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Université de Bourgogne, UMR 5584 du CNRS, B.P. 47870, 21078 Dijon, France

David Maŕın
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Abstract. In this work we study unfoldings of planar vector fields in a neigh-
bourhood of a resonant saddle. We give a Ck normal form for the unfolding
with respect to the conjugacy relation. Using our normal form we determine
an asymptotic development, uniform with respect to the parameters, of the
Dulac time of a resonant saddle deformation. Conjugacy relation instead of
weaker equivalence relation is necessary when studying the time function. The
Dulac time of a resonant saddle can be seen as the basic building block of the
total period function of an unfolding of a hyperbolic polycycle.

Introduction. In this work we study unfoldings of planar vector fields in a neigh-
bourhood of a resonant saddle. We give a Ck normal form for the unfolding with
respect to the conjugacy relation. This generalizes the known orbital normal form
with respect to the equivalence relation [4] and [13].

Using our normal form we determine an asymptotic development, uniform with
respect to the parameters, for the Dulac time of a resonant saddle. Our asymptotic
development of the Dulac time is of a similar nature as the asymptotic expansion
of the Dulac map given in [13]. It generalizes our previous work [7] dealing with
the Dulac time of orbitally linearizable families, but without being as explicit on
the coefficients.

Our initial motivation was the problem of finite “cyclicity” (i.e., existence of a
local uniform bound) for the number of critical points of the period function of
polynomial vector fields on hyperbolic or more general polycyles. The condition
of non-criticality of the period appears for instance in the bifurcation theory of
subharmonics. Under the non-criticality of the period, zeros of appropriate Melnikov
functions guarantee the persistence of a subharmonic periodic orbit of a Hamiltonian
under a periodic non-autonomous deformation (see Theorem 4.62 of [3]).
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We see our asymptotic development of the Dulac time as the basic building block
in establishing an asymptotic development of the total period function (Poincaré
time), which we hope to study in a subsequent work. In its turn, such a uniform
asymptotic development should be the main ingredient in the proof of finite “cyclic-
ity” for critical points of the period function on hyperbolic polycycles.

For a fixed vector field several results are known: An asymptotic development of
the Poincaré time was obtained in [16, 17]. Non-accumulation of critical periods of
a fixed polynomial vector field on hyperbolic polycycles has been recently proved
in [9]. In [2] Chicone and Dumortier show that the Poincaré time of a fixed vector
field on a polycycle is non-oscillating if the polycyle has at least one finite saddle
point.

Hence, special attention must be payed to the study of polycycles whose all ver-
tices are at infinity in the Poincaré disc. For that reason, in our study of unfoldings

of saddle points (2) we permit polar factors. They can come from the line at infinity
in a saddle at infinity or, more generally, appear in a divisor after desingularizing
more general singular points at infinity in a polycycle. The case of lines of zeros in
at least one of the separatrices is also allowed as it can appear after desingularizing
a degenerate singular point at finite distance.

We think that our normal form is also of independent interest. Note that due
to unfolding of resonances, one cannot hope for a C∞ or analytic normal form in
a neighbourhood of a resonant saddle. When studying unfoldings of polycycles of
finite codimension a Ck normal form should be sufficient. For studying unfoldings
of infinite codimension, analytic normal forms in some domains unfolding sectors
should be developed in the spirit of the unfoldings of saddle-node in [14].

This paper consists of two parts. The first part is dedicated to establishing the
normal form Theorem A of an unfolding of a resonant saddle with possibly polar
factors in the axes. In the second part we apply this normal form to obtain an
asymptotic development Theorem B for the Dulac time.

Part 1. Temporal normal form

This part is organized as follows. In Section 1 the theorem on normal form for
conjugacy is formulated. In Section 2 tools necessary for its proof are collected. In
Section 3 the normal form is proved modulo the tools. Finally Section 4 is devoted
to prove these tools, the most important of them being the existence of solution of
an adapted homological equation stated in Theorem 2.3.

