 ∩ C = {[1,±
√

−(D+1)
F , 1]} are real when (D + 1)F < 0. The linear part of Xµ at

these points has eigenvalues λ1 = ±2F
√

−(D+1)
F and λ2 = ±

√
−(D+1)

F .

- The two points L∞∩C = {[1,±
√

D
1−F , 0]} are real when (1−F )D > 0. Working in (u, v)-coordinates,

the linear part of uXµ at these points has eigenvalues λ1 = ∓2D
√

1−F
D and λ2 = ∓

√
D

1−F .

- At the point L1 ∩ L∞ = [0, 1, 0] the linear part of ωXµ has eigenvalues λ1 = −F and λ2 = 1 − F.

- At the point [−1, 0, D], with D 6= 0, the linear part of Xµ has eigenvalues λi = ±
√

1 + 1
D .

Figure 3 shows the bifurcation diagram of the phase portrait of the dehomogenized Loud’s systems. It is
important to note that in each phase portrait we place the center (0, 0) on the left of the centered invariant
line L1 = {x = 1}. In addition the conic C appears in boldface type when it is relevant. We will describe
next in brief all the bifurcations occurring in this diagram:

- Along D = −1 there is a collapse of the three singularities L1 ∩ C and [−1, 0, D]. We point out that
if F > 1 then this bifurcation does not affect the period annulus.

- The bifurcation at D = 0 occurs when the three singularities L∞ ∩ C and [−1, 0, D] collapse. This
bifurcation always affects the period annulus.

- The bifurcations at F = 0 and F = 1 can also be easily described. Indeed, the three singular points
L1∩L∞ and L1∩C collapse giving raise to a saddle-node at infinity, whose strong separatrix is on L∞

when F = 0 and on L1 when F = 1. Note that these bifurcations only affect the period annulus when
D ∈ [−1, 0].
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- Along F + D = 0 the conic C degenerates, but this does not affect the outer boundary of the period
annulus if F ∈ (0, 1).

- Along F = D + 1 the conic C also degenerates, but this never affects the period annulus.

- Finally the bifurcation at F = 1/2 is more subtle because there is no confluence of singularities. The
position of the conic depends on F > 1/2 or F < 1/2 and it “explodes” to the limit set L1 ∪L∞ as F
tends to 1/2. Note in addition that the singular point L1 ∩ L∞ is a saddle for 0 < F < 1. In fact
it can be shown that this saddle is orbitally linearizable for F 6= 1/2. In contrast, if F = 1/2 then
the singular point L1 ∩ L∞ (which belongs to the outer boundary of Pµ when D ∈ [−1, 0]) becomes
a resonant saddle with hyperbolicity ratio equal to one. Notice however that this bifurcation never
affects the structure of the outer boundary of the period annulus.

Remark 3.1 The discussion above shows that the bifurcations (in the structure) of the outer boundary of
the period annulus of the center at the origin occur only on the dotted curve in Figure 3. Let us point out
that we shall not study the period function corresponding to these parameters. �

Lemma 3.2. The family of period annuli of the center at the origin of the dehomogenized Loud’s systems

{Xµ, µ ∈ R2} varies continuously.

Proof. Let
(
b(µ), 0

)
be the intersection point of the outer boundary of Pµ with the positive x-axis (see

Figure 3). This provides us a natural parametrization for Pµ. Indeed, notice that b(µ) depends continuously
on µ and that Xµ is transverse to the segment {(x, 0) : 0 < x < b(µ)} for all µ ∈ R2. It suffices therefore to
consider ξµ : [0, 1] −→ R2 defined by means of ξµ(s) :=

(
b(µ)s, 0

)
.

As we already mentioned, in order to study the behaviour of the period function near the outer boundary
of the period annulus we must treat separately the four different types of polycycle that bound it. We gather
them in two sections according to wether the period annulus (considered as a subset of R2) is bounded or
not. In section 3.2 we deal with the unbounded case, which is divided in two subcases: subsection 3.2.1
corresponds to period annuli with the outer boundary contained in C ∪ L∞ and subsection 3.2.2 to period
annuli with the outer boundary contained in L1∪L∞. As a matter of fact this last case was already treated
in [11] and here, for the sake of completeness, we only recall the result that we obtained. Finally, section 3.3
deals with the cases in which the period annulus is bounded. From Figure 3 it follows that there are two
possibilities for the polycycle in the outer boundary, namely, a saddle loop or a bicycle.

3.2 Unbounded period annulus

3.2.1 The case F > 1, F +D > 0 and D < 0.

In this subsection we study the period function of the center at the origin of Xµ in case that the parameter µ
belongs to

U :=
{

(D,F ) ∈ R2 : F > 1, F +D > 0 and D < 0
}
.

We shall prove the existence of a curve Γ1 such that setting Γ2 = U ∩ {F = 2} then the following holds:

Theorem 3.3. Let {Xµ, µ ∈ R2} be the family of vector fields in (2) and consider the period function of

the center at the origin. Then the open set U \ {Γ1 ∪ Γ2} corresponds to local regular values of the period

function at the outer boundary of the period annulus. Moreover, for these parameters, the period function

is monotonous near the outer boundary and the corresponding character is shown in Figure 4.

To be more precise, let us advance that Γ1 is the zero level set of an explicit function which is given
in (28), see page 22. In order to draw Γ1 in Figure 4 we have computed it numerically. Analytically, among
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Figure 3: Phase portraits of the dehomogenized Loud’s systems.

other properties that are gathered in Proposition 3.11, we have proved that Γ1 is the graphic of an analytic
function D = G(F ).

In order to prove Theorem 3.3 we shall study the asymptotic development of the period function near
the outer boundary of Pµ. For the parameter values under consideration (see Figure 3), recall that the outer
boundary of the period annulus of the center is made up of the line at infinity and a branch of the conic
Cµ = { 1

2 y
2 − qµ(x) = 0}, where qµ(x) = ax2 + bx+ c with the coefficients a, b, c defined in (5). For µ ∈ U,

the conic has two different intersection points with y = 0, namely

p1 :=
−b−

√
b2 − 4ac

2a
and p2 :=

−b+
√
b2 − 4ac

2a
,

which one can verify that 0 < p1 < p2 and p1 < 1. Notice in particular that (p1, 0) belongs to the outer

10



Figure 4: Monotonicity of the period function at the outer boundary of Pµ.

boundary of the period annulus. Since one can check that Xµ is transverse to {(x, 0) : 0 < x < p1}, we
have a global parametrization of the set of periodic orbits in Pµ. Thus, for (s, µ) ∈ (0, p1) × U, we denote
by P (s;µ) the period of the periodic orbit of Xµ passing through the point (p1 − s, 0).

Notice that one can easily normalize P (s;µ) to obtain a parametrization of the period function defined
for s ∈ (0, 1) and so that the inner and outer boundary correspond to s ≈ 0 and s ≈ 1 respectively. However
for convenience in the computations we prefer to use the previous one instead, for which we stress that the
outer boundary corresponds to s ≈ 0.

Theorem 3.3 follows almost directly from Theorem 3.6, which gives the first nontrivial term of the
asymptotic development of Ps(s;µ) at s = 0. In its statement we use the following definitions:

Definition 3.4 Let W be an open subset of Rm. We denote by I(W ) the set of germs of analytic functions
h(s;µ) defined on (0, ε) ×W for some ε > 0 such that

lim
s→0

h(s;µ) = 0 and lim
s→0

s
∂h(s;µ)

∂s
= 0

uniformly (on µ) on every compact subset of W.

Let us also denote by I0(W ) the set of germs of analytic functions h(s;µ) defined on (−ε, ε) ×W for
some ε > 0 such that h(0;µ) ≡ 0. Note therefore that I0(W ) ⊂ I(W ). �

Definition 3.5 The function defined for s > 0 and α ∈ R by means of

ω(s;α) =

{
sα−1

−1
α−1 if α 6= 1,

log s if α = 1,

is called the Roussarie-Ecalle compensator. �

Let us define in addition

λ(µ) :=
1

2(F − 1)

and introduce the covering of the parameter space U given by the open subsets

(6) U1 := {µ ∈ U : F < 3/2}, U2 := {µ ∈ U : F > 3/2} and U3 := {µ ∈ U : 5/4 < F < 2},
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which one can verify that correspond respectively to λ(µ) > 1, λ(µ) < 1 and 1/2 < λ(µ) < 2.

Now, with the definitions and notation introduced above, we prove the following:

Theorem 3.6. Denote

∆0(µ) =
2
√

2√
a+ b+ c

arctanh

(
2 a+ b−

√
b2 − 4 ac

2
√
a(a+ b+ c)

)
.

Then the following holds:

(a) If µ ∈ U1 then P (s;µ) = ∆0(µ) + ∆1(µ)s+ sf1(s;µ), where f1 ∈ I(U1) and

∆1(µ) =
−1/

√
2a

(p2 − p1)(1 − p1)

{
2 −

∫ 1

0

(
u−

1
λ

(
1 − p2

1 − p1
(u− 1) + 1

)1+ 1
λ

− 1

)
du

(1 − u)3/2

}
.

(b) If µ ∈ U2 then P (s;µ) = ∆0(µ) + ∆2(µ)sλ + sλf2(s;µ), where f2 ∈ I(U2) and

∆2(µ) =

√
2π

a

λ (p2 − p1)λ

(1 − p1)2λ+1

Γ
(

1
2(1−F )

)

Γ
(

F−2
2(F−1)

) .

(c) If µ ∈ U3 then P (s;µ) = ∆0(µ)+∆3(µ)sω(s;λ)+∆4(µ)s+sf3(s;µ), where f3 ∈ I(U3) and the functions

∆3(µ) and ∆4(µ) are analytic on U3. Furthermore, if λ(µ0) = 1 then

∆3(µ0) = − p2 − p1√
2a (1 − p1)3

.

Notice that, in the Poincaré disc, the outer boundary of the Pµ is a polycycle with two hyperbolic saddles
located at infinity (see Figure 3 in page 10). In addition, taking advantage of the symmetry of the Loud’s
family with respect to the x-axes, in order to prove Theorem 3.6 it is enough to study half of the period.
Consequently we must only study the time function associated to the passage through one of these saddles.
To this end we shall use a result which appears in [11]. In that paper, given an analytic family of vector
fields in R2 having a saddle point, we studied the asymptotic development of the time function along the
union of two separatrices. Next, for the sake of completeness, we state this result (see Proposition 3.9) and
we explain the related definitions.

Let W be an open set of Rm and let {X̃µ, µ ∈ W} be an analytic family of vector fields defined on

some open set V of R2. Assume that each vector field X̃µ has a hyperbolic saddle pµ as the unique critical
point inside V. In this situation it is well known that there exist exactly two analytic transverse invariant
curves Sµ and Tµ, the stable and unstable manifolds, passing through pµ (depending also analytically on

µ). We consider an analytic family of meromorphic vector fields Xµ proportional to X̃µ with a pole of order
n > 0 along Tµ. We can take a coordinate system (u, v, µ) on V ×W ⊂ R2+m such that pµ = (0, 0, µ),
Sµ = {(u, v, µ) : u = 0} and Tµ = {(u, v, µ) : v = 0}. In these coordinates the family {Xµ, µ ∈ W} can be
written as

(7) Xµ(u, v) =
1

vn

(
uP (u, v;µ)∂u + vQ(u, v;µ)∂v

)
,

where P and Q are analytic functions such that P (u, 0;µ) > 0 and Q(0, v;µ) < 0 for any (0, v, µ) ∈ Sµ and
(u, 0, µ) ∈ Tµ. Moreover, by hypothesis, we have that

λ(µ) := −Q(0, 0;µ)

P (0, 0;µ)
> 0.
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Figure 5: Definition of T and R in Proposition 3.9.