1. Statement of Theorem A. Let us consider a C∞ unfolding {Xµ}µ∈U of a
saddle point at the origin. More precisely

Xµ = aµ(x, y)x∂x + bµ(x, y)y∂y, with aµ(0, 0) = 1 and λ(µ) := −bµ(0, 0) > 0, (1)

where aµ and bµ are C∞ functions at the origin and U is an open subset of Rm. We
also consider the collinear family

Yµ =
1

v
Xµ, where v = xmyn and m,n ∈ Z. (2)

In what follows we shall say that two vector fields (or germs of vector fields) Z
and W are conjugated if there exists a change of coordinates Φ transforming Z to
W , i.e., Φ⋆Z = W , where

(
Φ⋆Z

)
(p) =

(
DΦ
)−1

p

(
Z ◦ Φ(p)

)
.
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We shall say that two germs of vector fields Z and W are equivalent at a point
p0, if they are conjugated up to a germ of a nonzero multiple: Φ⋆Z = fW with
f(p0) 6= 0. The two notions extend to germs of families of vector fields.

Definition 1.1. Given µ0 ∈ U , let us denote λ0 := λ(µ0). The orbital codimension

κ ∈ N ∪ {∞} of the saddle of the vector field Xµ0
is defined as follows. If λ0 /∈ Q,

then we set κ := ∞. If λ0 ∈ Q, then the infinite jet of Xµ0
at the origin is C∞

equivalent to

x∂x +
(
−p/q +

∑

i>0

αi+1(x
pyq)i

)
y∂y, with λ0 = p/q and gcd(p, q) = 1. (3)

In case that αi+1 6= 0 for some i we set κ := min
{
i ∈ N : αi+1 6= 0

}
and, otherwise,

κ := ∞.

Remark 1. The orbital codimension does not depend on the particular equivalence
used to bring Xµ0

to a normal form (3) because the monomial (xpyq)κ can not be
annihilated by means of a smooth coordinate transformation preserving the normal
form.

The main theorem proved in the first part is the following.

Theorem A. Let {Xµ}µ∈U be a C∞ unfolding of a saddle point as in (1) and
consider some µ0 ∈ U . Then for any k ∈ N the family {Yµ}µ∈U is Ck conjugated by
a diffeomorphism of the form Φ(x, y, µ) = (Φµ(x, y), µ) defined in a neighbourhood
of (0, 0, µ0) ∈ R2×U to

Y NF
µ =

1

v + uℓQµ(u)

(
x∂x +

(
−λ(µ) + Pµ(u)

)
y∂y

)
, (4)

where

(a) if λ0 /∈ Q, then Pµ ≡ Qµ ≡ 0,
(b) if λ0 = p/q with (p, q) = 1, then Pµ and Qµ are polynomials in the resonant

monomial u = xpyq and

ℓ = min
{
β ∈ Z : β(p, q) > (m,n)

}
.

Moreover, in case that Xµ0
has orbital codimension κ < ∞ then we have that

degPµ 6 2κ and degQµ 6 κ− min(ℓ, 1).

Remark 2. In the definition of ℓ above, the symbol > stands for the partial order
in Z2. Note that uℓ/v is regular at (x, y) = (0, 0) and that if m > 0 or n > 0 then
ℓ > 1. The integer ℓ plays the role analogous to the orbital codimension in the
bound of the degree of Qµ. However, a priori the order of Qµ0

(u) at u = 0 is a more
natural notion of “temporal codimension”, but it does not seem to have immediate
applications.

2. Tools. In this section we collect some tools used in the proof of Theorem A.
They will be proved in Section 4 except for Theorem 2.1, for which we give only a
sketch of proof. This theorem is part of folklore. It appears, as we state it here, in
[13] but referring to [1] for the proof. However, [1] deals only with a related problem
of normal forms for diffeomorphisms. A proof of Theorem 2.1 appears in [4] but
there is a delicate point concerning the elimination of the remainder term which is
not dealt with in that paper. Later on we point it out in the sketch of the proof
of Theorem 2.1. The mentioned delicate point can be overcome by applying the
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results of Samovol in a very technical paper [15]. We do not give a complete proof
as it can be done along the lines of the proof of our Theorem 2.3.