The family {Xµ, µ ∈W} can be thought of as a single vector field X defined on V ×W ⊂ R2+m whose
trajectories are contained inside the submanifolds {µ = const}. Let σ : I×W −→ Σσ and τ : I×W −→ Στ

be two analytic transverse sections to X defined by

σ(s;µ) =
(
σ1(s;µ), σ2(s;µ);µ

)
and τ(s;µ) =

(
τ1(s;µ), τ2(s;µ);µ

)

such that σ(0;µ) ∈ Sµ and τ(0;µ) ∈ Tµ. Here I denotes a small interval of R containing 0.

We denote the Dulac and time mappings between the transverse sections Σσ and Στ by R and T
respectively. More precisely (see Figure 5), if ϕ

(
t, (u0, v0);µ

)
is the solution of Xµ passing through (u0, v0)

at t = 0, for each s > 0 we define R(s;µ) and T (s;µ) by means of the relation

(8) ϕ
(
T (s;µ), σ(s);µ

)
= τ

(
R(s;µ)

)
.

Definition 3.7 We will say that {Xµ, µ ∈ W} verifies the family linearization property (FLP in short) if
there exist an open set U ⊂ R2 containing the origin and an analytic local diffeomorphism Φ : U ×W →
V ×W of the form Φ(x, y;µ) =

(
x+ h.o.t., y + h.o.t., µ

)
such that

Xµ = Φ∗

(
1

f(x, y;µ)

(
x∂x − λ(µ)y∂y

))
,

where f is an analytic function on U ×W. �

Remark 3.8 It is easy to show that the family of meromorphic vector fields {Xµ, µ ∈ W} defined in (7)
verifies FLP if it has a Darboux first integral

Hµ(x, y) = f1(x, y;µ)β1(µ) · · · fk(x, y;µ)βk(µ),

where fj and βj are analytic functions on V ×W and W respectively.

Recall that Hµ(x, y) = (1−x)−2F
(

1
2 y

2−qµ(x)
)

is a Darboux first integral for Xµ if F (F−1)(2F−1) 6= 0,
so the FLP is verified in these cases. �

In order to simplify the expressions that appear in the statement of the next result we introduce the
functions

L(u;µ) := exp

(∫ u

σ2(0)

(
P (0, y)

Q(0, y)
+

1

λ

)
dy

y

)
,

M(u;µ) := exp

(∫ u

0

(
Q(x, 0)

P (x, 0)
+ λ

)
dx

x

)
,
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and the covering of the parameter space W given by the open subsets

W1 :=

{
µ ∈W : λ >

1

n

}
, W2 :=

{
µ ∈W : λ <

1

n

}
and W3 :=

{
µ ∈W :

1

n+ 1
< λ <

2

n

}
.

Proposition 3.9. Let {Xµ, µ ∈W} be the family of vector fields defined in (7) and assume that it verifies

FLP. Let R and T be respectively the Dulac map and the time function associated to the transverse sections

Σσ and Στ as introduced in (8). Denote

ρ(µ) =
σ′

1(0)λσ2(0)

τ ′2(0)τ1(0)λ
L(0)λM

(
τ1(0)

)
and ∆0(µ) =

∫ 0

σ2(0)

vn−1

Q(0, v)
dv.

Then R(s;µ) = ρ(µ)sλ + sλf0(s;µ) with f0 ∈ I(W ). In addition, the time function T (s;µ) verifies the

following:

(a) If µ ∈W1 then T (s;µ) = ∆0(µ) + ∆1(µ)s+ sf1(s;µ), where f1 ∈ I(W1) and

∆1(µ) = −σ
′

2(0)σ2(0)n−1

Q(0, σ2(0))
+ σ′

1(0)σ2(0)1/λ

∫ σ2(0)

0

Qu(0, v)L(v)vn−1/λ

Q(0, v)2
dv

v
.

(b) If µ ∈W2 then T (s;µ) = ∆0(µ) + ∆2(µ)sλn + sλnf2(s;µ), where f2 ∈ I(W2) and

∆2(µ) = σ′

1(0)λnσ2(0)nL(0)λn

{
τ1(0)−λn

nQ(0, 0)
+

∫ τ1(0)

0

(
M(u)n

P (u, 0)
− M(0)n

P (0, 0)

)
du

uλn+1

}
.

(c) If µ ∈ W3 then T (s;µ) = ∆0(µ) + ∆3(µ)sω(s;λn) + ∆4(µ)s + sf3(s;µ), where f3 ∈ I(W3) and the

functions ∆3(µ) and ∆4(µ) are analytic on W3. Furthermore, if λ(µ0) = 1/n then

∆3(µ0) = −nσ′

1(0)σ2(0)nL(0)
Qu(0, 0)

P (0, 0)2
.

Proposition 3.9 constitutes the main ingredient in the proof of Theorem 3.6. However, in order to apply
it we must first perform a change of coordinates that sends each separatrix of the saddle at infinity to a
straight line. This will raise some technical complications because the coordinate transformation that we
use is singular and it creates a line of critical points. To bypass this problem we will have to split up the
time function and to introduce an additional parameter associated to the new transverse sections. This
makes the proof more complicated than one could expect. In particular we shall need the following result
to study the remainder terms. Its proof can be found in [11] and, for the sake of brevity, in the statement
we denote I(W ) and I0(W ) by I and I0 respectively (see Definition 3.4).

Lemma 3.10. Assume that a(µ), k(µ) and r(µ) are positive analytic functions.

(a) If g(s;µ) and f(s;µ) belong to I0 and I respectively then g◦f ∈ I.

(b) If f(s;µ) belongs to I (resp. I0) and ϕ := sr(a+ f) then sk◦ ϕ− akskr belongs to skrI (resp. skrI0).

(c) If f(s;µ) and g(s;µ) belong to I and ϕ := sr(a+ f) then (skg)◦ ϕ belongs to skrI.

(d) If g(s;µ) belongs to I0 then gω(s; r) ∈ I.

(e) If g(s;µ) belongs to I0 then
(
sω(s; r)

)
◦
(
s(a+ g)

)
= arsω(s; r) + aω(a; r)s+ Ψ with Ψ ∈ sI.
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Figure 6: Auxiliary transverse sections.

Proof of Theorem 3.6 Note first that, since the transformation (x, y, t) 7−→ (x,−y,−t) preserves the
Loud normal form, it is enough to study half of the period. More concretely, denoting the solution of Xµ

passing through (x0, y0) at t = 0 by ϕ
(
t, (x0, y0);µ

)
, for each s ∈ (0, p1) we define T (s;µ) as the minimum

positive number so that ϕ2

(
T (s;µ), (p1 − s, 0);µ

)
= 0.

Thus we only need to obtain the coefficients of the asymptotic development of T (s;µ) at s = 0, which
involves only one passage through a saddle at infinity. Clearly the coefficients of P (s;µ) at s = 0 will follow
then using that P (s;µ) = 2T (s;µ).

Notice now (see Figure 6) that T (s;µ) is the time function associated to the transverse sections Σ1 and
Σ2, which are given respectively by α1(s) = (p1 − s, 0) and α2(s) = (−1/s, 0). In order to study T (s;µ)
we introduce two auxiliary transverse sections, say Ση

1 and Ση
2 , on the straight line y = η(p2 − x), where

η ∈ (0, ε). To this end, let
(
xη, η(p2 − xη)

)
be the intersection point between this straight line and the

hyperbola { 1
2 y

2 − qµ(x) = 0}. We parametrize Ση
1 and Ση

2 by

α1
η(s) =

(
xη − s , η (p2 − xη + s)

)
and α2

η(s) =
(
−1/s , η (p2 + 1/s)

)

respectively. Let us denote the time function between Σ1 and Ση
1 by T1(s;µ, η), the one between Ση

1 and Ση
2

by T2(s;µ, η), and the one between Ση
2 and Σ2 by T3(s;µ, η). Then

T (s;µ) = T1

(
s;µ, η

)
+ T2

(
R1(s;µ, η);µ, η

)
+ T3

(
R2(s;µ, η);µ, η

)
,

where R1(s;µ, η) is the Poincaré mapping between Σ1 and Ση
1 and R2(s;µ, η) is the one between Σ1 and Ση

2 .

It is well known that T1, T3 and R1 can be extended analytically to s = 0, and it is also clear that they
are analytical for (µ, η) ∈ U× (−ε, ε). Hence

T1(s;µ, η) = ∆1
0(µ, η) + ∆1

1(µ, η)s+ sf1(s;µ, η) with f1 ∈ I0

(
U× (−ε, ε)

)
,(9)

T3(s;µ, η) = ∆3
1(µ, η)s+ sf3(s;µ, η) with f3 ∈ I0

(
U× (−ε, ε)

)
,(10)

R1(s;µ, η) = ρ1(µ, η)s+ sg1(s;µ, η) with g1 ∈ I0

(
U× (−ε, ε)

)
.(11)

Notice moreover that T1(s;µ, η) −→ 0, T3(s;µ, η) −→ 0 and R1(s;µ, η) −→ s as η −→ 0. Therefore

(12) lim
η→0

∆1
0(µ, η) = lim

η→0
∆1

1(µ, η) = lim
η→0

∆3
1(µ, η) = 0 and lim

η→0
ρ1(µ, η) = 1.
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Figure 7: Passage through the saddle at infinity in (z, w)-coordinates.

The asymptotic developments of T2 and R2, which correspond to the passage through a saddle at infinity,
are more delicate. To obtain them we shall apply Proposition 3.9, and to this end we must first perform a
coordinate transformation that sends the separatrices of the saddle to straight lines. We thus consider the
singular change of variables given by

(z, w) = φ(x, y) :=

(
2qµ(x) − y2

2a(p2 − x)2
,
p2 − p1

p2 − x

)
.

Setting k1 := p2 − p1 and k2 := 1/
√

2a for the sake of shortness, some computations show that it brings (2)
to the system given by the vector field

Xµ =
1

w

(
z P (z, w;µ) ∂z + wQ(z, w;µ) ∂w

)
,

where

P (z, w;µ) =
2

k2

√
1 − z − w

(
k1(F − 1) + (p2 − 1)w

)

and

Q(z, w;µ) =
1

k2

√
1 − z − w

(
−k1 + (p2 − 1)w

)
.