Theorem 2.1. Let {Xµ}µ∈U be a C∞ unfolding of a saddle point as in (1) and

consider some µ0 ∈ U . Then for any s ∈ N the family {Xµ}µ∈U is Cs equivalent by

a diffeomorphism of the form Φ(x, y, µ) = (Φµ(x, y), µ) defined in a neighbourhood

of (0, 0, µ0) ∈ R2×U to

XNF
µ = x∂x +

(
−λ(µ) + Pµ(u)

)
y∂y, (5)

where

(a) if λ0 /∈ Q, then Pµ ≡ 0,
(b) if λ0 = p/q with (p, q) = 1, then Pµ is a polynomial in the resonant monomial

u = xpyq. Moreover, in case that Xµ0
has orbital codimension κ < ∞ then

degPµ 6 2κ.

Lemma 2.2. Let {Yµ}µ∈U be a family of vector fields as in (2) and let {fµ}µ∈U be

a Ck family of functions with fµ(0, 0) = 0. Then, for each µ0 ∈ U , there exists a

family of Ck diffeomorphisms {Φµ} defined in a neighbourhood of (0, 0, µ0) ∈ R2×U
such that, on xy 6= 0,

(Φµ)⋆
(
Yµ

)
=

Xµ

v +Xµ(vfµ)
.

In fact Φµ(x, y) = ϕµ

(
Fµ(x, y);x, y

)
, where ϕµ(t;x, y) denotes the flow of Xµ

passing through (x, y) ∈ R2 at t = 0 and {Fµ} is a Ck family of functions with

Fµ(0, 0) = 0 which is defined implicitly by

vfµ(x, y) =

∫ Fµ(x,y)

0

v ◦ ϕµ(ξ;x, y) dξ.

Remark 3. For fixed m,n ∈ Z, the diffeomorphism Φµ in Lemma 2.2 depends only
on the initial data {Yµ} and {fµ}. Since we shall apply it several times, changing
both data (vector fields and functions), we introduce the notation Φµ = Φ[Yµ, fµ].

Let V be an open subset of Rn and consider a smooth function f : V −→ R. We
define

‖f‖V = sup{|f(x)| : x ∈ V }.

If I = (i1, . . . , in) is a multi-index with ij ∈ N ∪ {0} then we use the notation
i = |I| = i1 + · · · + in and

∂i
I =

∂i

∂xi1
1 · · · ∂xin

n

.

Thus, dealing with partial derivatives, we shall use the convention that if J is a
multi-index then the small letter j stands for |J |. Moreover, given p ∈ V, we denote
by
(
Dif

)
(p) the total differential of order i of f at p, which is defined as the

symmetric i-linear form
(
Dif

)
(p) : Rn × · · · × Rn −→ R

(
x(1), . . . , x(n)

)
7−→

∑

|I|=i

(
∂i

If
)
(p)x

(1)
i1

· · ·x
(n)
in
,

where the sum is taken over all the multi-index I = (i1, . . . , in) with |I| = i and

x(j) = (x
(j)
1 , . . . , x

(j)
n ) for j = 1, . . . , n. Finally, we define

‖Dif(p)‖ = max{|∂i
If(p)| : |I| = i}.
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We extend these definitions to vector functions in the usual way. More concretely,
if f = (f1, . . . , fm) is a vector function from V ⊂ Rn to Rm then

∂i
If = (∂i

If1, . . . , ∂
i
Ifm) and

(
Dif

)
(p) : Rn × · · · × Rn −→ Rm.

Similarly,

‖f‖V = max{‖fj‖V : j = 1, . . . ,m}

and

‖
(
Dif

)
(p)‖ = max{‖

(
Difj

)
(p)‖ : j = 1, . . . ,m}.