One can verify (see Figure 7) that Σσ := φ(Ση
1) and Στ := φ(Ση

2) are in the straight line z + w = 1 − k2
2η

2.
We parameterize them with the transferred parameterizations of Ση

1 and Ση
2 . More concretely, we consider

σ(s;µ, η) : = φ
(
α1

η(s)
)

=

(
s(1 − k2

2η
2)2

k1 + s(1 − k2
2η

2)
,

k1(1 − k2
2η

2)

k1 + s(1 − k2
2η

2)

)

and

τ(s;µ, η) : = φ
(
α2

η(s)
)

=

(
sp1 + 1

sp2 + 1
− k2

2η
2 ,

sk1

sp2 + 1

)
.
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Note therefore that T2(s;µ, η) is precisely the time function between Σσ and Στ , and that, on the
other hand, the vector field Xµ is meromorphic on the region under consideration. (We point out that
Proposition 3.9 can not be applied to compute T (s;µ) directly because φ(Σ1) and φ(Σ2) are in the straight
line z + w = 1 and the vector field Xµ is not meromorphic there.) Moreover, since Hµ

(
φ−1(z, w)

)
is a

Darboux first integral of Xµ, from Remark 3.8 it follows that {Xµ, µ ∈ U} is a family of vector fields
verifying FLP. Consequently we can apply Proposition 3.9 to compute the asymptotic development of T2

at s = 0. As a matter of fact, to be precise, since the transverse sections depend also on η, we shall apply
it to the family {X(µ,η) , (µ, η) ∈ U × (0, ε)}. Thus, following the notation of Proposition 3.9, since

λ(µ) := −Q(0, 0;µ)

P (0, 0;µ)
=

1

2(F − 1)

does not depend on η, it turns out that Wi = Ui× (0, ε) where

U1 = {µ ∈ U : F < 3/2} , U2 = {µ ∈ U : F > 3/2} and U3 = {µ ∈ U : 5/4 < F < 2}.

In addition we can assert that

T2(s;µ, η) = ∆2
0(µ, η) + ∆2

1(µ, η)s+ sf1
2 (s;µ, η) if µ ∈ U1,(13)

T2(s;µ, η) = ∆2
0(µ, η) + ∆2

2(µ, η)sλ + sλf2
2 (s;µ, η) if µ ∈ U2,(14)

T2(s;µ, η) = ∆2
0(µ, η) + ∆2

3(µ, η)sω(s;λ) + ∆2
4(µ, η)s+ sf3

2 (s;µ, η) if µ ∈ U3,(15)

where f i
2 ∈ I

(
Ui× (0, ε)

)
. Some computations show that

(16) ∆2
0(µ, η) =

∫ 0

σ2(0)

dw

Q(0, w)
=

∫ 0

1−k2
2
η2

k2

(p2 − 1)w − k1

dw√
1 − w

.

Let us compute next the coefficient ∆2
1(µ, η). From Proposition 3.9 we know that it is given by

∆2
1(µ, η) = − σ′

2(0)

Q
(
0, σ2(0)

) + σ′

1(0)σ2(0)1/λ

∫ σ2(0)

0

Qz(0, w)L(w)

Q(0, w)2
dw

w1/λ
.

One can verify that

L(w) =

(
(1 − p2)w + k1

1 − p1 − k2
2η

2(1 − p2)

)2F

and
Qz(0, w)

Q(0, w)2
=

k2

2(1 − w)3/2
(
(1 − p2)w + k1

) .

Consequently, using also that

σ′

2(0)

Q
(
0, σ2(0)

) =
(1 − k2

2η
2)2

k1η
(
1 − p1 − k2

2η
2(1 − p2)

) and σ′

1(0)σ2(0)1/λ =
(1 − k2

2η
2)2F

k1
,

it turns out that

∆2
1(µ, η) =

−(1 − k2
2η

2)2

k1η
(
1 − p1 − k2

2η
2(1 − p2)

)(17)

+
k2(1 − k2

2η
2)2F

2k1

(
1 − p1 − k2

2η
2(1 − p2)

)2F

∫ 1−k2
2η2

0

G(w)

(1 − w)3/2
dw,

where G(w) := w−1/λ
(
(1− p2)w+ k1

)2F−1
. Let us turn now to the computation of ∆2

2(µ, η), which is given
by

∆2
2(µ, η) = σ′

1(0)λσ2(0)L(0)λ

{
τ1(0)−λ

Q(0, 0)
+

∫ τ1(0)

0

(
M(z)

P (z, 0)
− M(0)

P (0, 0)

)
dz

zλ+1

}
.
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In this case, since one can show that M(z) ≡ 1,

σ′

1(0)λσ2(0)L(0)λ =
1

kλ
1

(
k1(1 − k2

2η
2)

1 − p1 − k2
2η

2(1 − p2)

)2λF

and
τ1(0)−λ

Q(0, 0)
=

−k2

k1(1 − k2
2η

2)λ
,

we conclude that

(18) ∆2
2(µ, η) =

k2k
λ
1 (1 − k2

2η
2)2λF

(
1 − p1 − k2

2η
2(1 − p2)

)2λF

{
−1

(1 − k2
2η

2)λ
+ λ

∫ 1−k2
2η2

0

(
1√

1 − z
− 1

)
dz

zλ+1

}
.

Concerning the coefficient ∆2
3(µ, η), we know that if λ(µ0) = 1 then

∆2
3(µ0, η) = −σ′

1(0)σ2(0)L(0)
Qz(0, 0)

P (0, 0)2
.

In our situation, using that λ(µ0) = 1 corresponds to F = 3/2, some computations show that

(19) ∆2
3(µ0, η) =

−k1k2(1 − k2
2η

2)3

2
(
1 − p1 − k2

2η
2(1 − p2)

)3 .

In order to study R2(s;µ, η) we will also use (z, w)-coordinates. Notice (see Figure 7) that, taking the
transferred parametrizations, it is precisely the Dulac map between φ(Σ1) and φ(Ση

2). We point out that
φ(Σ1) is in the straight line z+w = 1. However, in this case, this is not a problem for our purpose. Indeed,
in order to study the Poincaré mapping we can apply Proposition 3.9 with the polynomial vector field

X̃µ :=
w√

1 − z − w
Xµ,

which provides the same foliation as Xµ and it is obviously analytic. So we can assert that

(20) R2(s;µ, η) = ρ2(µ, η)sλ + sλg2(s;µ, η),

where g2 ∈ I
(
U× (−ε, ε)

)
and ρ2(µ, η) is an analytic function on U× (−ε, ε). For values of µ such that

λ(µ) ≈ 1 we need more information about the remainder term in R2. In fact, if µ ∈ U3 then

(21) sλg2(s;µ, η) = sg̃2(s;µ, η) with g̃2 ∈ I
(
U3× (−ε, ε)

)
.

This fact does not follow from Proposition 3.9 but it is easy to show and so, for the sake of brevity, we do
not prove it here. As we shall see later on, we do not need the concrete expression of ρ2(µ, η). We shall only
use that it is convergent as η −→ 0 and this follows from its analyticity at η = 0.

We can now study the composition T3

(
R2(s;µ, η);µ, η

)
. Thus, on account of (10) and (20), by applying

Lemma 3.10 we can assert that

(22) T3

(
R2(s)

)
= ∆3

1 ρ2 s
λ + sλh1 with h1 ∈ I

(
U× (0, ε)

)
.

In case that µ ∈ U3 we must be sharper. Since f3 ∈ I0

(
U× (−ε, ε)

)
, we have that f3 = sf̂3 where f̂3 is an

analytic function on s = 0. Hence, from (10) and (21), it follows that

T3

(
R2(s)

)
= ∆3

1(ρ2s
λ + sg̃2) + (ρ2s

λ + sg̃2)f3
(
ρ2s

λ + sg̃2
)

= ∆3
1(ρ2s

λ + sg̃2) + s(ρ2s
λ−1/2 + s1/2g̃2)2f̂3

(
ρ2s

λ + sg̃2
)
.

Since λ(µ) > 1/2 for µ ∈ U3, note that ρ2 s
λ−1/2 belongs to I

(
U3×(0, ε)

)
. Consequently the expression above

shows that T3

(
R2(s)

)
= ∆3

1 ρ2s
λ + sh̃1 with h̃1 ∈ I

(
U3× (0, ε)

)
. Hence, using that sλ = (λ− 1)sω(s;λ) + s,

we obtain

(23) T3

(
R2(s)

)
= ∆3

1 ρ2 (λ− 1)sω(s;λ) + ∆3
1 ρ2s+ sh̃1 with h̃1 ∈ I

(
U3× (0, ε)

)
.
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We have now all the necessary ingredients to study T (s;µ). Let us consider first the case µ ∈ U1. In this
case, from (11) and (13), by applying Lemma 3.10 we obtain

T2

(
R1(s)

)
= ∆2

0 + ∆2
1 ρ1s+ sh2 with h2 ∈ I

(
U1× (0, ε)

)
.

Therefore, taking (9) and (22) also into account, we get

T (s;µ) = ∆1
0 + ∆2

0 +
(
∆1

1 + ∆2
1 ρ1

)
s+ s

(
h2 + f1 + sλ−1(∆3

1 ρ2 + h1)
)
.

Then, using that λ(µ) > 1 for µ ∈ U1, we conclude that

T (s;µ) = ∆1
0(µ, η) + ∆2

0(µ, η) +
(
∆1

1(µ, η) + ∆2
1(µ, η)ρ1(µ, η)

)
s+ sh3(s;µ, η)

with h3 ∈ I
(
U1× (0, ε)

)
. At this point we stress that the coefficients

∆0(µ) := ∆1
0(µ, η) + ∆2

0(µ, η) and ∆1(µ) := ∆1
1(µ, η) + ∆2

1(µ, η)ρ1(µ, η)

depend only on µ because T (s;µ) does not depend on η. This proves in particular that h3 ∈ I(U1). In order
to compute explicitly these coefficients we take advantage of (12). For the first one we get

∆0(µ) = lim
η−→0

(
∆1

0(µ, η) + ∆2
0(µ, η)

)
= lim

η−→0
∆2

0(µ, η).

Thus, by applying the Dominate Convergence Theorem to the expression of ∆2
0(µ, η) given in (16) we obtain

∆0(µ) =

∫ 1

0

k2

(1 − p2)w + k1

dw√
1 − w

=

√
2√

a+ b+ c
arctanh

(
2 a+ b−

√
b2 − 4 ac

2
√
a(a+ b+ c)

)
.

The last equality above follows from direct integration and using the relation of p2, k1 and k2 with the
coefficients of qµ(x) = ax2 + bx+ c. On the other hand, taking (12) into account again,

∆1(µ) = lim
η−→0

(
∆1

1(µ, η) + ∆2
1(µ, η)ρ1(µ, η)

)
= lim

η−→0
∆2

1(µ, η).

The computation of this limit is more delicate because ∆2
1(µ, η), which is given in (17), contains two terms

that considered separately diverge as η −→ 0. To show that these divergences cancellate each other we
proceed as follows.

∆2
1(µ, η) =

−(1 − k2
2η

2)2

k1η
(
1 − p1 − k2

2η
2(1 − p2)

)

+
k2(1 − k2

2η
2)2F

2k1

(
1 − p1 − k2

2η
2(1 − p2)

)2F

{
2G(1)

1 − k2η

k2η
+

∫ 1−k2
2η2

0

G(w) −G(1)

(1 − w)3/2
dw

}

=
(1 − k2

2η
2)2

k1η
(
1 − p1 − k2

2η
2(1 − p2)

)
{
−1 +

(1 − k2
2η

2)1/λ(1 − k2η)(1 − p1)2F−1

(
1 − p1 − k2

2η
2(1 − p2)

)2F−1

}

+
k2(1 − k2

2η
2)2F

2k1

(
1 − p1 − k2

2η
2(1 − p2)

)2F

∫ 1−k2
2η2

0

G(w) −G(1)

(1 − w)3/2
dw.