From now on we must distinguish between parameters µ ∈ Rm and phase vari-
ables (x, y) ∈ R2 when considering a smooth function f : V ⊂ R2+m −→ R. We say
that such a function is N -flat with respect to (x, y) if it is CN+1 and verifies the
estimates

‖
(
Dif

)
(x, y, µ)‖ 6 C‖(x, y)‖N−i, i = 0, . . . , N,

in some neighbourhood of (0, 0, µ0) ∈ R2+m and for some constant C > 0. The
flatness with respect to x or y is defined analogously by replacing ‖(x, y)‖ by |x| or
|y| respectively.

Theorem 2.3. Let {Xµ}µ∈U be a family of vector fields as in (1) and consider some

µ0 ∈ U . Then for any k ∈ N there exists a natural number N = N
(
k, λ0,m, n

)
such

that if {hµ} is a CN family of N -flat functions, then the homological equation

Xµ(vfµ) = vhµ (6)

has a Ck family of solutions {fµ} defined in a neighbourhood of (0, 0, µ0) ∈ R2×U .

More precisely, we can take

N(k, λ0,m, n) := 2 [max{(ν0 + 1)k −m+ λ0n, (ν0/λ0 + 1)k +m/λ0 − n} + 1] ,

where ν0 = max{1, λ0} and [ · ] denotes the integer part.

Remark 4. Analogously to the definition of ℓ in Theorem A, the natural number
N
(
k, λ0,m, n

)
can be written as

2 min
{
M ∈ N : M ·

(
1, λ0

)
>
(
(ν0 + 1)k −m+ λ0n, (ν0 + λ0)k +m− λ0n

)}
.

Note that the above formula is not symmetric with respect to m and n. This is so
because in the proof we first show that it suffices to consider a vector field in normal
form and we choose one containing all the resonant monomials in the ∂y direction.
It is important to mention that N depends only on the linear part of Xµ0

.

Before proving our main theorem in which we give a normal form for conjugacy,
we sketch the proof of Theorem 2.1 that deals with orbital normal form in order to
see which kind of ideas are involved in this type of results. Theorem 2.1 is part of
folklore (see [4, 13]) but we want to point out a delicate point, which we think did
not receive the required attention in the literature.

One uses first the Takens normal form theorem [18] (see also [3]). Let Hh be
the space of polynomial vector field families in the (x, y) plane depending on the
parameter µ and homogeneous of degree h in (x, y). Let L = L(µ) = x∂x −λ(µ)y∂y

be the linear part of Xµ and for each h, consider the action of the Lie bracket
[L,−] : Hh → Hh. For fixed µ and any h, the mapping [L,−] is linear on Hh.
Denote by Bh the image of Hh by [L,−] and let Gh be some complementary space
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so that Hh = Bh ⊕ Gh. Then, for any N , there exists a polynomial change of
coordinates transforming the vector field family Xµ to the form

x∂x − λ(µ)y∂y + g2 + · · · + gN +R(x, y), (7)

where gh is a homogeneous vector field family belonging to Gh ⊂ Hh, for h =
1, . . . , N and the remainder term R(x, y) is a vector field R(x, y) = o(|(x, y)|N ).
Moreover,

[L, xiyj∂x] =
(
1 − i+ jλ(µ)

)
xiyj∂x and [L, xiyj∂y] =

(
−i+ (j − 1)λ(µ)

)
xiyj∂y

so the action of [L,−] on Hh is diagonal, and Gh can be taken as the kernel of [L,−].
That is, if λ0 is irrational, then for λ sufficiently close to λ0, the family is linearizable
up to an N -flat term for any N . If λ0 = p/q, with p, q positive, relatively prime
integers, then for λ(µ) sufficiently close to λ0 up to an N -flat term, all monomials
can be eliminated except for the resonant monomials: ukx∂x and uky∂y. When
working with the equivalence and not conjugacy relation, it is legitimate to divide
(7) by the component of x∂x. Hence, for any N there exists a polynomial change
of coordinates transforming orbitally the vector field family Xµ to