Now, to compute the limit we apply L’Hôpital’s rule to the first term and the Dominate Convergence
Theorem to the second one. It can be shown in this way that

∆1(µ) = lim
η−→0

∆2
1(µ, η) =

k2

k1(p1 − 1)
+

k2

2k1(1 − p1)2F

∫ 1

0

G(w) −G(1)

(1 − w)3/2
dw

=
k2

2k1(p1 − 1)

{
2 −

∫ 1

0

(
w−

1
λ

(
1 − p2

1 − p1
(w − 1) + 1

)2F−1

− 1

)
dw

(1 − w)3/2

}
,
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and this concludes the proof of the assertion in (a).

Let us turn now to the case µ ∈ U2. In this case, from (11) and (14), by applying Lemma 3.10 we obtain
that

T2

(
R1(s)

)
= ∆2

0 + ∆2
2 ρ

λ
1 s

λ + sλh4 with h4 ∈ I
(
U2× (0, ε)

)
.

The combination of (9) and (22) with the above expression shows that

T (s;µ) = ∆1
0 + ∆2

0 +
(
∆3

1 ρ2 + ∆2
2 ρ

λ
1

)
sλ + sλh5,

where h5 := h1 +h4 + s1−λ(∆1
1 + f1) is a function that belongs to I

(
U2× (0, ε)

)
. This assertion follows from

using that λ(µ) < 1 for µ ∈ U2. Note in addition that, since T (s;µ) and sλ(µ) do not depend on η, the
coefficients

∆0(µ) := ∆1
0(µ, η) + ∆2

0(µ, η) and ∆2(µ) := ∆3
1(µ, η) ρ2(µ, η) + ∆2

2(µ, η) ρ1(µ, η)λ(µ)

depend only on µ. On the other hand, since ρ2(µ, η) is analytic at η = 0, from (12) it turns out that

∆2(µ) = lim
η−→0

(
∆3

1(µ, η) ρ2(µ, η) + ∆2
2(µ, η) ρ1(µ, η)λ(µ)

)
= lim

η−→0
∆2

2(µ, η).

Thus, by applying the Dominate Convergence Theorem to the expression of ∆2
2(µ, η) given in (18), one can

easily show that

∆2(µ) =
k2k

λ
1

(1 − p1)2λF

{
λ

∫ 1

0

(
1√

1 − z
− 1

)
dz

zλ+1
− 1

}
=

k2k
λ
1(

1 − p1

)2λF

λ
√
π Γ(−λ)

Γ
(

1
2 − λ

) .

The last equality above follows from direct integration. This proves (b).

Let us study finally the case µ ∈ U3. In this case, from (11) and (15), by applying Lemma 3.10 we obtain

T2

(
R1(s)

)
= ∆2

0 +
(
∆2

3 ρ
λ
1

)
sω(s;λ) +

(
∆2

3 ρ1ω(ρ1;λ) + ∆2
4 ρ1

)
s+ sh6

with h6 ∈ I
(
U3× (0, ε)

)
. Therefore, taking (9) and (23) also into account, we get

T (s;µ) = ∆1
0 + ∆2

0 +
(
∆2

3 ρ
λ
1 + ∆3

1 ρ2(λ− 1)
)
sω(s;λ)

+
(
∆1

1 + ∆2
3 ρ1ω(ρ1;λ) + ∆2

4 ρ1 + ∆3
1 ρ2

)
s+ sh7,

where h7 := f1 + h̃1 + h6 is a function that belongs to I
(
U3× (0, ε)

)
. On the other hand, since T (s;µ) and

ω
(
s;λ(µ)

)
depend only on µ, the coefficients

∆0(µ) :=∆1
0(µ, η) + ∆2

0(µ, η),

∆3(µ) :=∆2
3(µ, η) ρ1(µ, η)λ(µ) + ∆3

1(µ, η) ρ2(µ, η)
(
λ(µ) − 1

)

and

∆4(µ) :=∆1
1(µ, η) + ∆2

3(µ, η) ρ1(µ, η)ω
(
ρ1(µ, η);λ(µ)

)

+ ∆2
4(µ, η) ρ1(µ, η) + ∆3

1(µ, η) ρ2(µ, η)

do not depend on η. This implies in particular that h7(s;µ, η) does not depend on η, and so we can assert
that h7 ∈ I(U3). Finally, if we consider some µ0 ∈ U3 such that λ(µ0) = 1, then ∆3(µ0) = ∆2

3(µ0, η) ρ1(µ0, η)
and consequently, from (12),

∆3(µ0) = lim
η−→0

∆2
3(µ0, η) ρ1(µ0, η) = lim

η−→0
∆2

3(µ0, η).
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Thus, on account of (19), it follows that

∆3(µ0) =
k1k2

2(p1 − 1)3
.

This proves (c) and concludes the proof of the result.

It is clear that the sign of Ps(s;µ) for small positive s determines the monotonicity of the period function
near the outer boundary of the period annulus. So we need to study the coefficients of the second monomial
in the asymptotic development given in Theorem 3.6. To this end we introduce the sets

Γ1 :={µ ∈ U1 : ∆1(µ) = 0},

Γ2 :={µ ∈ U2 : ∆2(µ) = 0},(24)

Γ3 :={µ ∈ U3 : ∆3(µ) = 0 with λ(µ) = 1}.

One can easily verify that Γ2 = {µ ∈ U2 : F = 2} and that Γ3 is empty. Figure 4 shows the set Γ1 computed
numerically. We are now in position to prove the main result of this subsection:

Proof of Theorem 3.3 Fix some µ? ∈ U \{Γ1∪Γ2} and note that, taking (6) and (24) into account, there
are three different situations to consider:

(a) µ? ∈ U1 \ Γ1,

(b) µ? ∈ U2 \ Γ2,

(c) µ? ∈ U3 such that λ(µ?) = 1.

The fact that µ? is a local regular value in the cases (a) and (b) follows exactly the same way as in the proof
of Theorem 5.1 in [11]. So let us consider only the case (c), which corresponds to the values of µ ∈ U such
that F = 3/2. Note first of all that, from (c) in Theorem 3.6, we can assert that if µ ∈ U3 then

Ps(s;µ) = ∆3(µ)
(
λω(s;λ) + 1

)
+ ∆4(µ) + sf ′

3(s;µ) + f3(s;µ),

where f3 ∈ I(U3). Here we used that, on account of Definition 3.5, sωs = (λ− 1)ω + 1. On the other hand,
since λ(µ) −→ 1 as µ −→ µ?, it is clear that ω(s;λ) −→ −∞ as (s, µ) −→ (0, µ?). Consequently, using also
that f3 ∈ I(U3), from the above equality we obtain that

Ps(s;µ)

λω(s;λ) + 1
−→ ∆3(µ?) as (s, µ) −→ (0, µ?).

Therefore, since one can easily verify that ∆3(µ?) < 0, we can assert that there exists a neighbourhood U ?

of µ? and ε > 0 such that Ps(s;µ) > 0 for all s ∈ (0, ε) and µ ∈ U ?. According to (b) in Remark 2.6, this
proves that µ? is a local regular value. It also shows that the period function is monotonous decreasing on
the outer boundary of Pµ. Indeed, P (s;µ) is by definition the period of the periodic orbit of Xµ passing
through the point (p1 − s, 0), which approaches to the outer boundary as s decreases.

The assertions concerning the monotonicity in the cases (a) and (b) follow exactly the same way taking
into account the sign of ∆1(µ?) and ∆2(µ?) respectively.

The rest of the subsection is devoted to show some properties of Γ1. We prove the following:

Proposition 3.11. The set Γ1 is the graphic of an analytic function D = G(F ) defined for F ∈ (1, 3/2)
that has the following properties:
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(a) −F < G(F ) < −1/2 for all F ∈ (1, 3/2),

(b) G(F ) −→ −3/2 as F ↗ 3/2,

(c) G(F ) −→ −1/2 as F ↘ 1,

(d) G(5/4) = −1.

This result follows almost directly from Lemma 3.13 bellow. However, in order to prove Lemma 3.13 we
shall need a previous result concerning a general property of the coefficients in Proposition 3.9.

Lemma 3.12. Under the hypothesis of Proposition 3.9, let {µk} be a sequence of parameters in W1

(respectively W2) such that µk −→ µ̂ with λ(µ̂) = 1/n and ∆3(µ̂) 6= 0.

(a) If ∆3(µ̂) > 0 then ∆1(µk) (respectively ∆2(µk)) tends to −∞ as µk −→ µ̂.

(b) If ∆3(µ̂) < 0 then ∆1(µk) (respectively ∆2(µk)) tends to +∞ as µk −→ µ̂.

Proof. We shall prove (a) and (b) for a sequence {µk} in W1 (the other case follows exactly the same way).
Notice first that, on account of µk ∈W1, we have λ(µk) > 1/n and

(25) T (s;µk) = ∆0(µk) + ∆1(µk)s+ sf1(s;µk) with f1 ∈ I(W1).

On the other hand, note that µk ∈W3 for k large enough because µk −→ µ̂ ∈W3. Therefore

(26) T (s;µk) = ∆0(µk) + ∆3(µk)sω
(
s;λ(µk)n

)
+ ∆4(µk)s+ sf3(s;µk) with f3 ∈ I(W3).

By definition

sω
(
s;λ(µk)n

)
=
sλ(µk) n − s

λ(µk)n− 1

and consequently, from (26),

T (s;µk) = ∆0(µk) +

(
∆4(µk) − ∆3(µk)

λ(µk)n− 1

)
s+ sg(s;µk),

where

g(s;µ) := f3(s;µ) +
∆3(µ)

λ(µ)n− 1
sλ(µ) n−1

is a function that belongs to I(W1). Consequently the combination of this expression for T (s;µk) and the
one in (25) shows that

(27) ∆1(µk) = ∆4(µk) − ∆3(µk)

λ(µk)n− 1
.

Note also that, since ∆3 and ∆4 are analytic on W3, ∆3(µk) −→ ∆3(µ̂) and ∆4(µk) −→ ∆4(µ̂) as µk −→ µ̂.
In addition, due to µk ∈W1, it turns out that λ(µk)n− 1 ↘ 0 as µk −→ µ̂. Hence, from (27), we conclude
that

lim
µk→µ̂

∆1(µk) = −∞ if ∆3(µ̂) > 0 and lim
µk→µ̂

∆1(µk) = +∞ if ∆3(µ̂) < 0

as claimed.

In what follows we shall use the notation k1 = p2 − p1 and k2 = 1/
√

2a introduced in the proof of
Theorem 3.6. Let us also define Ψ(µ) by means of the relation ∆1(µ) = k2

2k1(p1−1) Ψ(µ), that is,

(28) Ψ(µ) := 2 −
∫ 1

0

(
u2(1−F )

(
(u− 1)κ+ 1

)2F−1 − 1
) du

(1 − u)3/2
where κ(µ) :=

1 − p2

1 − p1
.