XNF +R(x, y)

with XNF as in (3) and R(x, y), N -flat, with respect to |(x, y)|.
One next applies the second step in the normalization process, eliminating the

N -flat term R by means of a Ck diffeomorphism. We use here the homotopic method
(see for instance [4, 12]). As the dependence with respect to the parameter µ is
inessential, we omit mentioning it. In general, the homotopic method says that
vector fields X and X +R are Ck smoothly conjugate if the homological equation

[X + tR, Zt] = R (8)

has a Ck solution Zt. The time-one flow of the vector field Zt realizes the conjugation
(if it exists). In [12] it is proved that for X hyperbolic and R infinitely flat, the
homological equation (8) has a solution in the class C∞. The proof is done first
in the semihyperbolic case. That is, one decomposes the remainder R = R1 + R2

where R1 is flat with respect to the y variable and R2 flat with respect to the x
variable. One uses first the contractibility of the flow of X in the y direction for
solving the equation

[X + tR1, Zt] = R1 (9)

and hence proving that X is conjugated to X +R1. Next, one proves that X +R1

and X +R1 +R2 are conjugated by solving the equation

[X +R1 + tR2, Zt] = R2

using the contractibility of X + R1 + tR2 for negative time. The two equations
being of the same type, we comment only on (9). In order to solve it one globalizes
first the vector field. That is, one modifies the ∂y component of X in a complement
of a small neighbourhood of the origin in such a way that the flow of the modified
vector field is well defined for positive time and all solutions tend to the x axes as
t → +∞. By abuse, we keep the same notation for the modified vector field X . A
solution of (9) is given by

Zt(x, y) = −

∫ ∞

0

(D(X + tR1))
−1 ◦R1(φ(τ, (x, y)))dτ, (10)

where D(X + tR1) is the solution of the first variational equation of the modified
vector field X + tR1 and φ is its flow (see [4]). Using the flow-box theorem for the
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vector field X+tR1, it is easy to see that if the integral (10) is uniformly convergent,
then it verifies (9). Further dominated convergence estimates are needed to assure
the differentiability of Zt. In [12], these estimations are given in the C∞ smoothness
case. It is easy, following this proof, to see that a solution Zt of class Ck of (9) exists
provided that R1 is sufficiently flat with respect to the y variable. The difficulty
is that the required flatness as it appears in the proof of Proposition 2.2.11 in
[12] depends on the norm of X . In our application, the vector field X appears as
a result of Takens normal form procedure. It could happen that when obtaining
higher flatness of R1 as a result of applying Takens normal form procedure, the norm
of X grows and an even higher flatness of R1 would be required. It is sufficient to
show that the required flatness N(k) of R1 assuring the existence of a Ck solution
of (9) depends only on the linear part of the vector field X (which in not modified
by the Takens normal form procedure). This is proved by Samovol in [15] where
he proves that the required flatness N(k) in the homological equation (9) depends
only on the linear part of the vector field (but only the case of vector field without
poles is considered). An explicit estimates of N(k) appears also in [10] in the case
of linear X , but the proof is very sketchy. In general, the independence of N(k)
on higher order terms of X can be proved along the lines of our proof of Theorem
2.3. Yakovenko informed us that equation (9) can be reduced to (6) with v = 1. A
detailed proof of an analogous problem for diffeomorphisms appears in [1].

Finally, in the finite orbital codimension case, the polynomial normal form can
be improved using the Weierstrass preparation theorem (see [4]). We perform a
similar construction concerning the temporal part in the next section.

3. Proof of Theorem A.

Proof of Theorem A. Fix k ∈ N and µ0 ∈ U , and let N = N(k, λ0,m, n) be the
integer given by Theorem 2.3. Take any s > N. By Theorem 2.1, there exists a Cs

change of coordinates Φ 0
µ such that

(
Φ 0

µ

)⋆
(Yµ) = V s

µ :=
1

v

Xs
µ

1 +Rs
µ(x, y)

,

where Xs
µ = x∂x +

(
−λ(µ) + P s

µ(u)
)
y∂y and Rs

µ is a Cs function vanishing at the

origin. (Here Φ0
µ is the equivalence between Xµ and Xs

µ that provides Theorem 2.1
and we took into account that it is tangent to the identity and preserving the axes.)

Next we shall “simplify” the function Rs
µ by means of a conjugation and to

this end we apply Lemma 2.2. Thus, recall Remark 3, the idea is to take the
diffeomorphism Φ1

µ := Φ
[
V s

µ , fµ

]
, where {fµ} is to be chosen appropriately. Notice

that
(
Φ1

µ

)⋆
(V s

µ ) =
Xs

µ

v
(
1 +Rs

µ(x, y)
)

+Xs
µ(vfµ)

.

The vector field Xs
µ acts linearly on the vector space (v)R[x, y] and note that its

image contains all the monomials of (v)R[x, y] which are not inside R(u) because

Xs
µ(xayb) =

(
a− λ(µ)b

)
xayb + bP s

µ(u)xayb.

In other words, uℓR[u] ⊂ (v)R[x, y] is a supplementary subspace of the image of Xs
µ

acting on (v)R[x, y]. Hence we can choose fµ(x, y) as a polynomial so that

vRs
µ(x, y) +Xs

µ(vfµ) = uℓQs
µ(u) + vhs

µ(x, y),



1228 P. MARDEŠIĆ, D. MARÍN AND J. VILLADELPRAT

where hs
µ(x, y) is a s-flat function and Qs

µ ≡ 0, in case that λ0 /∈ Q, or Qs
µ(u)

polynomial in u = xpyq, in case that λ0 = p/q with (p, q) = 1. Accordingly(
Φ1

µ

)⋆
(V s

µ ) = Zs
µ, where

Zs
µ :=

Xs
µ

v + uℓQs
µ(u) + vhs

µ(x, y)
=

1

v

Xs
µ

1 + uℓQs
µ(u)/v + hs

µ(x, y)
.

We point out that the vector field Zs
µ can be written as in (2), i.e., it is of the form

1/v times a smooth vector field at the origin because uℓ/v has the same property.
Therefore we can apply Lemma 2.2 and consider the coordinate transformation
Φ2

µ := Φ
[
Zs

µ, gµ

]
, which verifies

(
Φ2

µ

)⋆
(Zs

µ) =
Xs

µ

v + uℓQs
µ(u) + vhs

µ(x, y) +Xs
µ(vgµ)

.

Our goal is to annihilate vhs
µ by choosing an appropriate gµ. The problem reduces

to solving the homological equation Xs
µ(vgµ) = −vhs

µ. Since hs
µ is a s-flat function

with s > N, by applying Theorem 2.3 we can assert that there exists a Ck function
gµ verifying the aforementioned homological equation. In short we have that

(
Φ2

µ ◦ Φ1
µ ◦ Φ 0

µ

)⋆
(Yµ) = W s

µ :=
Xs

µ

v + uℓQs
µ(u)

with Qs
µ(u) polynomial. It is important to mention that N in Theorem 2.3 depends

only on the linear part of the vector field Xs
µ, which is independent of s. This enables

us to fix in advance the required flatness of hs
µ(x, y) in order to get the Ck conjugacy

Φ2
µ that annihilates it. This constitutes the key point in all the process because Xs

µ

does depends on s.
Assume finally that the original vector field Xµ0

has orbital codimension κ <∞.
In this case, by applying Theorem 2.1 we have that Xs

µ = x∂x+
(
−λ(µ)+P s

µ(u)
)
y∂y,

where P s
µ is a polynomial in u with deg(P s

µ) 6 2κ for µ ≈ µ0 and such that P s
µ0

has
order κ at u = 0. Again, on account of the definition of ℓ, W s

µ can be written as
in (2) because

W s
µ =

1

v

Xs
µ

1 + uℓQs
µ(u)/v

.