Concerning this function we prove the following:
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Lemma 3.13. If (D,F ) ∈ U1 then the following holds:

(a) ΨD(D,F ) < 0,

(b) Ψ(D,F ) < 0 for D ≥ −1/2,

(c) Ψ(−1, 5/4) = 0,

(d) Ψ(D,F ) −→ 4 as (D,F ) −→ (−q, q) with 1 < q < 3/2,

(e) Ψ(D,F ) −→ −∞ as (D,F ) −→ (q, 3/2) with −3/2 < q < 0,

(f)
Ψ
(
D, 1 + (D + 1/2)2

)

(D + 1/2)2
−→ 4(4 − π) as D ↗ −1/2.

Proof. Some computations show that

κ =
(2D + 1)

√
F (F − 1) +

√
(F +D)(F −D − 1)

(2D + 1)
√
F (F − 1) −

√
(F +D)(F −D − 1)

(29)

and

dκ

dD
=

−(2F − 1)2
(
(2D + 1)

√
F (F − 1) −

√
(F +D)(F −D − 1)

)2

√
F (F − 1)

(F +D)(F −D − 1)
.

Thus, from the last expression above it follows that

ΨD(µ) = (2F − 1)
dκ

dD

∫ 1

0

(
(u− 1)κ+ 1

u

)2(F−1)
du

(1 − u)1/2

is negative for µ ∈ U1. This proves (a). Let us turn next to the assertion in (b). Notice first that

(30) Ψ(µ) =

∫ 1

0

2 − u− u2(1−F )
(
(u− 1)κ+ 1

)2F−1

(1 − u)3/2
du =

∫ 1

0

2 − u
(
h(u;µ) + 1

)

(1 − u)3/2
du,

where

h(u;µ) :=

(
(u− 1)κ+ 1

u

)2F−1

.

On the other hand one can verify that κ ≤ −1 for D ≥ −1/2. Taking this into account it is easy to show
that

(u− 1)κ+ 1

u
>

2 − u

u
> 1 for u ∈ (0, 1).

Therefore, since F > 1, we have that

h(u;µ) >

(
2 − u

u

)2F−1

>
2 − u

u

and this, on account of (30), proves (b). The assertion in (c) is straightforward because κ(−1, F ) = 0 and
direct integration yields

Ψ(−1, 5/4) = 2 −
∫ 1

0

u−1/2 − 1

(1 − u)3/2
= 0.
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To show (d) notice first that κ(−q, q) = 1. Thus, if (D,F ) −→ (−q, q) with 1 < q < 3/2, then

Ψ(D,F ) −→ 2 +

∫ 1

0

du√
1 − u

= 4.

Here we apply the Dominate Convergence Theorem and to do so it is necessary that 1 < q < 3/2. In order
to prove (e) we shall apply Lemma 3.12 to the results obtained in Theorem 3.6. To this end notice first
that the parameter µ̂ := (q, 3/2) satisfies λ(µ̂) = 1. Hence (c) in Theorem 3.6 shows that

∆3(µ̂) =
k1k2

2(p1 − 1)3
,

which is negative because 0 < p1 < 1 and ki > 0. Thus, if we consider any sequence {µk} in U1 with
µk −→ µ̂ then, by applying Lemma 3.12, it follows that

(31) ∆1(µk) −→ +∞ as µk −→ µ̂.

Recall at this point that, by definition,

(32) ∆1(µ) =
k2

2k1(p1 − 1)
Ψ(µ).

One can verify moreover that if (D,F ) −→ (q, 3/2) with −3/2 < q < 0, then

k2

2k1(p1 − 1)
−→ 18

6q + 3 −
√

9 − 12q − 12q2

(
2q3

12q2 + 12q − 9

)1/2

< 0.

Hence, on account of (31) and (32), we conclude that Ψ(D,F ) −→ −∞ as (D,F ) −→ (q, 3/2). This
proves (e). Finally, to show (f) we shall take advantage of the expression of Ψ(µ) given in (30). Let us
define

g(u;D) := h
(
u;
(
D, 1 + (D + 1/2)2

))
.

The idea will be to use the Taylor’s development of g(u;D) at D = −1/2. We point out however that
the term

√
F − 1 in κ, see (29), makes that κ

(
D, 1 + (D + 1/2)2

)
is not smooth enough at D = −1/2.

Nevertheless, this will not be a problem for our purpose because we only need to study its behaviour as
D ↗ −1/2, and it is clear that this function coincides on (−1/2 − ε,−1/2] with an analytic function at
D = −1/2. In the sequel, when we study g(u;D), we will use this analytic function instead of the original
κ
(
D, 1 + (D + 1/2)2

)
. Keeping this in mind, to avoid cumbersome notation we shall maintain the name of

the functions. Now, since one can check that

g(u;D) =
2 − u

u
+

1

2

d2

dD2
g
(
u; ξD

)
(D + 1/2)2 with ξD ∈ (D,−1/2),

from (30) we obtain that

(33)
Ψ
(
D, 1 + (D + 1/2)2

)

(D + 1/2)2
= −1

2

∫ 1

0

u
d2

dD2
g
(
u; ξD

) du

(1 − u)3/2
.

Lengthy computations, which are not included here for the sake of brevity, allow to verify that, for all
D ∈ (−1/2 − ε,−1/2], ∣∣∣∣

u

(1 − u)3/2

d2

dD2
g(u;D)

∣∣∣∣ < f(u) with f ∈ L1
(
(0, 1)

)
.

Therefore, by applying the Dominate Convergence Theorem, from (33) it turns out that

Ψ
(
D, 1 + (D + 1/2)2

)

(D + 1/2)2
−→ −1

2

∫ 1

0

u
d2

dD2
g
(
u;−1/2

) du

(1 − u)3/2
as D ↗ −1/2.

24



Finally, since one can check that

d2

dD2
g
(
u;−1/2

)
=

4

u

(
(2 − u) ln

(2 − u

u

)
+ 4(u− 1)

)

and

− 2

∫ 1

0

(
(2 − u) ln

(2 − u

u

)
+ 4(u− 1)

)
du

(1 − u)3/2
= 4(4 − π),

the result follows.

Proof of Proposition 3.11 Recall that, by definition,

∆1(µ) =
k2

2k1(p1 − 1)
Ψ(µ).

Then, since one can verify that k2

2k1(p1−1) does not vanish on U1, it suffices to study {µ ∈ U1 : Ψ(µ) = 0}.
Notice first that, by applying the Implicit Function Theorem, (a) and (c) in Lemma 3.13 show that this
set is the graphic of an analytic function D = G(F ) with G(5/4) = −1. The fact that G is defined for all
F ∈ (1, 3/2) and that −F < G(F ) < −1/2 follow from (b) and (d) in Lemma 3.13. On the other hand, by
applying (e) in Lemma 3.13 we can assert that G(F ) −→ −3/2 as F ↗ 3/2. So it only remains to prove (c).
To this end note that (f) in Lemma 3.13 implies that

Ψ
(
D, 1 + (D + 1/2)2

)
> 0 for all D ∈ (−1/2 − ε,−1/2).

In addition, from (d) in Lemma 3.13, we have that Ψ(−1/2, F ) < 0 for all F ∈ (1, 1 + ε). Consequently, by
Bolzano’s Theorem, in any neighbourhood V of (D,F ) = (−1/2, 1) there exists some µ ∈ U1 ∩ V such that
Ψ(µ) = 0. This shows (c) and concludes the proof of the result.

3.2.2 The case 0 < F < 1 and −1 < D < 0.

The aim of this subsection is only to recall the results that we obtain in [11] concerning the period function
of the center at the origin of Xµ in case (see Figure 8) that µ belongs to

W :=
{

(D,F ) ∈ R2 : −1 < D < 0 and 0 < F < 1
}
.

Setting
Γ3 :=

{
µ ∈W : D = − 1

2 , F ∈
(

1
2 , 1
)}

and Γ4 :=
{
µ ∈W : F = 1

2

}
,

from Theorem 5.1 and Proposition 5.2 in [11] it follows the next result:

Theorem 3.14. Let {Xµ, µ ∈ R2} be the family of vector fields in (2) and consider the period function of

the center at the origin. Then the open set W \ {Γ3 ∪ Γ4} corresponds to local regular values of the period

function at the outer boundary of the period annulus. Moreover, for these parameters, the period function

is monotonous near the outer boundary and the corresponding character is shown in Figure 8.

3.3 Bounded period annulus

In this section we study the period function of the center at the origin for the parameter values µ such
that Pµ is bounded. Notice that among these parameters there are two main situations to consider (see
Figure 3). The first one are those parameters such that the outer boundary of Pµ is a saddle loop, which
corresponds to

M :=
{
µ ∈ R2 : D < −1 and F +D < 0

}
∪
{
µ ∈ R2 : D > 0 and F +D > 0

}
.

25



Figure 8: Monotonicity of the period function at the outer boundary of Pµ.

The second one are those parameters such that it is a bicycle, which corresponds to

N :=
{
µ ∈ R2 : −1 < D < 0 and F < 0

}
∪
{
µ ∈ R2 : D > 0 and F +D < 0

}
.

Now, with this definitions (see Figure 9), our goal is to prove the following result:

Theorem 3.15. Let {Xµ, µ ∈ R2} be the family of vector fields in (2) and consider the period function

of the center at the origin. Then the open set M ∪ N corresponds to local regular values of the period

function at the outer boundary of the period annulus. Moreover, for these parameters, the period function

is monotonous increasing near the outer boundary.

Proof. Let us begin by recalling some facts about the normal form of a family of vector fields with a
hyperbolic saddle. So let us consider a C∞-family of vector fields {Xµ : µ ∈W} with a hyperbolic saddle pµ.

Let the eigenvalues of Xµ at pµ be λ1(µ) and λ2(µ), with λ2 < 0 < λ1, and let r(µ) := −λ2(µ)
λ1(µ) be its ratio

of hyperbolicity. Fix some µ0 and assume first that r(µ0) is rational, i.e., r(µ0) = p
q with (p, q) = 1. Then,

for each k ∈ N, there exists a Ck-diffeomorphism Φ such that, in some neighbourhood of pµ and for µ ≈ µ0,

(34) Xµ = Φ∗

(
1

f(u;µ)

(
x∂x − yg(u;µ)∂y

))
,

where u = xpyq and

f(u;µ) = 1
λ1(µ) + β1(µ)u+ . . .+ βnk

unk ,

g(u;µ) = r(µ) + α1(µ)u+ . . .+ αnk
unk .

If r(µ0) /∈ Q then the above results holds with αi(µ) ≡ 0 and βi(µ) ≡ 0 for all i.

Let us first take a parameter µ? such that the period annulus is bounded by a saddle loop (i.e., µ ∈M).
Notice that, according to Remark 3.1, there is a neigbourhood U ? of µ? such that the saddle loop persists
and it is the outer boundary of Pµ for all µ ∈ U?. Moreover in section 3.1 we showed that the saddle is
located at (− 1

D , 0) and has eigenvalues

λ1(µ) =
√

1 + 1
D and λ2(µ) = −

√
1 + 1

D ,
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Figure 9: Parameters corresponding to bounded period annulus.

and so r(µ) ≡ 1. Since in particular r(µ?) = 1, there exists a local diffeomorphism Φ such that it holds (34)
with p = q = 1. We introduce two transversal sections Σσ and Στ given by s 7−→ Φ(s, 1) and s 7−→ Φ(1, s)
respectively. Let us also define P (s;µ) as the period of the periodic orbit of Xµ passing through Φ(s, 1).
We split it as

P (s;µ) = T1(s;µ) + T2(s;µ),

where T1 is the time function for −Xµ from Σσ to Στ and T2 is the time function for Xµ from Σσ to Στ (i.e.,
the passage through the saddle). To be more precise, T1(s;µ) is the minimum positive time necessary so
that the solution of −Xµ passing through Φ(s, 1) ∈ Σσ reaches Στ . Note that T1(s;µ) is a smooth function
on s = 0. The time function associated to the passage through a saddle with r(µ?) = 1 has already been
studied. Indeed, Lemma 2 in [1] shows that

(35) T2(s;µ) = − 1

λ1(µ)
log s− β1(µ)sω

(
s; r(µ)

)
+ ψ(s;µ),

where ψ is a C1 function at (s, µ) = (0, µ?) and 1-flat at s = 0 for all µ. In our situation ω
(
s; r(µ)

)
= log s

because in fact r(µ) ≡ 1. From the above expression we obtain that

s
d

ds
T2(s;µ) −→ −1/λ1(µ?) as (s, µ) −→ (0, µ?).

This shows, since T1 is smooth at s = 0, that sPs(s;µ) −→ −1/λ1(µ?) as (s, µ) −→ (0, µ?). Therefore, due
to λ1(µ?) > 0, we can assert that there exists ε > 0 such that Ps(s;µ) < 0 for all s ∈ (0, ε) and µ ≈ µ?.
Consequently, by (b) in Remark 2.6, µ? is a local regular value of the period function at the outer boundary.
We can conclude in addition, noting that Φ(s, 1) approaches to the saddle loop as s decreases, that the
period function is increasing near the outer boundary.

Let us consider next a parameter µ? such that the outer boundary of Pµ? is a bicycle (i.e., µ ∈ N). As
before, according to Remark 3.1, the bicycle persists and it is the outer boundary of Pµ for µ ≈ µ?. We shall
take advantage of the symmetry of the Loud’s systems with respect to {y = 0} to study only the passage
through one of the saddles. For instance, let us consider the saddle in {y > 0}. Recall (see section 3.1) that
this saddle is located at

pµ :=

(
1,
√

− (D+1)
F

)
with λ1(µ) =

√
− (D+1)

F and λ2(µ) = 2F
√

− (D+1)
F ,
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and so its ratio of hyperbolicity is r(µ) = −2F. We take now a local diffeomorphism Φ that conjugates Xµ

for µ ≈ µ? with its normal form, which depends on r(µ?) ∈ Q or r(µ?) /∈ Q. As before, we shall take two
transversal sections Σσ and Στ given by s 7−→ Φ(s, 1) and s 7−→ Φ(1, s) respectively. Denote by P (s;µ) the
period of the periodic orbit of Xµ passing through Φ(s, 1). We decompose it as

P (s;µ) = 2T1(s;µ) + 2T2(s;µ)
)

+ 2T3

(
R(s;µ);µ

)
,

where T1 is the time function for −Xµ from Σσ to {y = 0}, R and T2 are respectively the Dulac map and
the time function for Xµ from Σσ to Στ and, finally, T3 is the time function for Xµ from Στ to {y = 0}. It
is clear that T1 and T3 are smooth functions on s = 0. On the other hand, it is well known (see [13, 15] for
instance) that

R(s;µ) = sr(µ)
(
ρ(µ) + ψ1(s;µ)

)
where ψ1 ∈ I

(
U?
)

for some neighbourhood U? of µ?. Concerning T2, if r(µ?) /∈ Q then the normal form (34) is linear and
one can easily verify that T2(s;µ) = − 1

λ1(µ) log s. The expression is not so easy when r(µ?) = p
q . The case

p = q = 1 is treated in [1] and, as we already mentioned, one obtains the expression given in (35). In the
general case, following the same approach it can be shown that

T2(s;µ) = − 1
λ1(µ) log s− 1

p β1(µ) spω
(
sp; q

p r(µ)
)

+ ψ2(s;µ),

where ψ2 is C1 at (s, µ) = (0, µ?) and 1-flat at s = 0 for all µ. Some computations show that

d
ds T2(s;µ) = − 1

λ1(µ)
1
s − β1(µ) sp−1

(
q
p r(µ)ω

(
sp; q

p r(µ)
)

+ 1

)
+ ψ′

2(s;µ).

Therefore we can assert that in both cases, r(µ?) rational or irrational, it holds

s
d

ds
T2(s;µ) −→ −1/λ1(µ?) as (s, µ) −→ (0, µ?).

Finally this implies that sPs(s;µ) −→ −2/λ1(µ?) as (s, µ) −→ (0, µ?) because T1 and T3 are smooth at
s = 0 and ψ1 ∈ I

(
U?
)
. Exactly as in the saddle loop case, this proves that µ? is a local regular value at the

outer boundary and that the period function is monotonous increasing there.

Remark 3.16 From the proof of Theorem 3.15 it follows that if µ ∈M ∪N then the period function of Xµ

tends to +∞ as we approach to the outer boundary of Pµ. �

3.4 Proof of the main result

Proof of Theorem A The fact that the parameters in R2 \{ΓB ∪ΓU} are local regular values follows from
the application of Theorems 3.3, 3.14 and 3.15 in the corresponding regions that cover. These theorems also
show the assertions in (a) and (b) concerning the monotonicity near the outer boundary. Consider now a
parameter µ0 ∈ ΓB and note that any neighbourhood of µ0 intersects DB \ ΓU and IB \ ΓU . Consequently,
any neighbourhood of µ0 contains two parameters µ+ and µ− such that the respective period functions have
different monotonicity in the outer boundary. (Here we use, recall Remark 2.5, that the character increasing
or decreasing does not depend on the particular parametrization of the period function used.) This clearly
implies that µ0 is a local bifurcation value at the outer boundary and so the result is proved.

4 Bifurcation in the interior

In this section we determine some local bifurcation values of the period function in the interior of the
period annulus of the dehomogenized Loud’s systems (2). To be more precise, we prove that there are three
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parameter values, namely

(36) L1 =

(
−3

2
,

5

2

)
, L2 =

(
−11 +

√
105

20
,

15 −
√

105

20

)
and L3 =

(
−11 −

√
105

20
,

15 +
√

105

20

)
,

such that at each Li there exists a germ of analytic curve corresponding to this type of bifurcation. We
describe moreover the relative position of this curve with respect to other bifurcation curves. The result is
based on the work of Chicone and Jacobs in [4].

Setting µ = (D,F ) as usual, let us denote by P (s;µ) the period of the periodic orbit of system (2)
passing through the point (s, 0). Note that P (s;µ) is a well defined analytic function for (s, µ) ∈ (0, ε)×R2

because the center is nondegenerate. Moreover, since the eigenvalues of the linear part of Xµ at the origin
are ±i, it can be extended analytically to s = 0 by setting P (0;µ) := 2π. We can thus consider the Taylor
expansion of P (s;µ) at s = 0,

(37) P (s;µ) = 2π + P2(µ)s2 + P3(µ)s3 + P4(µ)s4 + P5(µ)s5 + P6(µ)s6 + . . . .

The coefficients Pk(µ), which are real polynomials in the parameters of the system, are called the period
constants of the center. For instance (see [4]),

P2(D,F ) =
π

12
(10D2 + 10DF −D + 4F 2 − 5F + 1),

P4(D,F ) =
π

1152

(
1540D4 + 4040D3F + 1180D3 + 4692D2F 2 + 1992D2F + 453D2

+2768DF 3 + 228DF 2 + 318DF − 2D + 784F 4 − 616F 3 − 63F 2 − 154F + 49
)
.

Chicone and Jacobs prove in [4] that the ideals generated by the period constants verify that

(38) (P2) = (P2, P3) ( (P2, P4) = (P2, P4, P5) ( (P2, P4, P6) = (Pi, i ∈ N).

They also show that the ideal (P2, P4, P6) determines the points

S1 = (−1/2, 1/2), S2 = (0, 1), S3 = (0, 1/4), S4 = (−1/2, 2),

which correspond to the four nonlinear quadratic isochronous centers. The ideal (P2, P4) determines, apart
from the four isochronous centers, the three weak centers Li given in (36). Note in particular that these
seven parameter values are over the conic ΓC := {µ ∈ R2 : P2(µ) = 0} (see Figure 10).

In [4] the authors use a notion of bifurcation which differs from the one introduced in section 2. Indeed,
they say that k critical periods bifurcate from the center corresponding to the parameter µ0 if for every ε > 0
and every neighbourhood U of µ0 there is a point µ1 ∈ U such that the equation P ′(s;µ1) = 0 has k solutions
in the interval (0, ε). With this definition and the notation introduced above we can now summarize their
result concerning the dehomogenized Loud’s systems:

Theorem 4.1 (Chicone-Jacobs). The maximal number of critical periods bifurcating from the center at

the origin of the dehomogenized Loud’s family is two. In addition,

(a) If µ /∈ ΓC then no critical period bifurcates from the center.

(b) If µ ∈ ΓC \ {L1, L2, L3} then at most one critical period bifurcates from the center and there are

perturbations with exactly one critical period.

(c) If µ ∈ {L1, L2, L3} then at most two critical periods bifurcate from the center and there are perturbations

with exactly one and exactly two critical periods.
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Figure 10: The ellipse ΓC = {µ ∈ R2 : P2(µ) = 0}.

Remark 4.2 It is clear, on account of (37), that if µ /∈ ΓC then the monotonicity of P (s;µ) for s > 0
small enough is given by the sign of P2(µ). Note that ΓC is a Jordan curve. We denote the bounded and
unbounded component of R2 \ ΓC by DC and IC respectively. One can check then that P2(µ) is positive
for µ ∈ IC and negative for µ ∈ DC . Thus, if µ belongs to IC (respectively, DC) then the period function
of Xµ is monotonous increasing (respectively, decreasing) at the inner boundary (i.e., the center). Therefore,
according to (a) in Remark 2.6, the parameters in ΓC are local bifurcation values of the period function at
the inner boundary. On the other hand, since the expansion in (37) is uniform with respect to µ, from (b) in
Remark 2.6 we can assert that any parameter µ /∈ ΓC is a local regular value of the period function at the
inner boundary. In short, the regular and bifurcation values at the center are the same with the definition
in [4] and Definition 2.4. �

One can easily verify that ΓC = {µ ∈ R2 : P2(µ) = 0} and {µ ∈ R2 : P4(µ) = 0} are analytic curves that
intersect transversally at each Li. We shall prove next the following result.

Theorem 4.3. For each i = 1, 2, 3 there exist a neighbourhood Ui of Li and an analytic curve δi which is

tangent to ΓC at Li such that the arc δi ∩ {µ ∈ Ui : P4(µ) < 0} corresponds to local bifurcation values of the

period function in the interior. Moreover this arc is inside {µ ∈ R2 : P2(µ) > 0}.