As before we consider Φ3
µ := Φ

[
W s

µ , τ̂µ
]

where τ̂µ is a smooth function to be deter-
mined. However now we want it of the form τ̂µ(x, y) = τµ(u)/v. The reason for this
will be clear in a moment but note that if uℓ|τµ(u) then, by the definition of ℓ, τ̂µ
will be regular at (x, y) = (0, 0). By Lemma 2.2 we can assert that

(
Φ3

µ

)⋆
(W s

µ) =
Xs

µ

v + uℓQs
µ(u) +Xs

µ(vτ̂µ)
.

Then, since vτ̂µ = τµ depends only on u, the above denominator becomes v +
uℓQs

µ(u)+ τ ′µ(u)Xs
µ(u) and an easy computation shows that Xs

µ(u) = u
(
p−λ(µ)q+

P s
µ(u)

)
. Thus, since λ0 = p/q and P s

µ0
(u) has order κ at u = 0, by applying

the Weierstrass Preparation Theorem, we have that Xs
µ(u) = uAs

µ(u)Bs
µ(u) where

Bs
µ(u) is a polynomial of degree κ in u for µ ≈ µ0 and As

µ0
(0) 6= 0. Accordingly

(
Φ3

µ

)⋆
(W s

µ) =
Xs

µ

v + uℓQs
µ(u) + uτ ′(u)As

µ(u)Bs
µ(u)
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and so we seek for a function τµ such that uℓQs
µ(u) + uτ ′µ(u)As

µ(u)Bs
µ(u) has few

monomials. This “simplification” depends on weather ℓ is positive or negative.
Setting uℓQs

µ(u) =
∑r

i=ℓ aiu
i with r > 0 we decompose uℓQs

µ(u) = S1
µ(u) + S2

µ(u),

where S1
µ(u) =

∑−1
i=ℓ aiu

i and S2
µ(u) =

∑r
i=0 aiu

i in case that ℓ < 0, and S1
µ(u) ≡ 0

and S2
µ(u) = uℓQs

µ(u) in case that ℓ > 0. (Here we can assume that r > 0 taking
some ai = 0 if necessary.) With this decomposition we perform the (polynomial)
division of S2

µ(u) by uνBs
µ(u), where ν := max(ℓ, 1), i.e.,

S2
µ(u) = Cs

µ(u)uνBs
µ(u) +Rs

µ(u) (11)

and thus deg(Rs
µ) 6 ν + κ− 1. Finally, τµ is to be chosen so that

uℓQs
µ(u) + uτ ′µ(u)As

µ(u)Bs
µ(u) = S1

µ(u) +Rs
µ(u),

which, due to uℓQs
µ(u) = S1

µ(u) + S2
µ(u), yields

τ ′µ(u) =
Rs

µ(u) − S2
µ(u)

uAs
µ(u)Bs

µ(u)
= −uν−1

Cs
µ(u)

As
µ(u)

.

(The last equality follows from taking (11) into account.) That is,

τµ(u) := −

∫ u

0

ξν−1
Cs

µ(ξ)

As
µ(ξ)

dξ,

which is a smooth function for (u, µ) ≈ (0, µ0) because As
µ0

(0) 6= 0 and ν > 1.

Moreover it verifies uℓ|τµ(u) as desired due to ν > ℓ. In short, the choice of τ̂µ(x, y) =
τµ(u)/v for Φ3

µ = Φ
[
W s

µ, τ̂µ
]

leads to

(
Φ3

µ ◦ Φ2
µ ◦ Φ1

µ ◦ Φ 0
µ

)⋆
(Yµ) =

Xs
µ

v + S1
µ(u) +Rs

µ(u)
.