Proof. To study the period function near the center it is more convenient to parametrize the periodic orbits
by means of the first integral Hµ(x, y)−Hµ(0, 0). (Recall that Hµ is given in section 3.1.) This will eliminate
the rather artificial property that only the even coefficients in (37) are significant, which is due to the fact

that each periodic orbit intersects twice the x-axis. So for each h > 0 denote by P̂ (h;µ) the period of the
periodic orbit of Xµ inside the energy level {Hµ(x, y) −Hµ(0, 0) = h}. Thus, since one can verify that

h = Hµ(s, 0) −H(0, 0) =
s2

2
+ (1 +D + 2F )

s3

3
+ (1 +D + F )(1 + 2F )

s4

4
+ . . . ,
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from (37) it follows that P̂ (h;µ) = 2π +Q0(µ)h+Q1(µ)h2

2 +Q2(µ)h3

3 + . . . with

Q0(µ) = 2P2(µ),

Q1(µ) = 8P4(µ) − 4(1 +D + F )(1 + 2F )P2(µ),(39)

Q2(µ) = 24P6(µ) mod
(
P2(µ), P4(µ)

)
.

It is clear moreover that the critical periods coincide with the positive zeros of the function

(40) Z(h;µ) := P̂h(h;µ) = Q0(µ) +Q1(µ)h+Q2(µ)h2 + . . . .

Since P2(Li) = P4(Li) = 0, from (39) and using also the expression for P6 given in [4], it follows that
Q2(Li) = 24P6(Li) > 0 for each i = 1, 2, 3. One can also verify, taking (39) into account again, that the
gradients ∇Q0(Li) and ∇Q1(Li) are linearly independent for each i = 1, 2, 3. From now on let us only
consider L1 for the sake of simplicity in the exposition.

By applying the Weierstrass Preparation Theorem, there exist a neighbourhood U of L1, two analytic
functions a0 and a1 with ai : U −→ R and a positive analytic function K : (−ε, ε) × U −→ R such that

(41) Z(h;µ) = K(h;µ)
(
h2 + a1(µ)h+ a0(µ)

)
.

Accordingly, if K(h;µ) = k0(µ) + k1(µ)h+ o(h) then k0(L1) > 0 and, from (40),

(42) a0(µ)k0(µ) = Q0(µ) and a0(µ)k1(µ) + a1(µ)k0(µ) = Q1(µ).

So it turns out that a0(L1) = a1(L1) = 0. Therefore

∇Q0(L1) = k0(L1)∇a0(L1) and ∇Q1(L1) = k1(L1)∇a0(L1) + k0(L1)∇a1(L1),

and we can thus assert that the gradients ∇a0(L1) and ∇a1(L1) are linearly independent. Consequently
ψ(µ) :=

(
a0(µ), a1(µ)

)
is a local diffeomorphism between U and some neighbourhood V of (0, 0). We

define δ1 as the preimage by ψ of the analytic curve {(a0, a1) ∈ V : a2
1 − 4a0 = 0}. Note in particular that

L1 = ψ−1(0, 0) belongs to δ1. On the other hand, since ΓC ∩U = {µ ∈ U : Q0(µ) = 0} is the preimage by ψ
of {(a0, a1) ∈ V : a0 = 0}, we conclude that δ1 is tangent to ΓC at L1.

Now we shall prove, recall Definition 2.4, that any parameter in δ1 ∩ {µ ∈ U : P4(µ) < 0} is a local
bifurcation value of the period function in the interior. To this end fix some µ? ∈ δ1 ∩ U with P4(µ?) < 0

and define h? := −a1(µ
?)

2 . Observe that if µ ∈ δ1 then

8P4(µ) = Q1(µ) + 2(1 +D + F )(1 + 2F )Q0(µ)

= a1(µ)k0(µ) + a0(µ)
(
k1(µ) + 2(1 +D + F )(1 + 2F )k0(µ)

)

= a1(µ)

{
k0(µ) + 1

4 a1(µ)
(
k1(µ) + 2(1 +D + F )(1 + 2F )k0(µ)

)}
.

Here we use (39) in the first equality, (42) in the second one and that µ ∈ δ1 in the third one. Therefore,
since k0(L1) > 0 and a1(L1) = 0, the above equality shows that P4(µ) and a1(µ) have the same sign
for µ ≈ L1. Thus, shrinking the neighbourhood U of L1 if necessary, we have that h? > 0. Consider now
any neighbourhood U? of µ?. Due to µ? ∈ δ1, there exist µ̄ ∈ U? such that a2

1(µ̄) − 4a0(µ̄) > 0. Hence (41)

implies that Z
(
−a1(µ̄)/2; µ̄

)
< 0. Note also that Z(h;µ?) > 0 for h 6= h?. Therefore, since −a1(µ̄)

2 −→ h? as
µ̄ −→ µ?, it turns out that the relation (3) can not be verified in any neighbourhood of µ?. So µ? is a local
bifurcation value in the interior because Definition 2.4 is not fulfilled for c = h?. Finally, from (39) and (42)
and taking µ? ∈ δ1 into account,

2P2(µ?) = a0(µ?)k0(µ?) = a1(µ?)2k0(µ?)/4

and this implies that P2(µ?) > 0. The proof is completed.
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Remark 4.4 In fact the preceding proof provides a stronger result than Theorem 4.3. Namely, that for
each i = 1, 2, 3 there exists a neighbourhood Ui of Li and a local analytic equivalence ψi : Ui −→ Vi between
the local bifurcation diagrams of the families P̂h(h;µ) with µ ∈ Ui and C(h; a) := h2 + a1h+ a0 with a ∈ Vi

for h ∈ (0, ε). �

On the other hand it is also possible to obtain the asymptotic expansion of the curves δi. To do so it
is enough to find the expansion of the functions a0(µ) and a1(µ) in terms of the coefficients Qk(µ) and
substitute them into the equation a2

1 − 4a0 = 0. In this way one can obtain for instance the second order
expansion of the curve δ1 at the point L1 = (−3/2, 5/2),

189
10

(
D + 3

2

)
− 63

2

(
D + 3

2

)2 − 63
2

(
F − 5

2

) (
D + 3

2

)
+ 17

5

(
F − 5

2

)2
+ O

(∥∥(D + 3
2 , F − 5

2

)∥∥3
)

= 0.

5 Existence of critical periods

In this section we determine two subsets of the parameter space such that the corresponding period function
has at least one critical period and at least two critical periods respectively. We shall use the notation DB

and IB , introduced in section 1, for the bounded and unbounded components of R2\ΓB , and the notation DC

and IC , introduced in Remark 4.2, for the bounded and unbounded components of R2 \ ΓC . Let us note
that D and I stand for decreasing and increasing respectively.

Theorem 5.1. Consider a parameter µ0 inside IC ∩ DB or DC ∩ IB. If µ0 /∈ ΓU then the period function

of Xµ0
has at least one critical period.

Proof. Let us prove for instance the assertion concerning IC ∩DB (the other one follows exactly the same
way). So consider some µ0 ∈ IC ∩ DB \ ΓU and let Pµ0

: (0, 1) −→ R be a parametrization of the period
function of Xµ0

. Then, on account of Remark 4.2, we have that P ′

µ0
is positive near s = 0 because µ0 ∈ IC .

On the other hand, using that µ0 ∈ DB , by applying Theorem A it follows that P ′

µ0
is negative near s = 1.

Therefore, by Bolzano’s Theorem, we can assert that there exists s0 ∈ (0, 1) such that P ′

µ0
(s0) = 0.

Consider now the subsets U, W, M and N introduced in section 3 and let {Pµ : (0, 1) −→ R, µ ∈ R2}
be any parametrization of the period function. It follows then that L(µ) := lims−→1 Pµ(s) is a well defined
function on U ∪W ∪M ∪ N \ Γ4, where Γ4 is the segment represented in Figure 8. Indeed, Theorem 3.6
shows that

L(µ) =
2
√

2√
a+ b+ c

arctanh

(
2 a+ b−

√
b2 − 4 ac

2
√
a(a+ b+ c)

)
if µ ∈ U,

Proposition 5.2 in [11] that L(µ) = π√
F (D+1)

if µ ∈W \Γ4 and Remark 3.16 that L(µ) = +∞ if µ ∈M ∪N.
Some easy computations, that are not included here for the sake of brevity, show that the set

{µ ∈ U ∪W \ Γ4 : L(µ) − 2π = 0}

together with the points (−3/4, 1) and (−1/2, 1/2) and the segment {0}× [1/4, 1] form a Jordan curve,
say Γ0 (see Figure 11). We can thus consider the bounded and unbounded components of R2 \ Γ0, which
we denote by J− and J+ respectively. The subscripts are chosen in this way because one can verify that
L(µ)−2π is negative for µ ∈ J− and positive for µ ∈ J+. With this notation we obtain the following result:

Theorem 5.2. Consider a parameter µ0 inside IC ∩IB ∩J− or DC ∩DB ∩J+. If µ0 /∈ ΓU then the period

function of Xµ0
has at least two critical periods.

Proof. Let us prove for instance the assertion concerning IC ∩ IB ∩ J− (the other one follows exactly the
same way). Fix µ0 /∈ ΓU and consider a parametrization Pµ0

: (0, 1) −→ R of the period function of Xµ0
.
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Figure 11: Numerical drawing of the regions in Theorem 5.1 (left) and Theorem 5.2 (right).

Then, using that the eigenvalues of the linear part of Xµ0
are ±i, it follows that lims−→0 Pµ0

(s) = 2π.
We have in addition, recall Remark 4.2, that Pµ0

is increasing near s = 0 because µ0 ∈ IC . Then, since
lims−→1 Pµ0

(s) < 2π due to µ0 ∈ J−, there exists s̄ ∈ (0, 1) such that Pµ0
(s̄) = 2π and P ′

µ0
(s̄) ≤ 0. Thus,

since P ′

µ0
is positive near s = 0 and, on account of µ0 ∈ IB , also near s = 1 by Theorem A, we conclude

that there exist s1 ∈ (0, s̄) and s2 ∈ [s̄, 1) such that P ′

µ0
(si) = 0.

Unfortunately it is very difficult to provide an explicit and simple analytical description of the regions
in Theorems 5.1 and 5.2. We prefer instead to make a numerical drawing of them using the exact analytic
expressions that define the curves ΓB , ΓC , and Γ0. The picture on the left in Figure 11 shows several regions,
which can be clearly observed, with at least one critical period. The picture on the right shows two regions,
one of them very tiny, with at least two critical periods. Both regions corresponds to the set IC ∩ IB ∩J−,
the other one seems to be empty. It is to be referred here the result of Chicone and Dumortier in [3]. They
proved that there exists some D?≈ −1.47 such if µ ∈ (D?,−1.4) × {2} then the period function of Xµ has
at least one critical point. Observe in Figure 11 that this is the horizontal segment in the boundary of the
biggest component of IC ∩IB ∩J−. Their results follows from the fact that this segment is inside IC ∩J−.

6 Conjectures and open problems

In this section we give the complete conjectural diagram of the period function of the dehomogenized Loud’s
family. We explain how do we come to this conjecture and comment on various steps that should be done
in order to prove it. Some of them seem feasible, while others seem out of reach for the moment.
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6.1 Geometrical picture

Consider the parametrization of the set of periodic orbits in the period annulus that provides the first
integral Hµ given in (4). Let us assume that we normalize it in order that h = 0 corresponds to the center
(i.e., the inner boundary) and h = 1 to the polycycle (i.e., the outer boundary). Then the parametrization
of the period function P (h;µ) that we obtain is defined on (0, 1) for all µ ∈ R2. Recall (see section 4) that
it can be extended analytically to h = 0 by setting P (0;µ) := 2π and that

P ′(h;µ) = Q0(µ) +Q1(µ)h+Q2(µ)h2 + . . . for h ≈ 0.

Let M ⊂ [0, 1]×R2 be the set of points (h, µ) verifying P ′(h;µ) = 0 for h ∈ [0, 1) and extended to h = 1 by
continuity using an asymptotic development at the polycycle. We conjecture that M is a smooth surface
for h 6= 1 and that it is fibred by simple closed curves Mh given by {µ ∈ R2 : P ′(h;µ) = 0} for each fixed

h ∈ [0, 1). This last condition is equivalent to require that ∂P ′(h;µ)
∂D and ∂P ′(h;µ)

∂F do not vanish simultaneously.
Thus M0 is the ellipse ΓC in Figure 10 and M1 should correspond to the local bifurcation values at the outer
boundary, that we conjecture to be the curve ΓB in Theorem A together with the segment {0}× [0, 1/2]. In
fact the strange ellipse-like figure that appears in the numerical bifurcation diagram of Chicone and Jacobs
(see Figure 1) would correspond approximately to some curve Mh with h ≈ 1. The curves that correspond to
local bifurcation values of the period function in the interior are obtained by the projection of M on the µ-
plane. More precisely, these curves would be given as envelopes of the family {Mh, h ∈ [0, 1]}. We obtained
our conjectural bifurcation diagram by trying to interpolate a continuous family of curves Mh starting at ΓC

for h = 0 and ending for h = 1 at our conjectural bifurcation diagram at the polycycle. Figure 12 shows
two intermediate curves Mh and Mh′ with 0 < h < h′ < 1. Note that every curve Mh must pass through
S1, S2, S3 and S4, the parameters corresponding to the four isochronous centers of the family. On the other
hand, according to [4], Q0(µ), Q1(µ) and Q2(µ) generate the ideal of the coefficients of P ′(h;µ) at h = 0.
This gives that for µ ≈ Si and h ≈ 0 the family of curves Mh is approximately of the form of the pencil
Q0(µ) +Q1(µ)h = 0. Since the curves Q0(µ) = 0 and Q1(µ) = 0 are transverse at S2, S3 and S4, it follows
that, in a neighbourhood of these three parameters and at least for h small, the curves Mh look like a pencil
of straight lines passing through Si. At the other isochronous center S1, since Q0(µ) = 0 and Q1(µ) = 0
have quadratic contact, the curves Mh look like a pencil of parabolas tangent to ΓC . Consider finally the
curves δi passing through the three weak centers Li that we obtain in Theorem 4.3. From Remark 4.4 it
follows that, in a neighbourhood of each Li, the curves Mh are tangent to δi for h ≈ 0 and that these curves
correspond to parameters in which two critical periods collapse disappearing in the interior. In other words,
near each Li and for h ≈ 0 the curves δi are double bifurcation curves in the interior. We conjecture that
this behaviour holds for the entire curve δi and that they separate the regions with two critical periods from
the region in which the period function is globally monotonous increasing. Since these bifurcation curves δi

begin at the weak centers Li ∈ ΓC , which correspond to double bifurcations at the inner boundary, we
presume that they end at three special points in the curve ΓB ∪

(
{0} × [0, 1/2]

)
, which would play the role

of double bifurcation parameters at the outer boundary.

Let us precise all this in the following conjecture about the complete bifurcation diagram (see Figure 13)
of the period function of the dehomogenized Loud’s systems:

Conjecture. The bifurcation diagram of the period function of the dehomogenized Loud’s family consists

in the union of the following curves:

(a) The ellipse ΓC = {µ ∈ R2 : P2(µ) = 0}, which corresponds to the local bifurcation values at the inner

boundary.

(b) The Jordan curve ΓB given in Theorem A together with the segment {0} ×[0, 1/2], which corresponds

to the local bifurcation values at the outer boundary.

(c) Three simple curves δ1, δ2 and δ3 that connect L1 with (−2, 2), L2 with (0, 0) and L3 with (−3/2, 3/2)
respectively, which correspond to the local bifurcation values in the interior.
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Figure 12: The intermediate curves Mh.

We think of course that the period function of the dehomogenized Loud’s systems has at most two
critical periods. Figure 13 shows the regions where we conjecture that there are 0, 1 and 2 critical periods.
We also sketch there the changes in the monotonicity of the period function. Let us note finally that in
the segment {0}× [0, 1/2] occur two different types of bifurcation at the outer boundary. Indeed, crossing
from left to right the segment {0}× [0, 1/4] corresponds to the “disappearance” of two critical periods, while
crossing {0}× [1/4, 1/2] corresponds to a “rebound” of a critical period.

6.2 Bifurcation at the outer boundary

Our main result determines two sets ΓB and ΓU such that the parameters in ΓB are local bifurcation values
of the period function at the outer boundary and the ones in R2 \ (ΓB ∪ ΓU ) are local regular values. The
character of the parameters in ΓU remains unspecified in our work. The first natural problem that raises
is to determine the character of the parameters in ΓU . As we already mention, we conjecture that they are
all regular values except for the segment {0} × [0, 1/2], whose conjectural bifurcation is described below.

The set ΓU is stratified as a union of open segments and a few points at the intersection of them.
Probably one has to treat first the open segments and next the points (higher codimension strata). Our
main tool, Proposition 3.9, does not apply along some curves of ΓU because the singular points at infinity
of the polycycle are saddle-nodes or resonant non-linearizable saddles. It seems reasonable to think that an
analogue of Proposition 3.9 can be developed in all these cases and that one could determine the behaviour
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Figure 13: Conjectural bifurcation diagram of the period function.

of the period function at the polycycle in a neighbourhood of these curves. Next, a specific study should be
done for each of the codimension two points.

Our study of the bifurcation diagram of the period function does not deal with higher order bifurcation
parameters. The so called weak centers of order one and two that appear in the study of the period function
near the center (see [4]) have a counterpart near the polycycle. The determination of these parameters
and their study requires the knowledge of at least one more coefficient in the asymptotic expansion of the
period function near the polycycle. There is no theoretical obstacle in doing so, but the technicalities seem
prohibitive. Once these parameters are determined, using the derivation-division process as in the study of
Chebyshev systems (see [10] for instance), one should be able to prove the equivalence of the local bifurcation
at the outer boundary with some polynomial model.

Let us say a few words about the study at D = 0. In this case the polycycle in the boundary of the period
annulus has a degenerate singularity at infinity. Blowing-up this singularity and applying a sill unpublished
generalization of Proposition 3.9, we hope to obtain the beginning of the asymptotic expansion of the period
function P (h;µ) at the outer boundary. It seems feasible to prove in this way that the segment {0}×(0, 1/2)
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Figure 14: Bifurcation diagram of the conjectured polynomial model near D = 0.

consists of local bifurcation values at the outer boundary. On the other hand, we have a polynomial family
of functions that we think is a good model for the family P ′(h;D,F ) near S3 = (0, 1/4). To be more precise,
we conjecture that the families

Z(h;D,F ) = P ′(h;D,F ), h ∈ [0, 1), (D,F ) ∈ R2,

Ẑ(h; D̂, F̂ ) = (F̂ + D̂ − F̂ D̂)h2 + (D̂F̂ − 2F̂ − D̂ − D̂2)h+ F̂ , h ∈ [0, 1], (D̂, F̂ ) ∈ R2,

have locally equivalent bifurcation diagrams near the points (0; 0, 1/4) and (0; 0, 0) respectively. By this

equivalence the curve ΓC would correspond to {F̂ = 0}, {D = 0} to {D̂ = 0} and the curve δ2 to the curve

defined by F̂ 2 + D̂2 − 2F̂ D̂ + 2D̂ + 2F̂ + 1 = 0. (Note that D̂2
(
F̂ 2 + D̂2 − 2F̂ D̂ + 2D̂ + 2F̂ + 1

)
is the

discriminant of Ẑ(h; D̂, F̂ ) with respect to h.) Furthermore the intermediate curves Mh = {Z(h;D,F ) = 0}
would correspond to the hyperbolic branches M̂h = {Ẑ(h; D̂, F̂ ) = 0}. In Figure 14 we show the bifurcation
diagram of this polynomial model.

6.3 Bifurcation in the interior

The study of the local bifurcation values of the period function in the interior is equivalent to the study of
the behaviour of the zeros of P ′(h;µ) for h ∈ (0, 1). Here we assume again that h is, up to a normalization,
the energy of the first integral Hµ given in (4). In order to study these zeros one hopes to apply methods
which proved successful for the abelian integrals. However, in this case the situation is more complicated
for two reasons. The first one is that the first integral is not rational but only of Darboux-type. The
methods used for abelian integrals have not yet been successfully adapted to this situation despite several
efforts [8, 20]. The second reason is that in the usual setting of the abelian integrals, the parameters enter
linearly in the study as linear coefficients of the form that one integrates. In our situation the dependence
on the parameters is highly nonlinear.

Due to the form of the first integral it can be verified that the complex fibers {Hµ(x, y) = h} given
by a fixed (h, µ) are generically of infinite genus. This suggests complicated study unless, for some reason
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(the symmetry of the system for instance), one can project to some smaller space. The study of asymptotic
cycles probably plays some role too.

Let us finally refer a method developed in [6]. The authors obtain a general formula for the derivative of
the period function that can be applied to determine the critical periods that persists after the perturbation
of an isochronous center. This formula can be viewed as an analogous of the first Melnikov function used to
study limit cycles. As an example of application they study the isochronous center S2 = (0, 1). Proposition 5
in [6] shows that for each closed interval I inside (0, 1) there exists a neighbourhood U of S2 such that if
µ0 ∈ U then P (h;µ0) has at most one critical period in I and that this critical period exists only in the
case 1−F0

D0
> 3. (Observe in Figure 11 that this region is precisely the “linear approximation” at S2 of the

region in Theorem 5.1.) This implies, since one can also verify that the critical period is simple, that in a
punctured neighbourhood of S2 there are no local bifurcation values of the period function in the interior.
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[1] H. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeo-

morphisms, Ergodic Theory Dynam. Systems 16 (1996), 1147–1172.

[2] C. Chicone, review in MathSciNet, ref. 94h:58072.

[3] C. Chicone and F. Dumortier, A quadratic system with a nonmonotonic period function, Proc. Amer.
Math. Soc. 102 (1988), 706–710.

[4] C. Chicone and M. Jacobs, Bifurcation of critical periods for plane vector fields, Trans. Amer. Math.
Soc. 312 (1989), 433–486.

[5] W.A. Coppel and L. Gavrilov, The period function of a Hamiltonian quadratic system, Differential
Integral Equations 6 (1993), 1357–1365.

[6] E. Freire, A. Gasull and A. Guillamon, Period function for perturbed isochronous centres, Qual. Theory
Dyn. Syst. 3 (2002), 275-284.

[7] A. Gasull, A. Guillamon and J. Villadelprat, The period function for second-order quadratic ODEs is

monotone, preprint, to appear in Qual. Theory Dyn. Syst. (2003).
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