It remains only to check that S1
µ(u) + Rs

µ(u) = uℓQµ(u) for some polynomial Qµ

of degree κ − min(ℓ, 1). In the case that ℓ > 0 this is simple because then S1
µ ≡ 0

and S2
µ(u) = uℓQs

µ(u). Consequently, from (11) we have that Rs
µ(u) = uℓ

(
Qs

µ(u) −

uν−ℓCs
µ(u)Bs

µ(u)
)

and so S1
µ(u) +Rs

µ(u) = Rs
µ(u) = uℓQµ(u) with

deg(Qµ) = ν + κ− 1 − ℓ = κ− min(ℓ, 1).

(In the second equality above we took ν = max(ℓ, 1) and ℓ > 0 into account.)

Finally in the case that ℓ < 0, then S1
µ(u) =

∑−1
i=ℓ aiu

i = uℓ
∑−ℓ

i=1 ai+ℓ−1u
i−1 and

Rs
µ(u) =

∑ν+κ−1
i=0 biu

i = uℓ
∑ν+κ−1

i=0 biu
i−ℓ. Therefore S1

µ(u) + Rs
µ(u) = uℓQµ(u),

where Qµ is a polynomial with

deg(Qµ) = max
(
−ℓ− 1, ν+κ− 1− ℓ

)
= max

(
−ℓ− 1, κ− ℓ

)
= κ− ℓ = κ−min(ℓ, 1).

Here we used that ℓ < 0, κ > 0 and ν = max(ℓ, 1) = 1. This completes the proof of
the theorem. �

4. The homological equation. This section is dedicated to showing the two
main results that we used in the proof of Theorem A, namely, Lemma 2.2 and
Theorem 2.3.

Proof of Lemma 2.2. Since the origin is a hyperbolic saddle for Xµ with both sepa-
ratrices in the axes, it is clear that v◦ϕµ(t;x, y) = v χµ(t, x, y) for some C∞ function
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χµ with χµ(0, 0, 0) 6= 0. Thus, given {fµ} as in the statement, we have to find {Fµ}
verifying

fµ(x, y) =

∫ Fµ(x,y)

0

χµ(ξ, x, y) dξ.

Note that the Ck function

R(x, y, µ, τ) := fµ(x, y) −

∫ τ

0

χµ(ξ, x, y) dξ

satisfies R(0, 0, µ0, 0) = 0 and ∂
∂τR(0, 0, µ0, 0) = −χµ0

(0, 0, 0) 6= 0. Therefore, by

the Implicit Function Theorem, there exits a Ck family of functions {Fµ}µ with
R
(
x, y, µ, Fµ(x, y)

)
= 0 for (x, y, µ) ≈ (0, 0, µ0) and Fµ0

(0, 0) = 0. The fact that
Fµ(0, 0) = 0 for all µ follows easily using that, by assumption, fµ(0, 0) = 0. It is clear
then that Φµ(x, y) := ϕµ

(
Fµ(x, y);x, y

)
is a local diffeomorphism with Φµ(0, 0) =

(0, 0) for all µ. Moreover, from [5], we have that

(Φµ)⋆
(
Xµ

)
=

Xµ

1 +Xµ(Fµ)
. (12)

Since Yµ = 1
v Xµ, we have that

(Φµ)⋆
(
Yµ

)
=

1

v ◦ Φµ
(Φµ)⋆

(
Xµ

)
.

Consequently, on account of (12), the result will follow once we prove that

(v ◦ Φµ)
(
1 +Xµ(Fµ)

)
= v +Xµ(vfµ).

To see this note that some easy manipulations yield

Xµ

(
vfµ

)
(x, y) =

d

ds

((
vfµ

)
◦ ϕµ(s;x, y)

)∣∣∣∣
s=0

=
d

ds

(∫ Fµ(ϕµ(s;x,y))

0

v ◦ ϕµ

(
s+ ξ;x, y

)
dξ

)∣∣∣∣∣
s=0

= v ◦ ϕµ

(
s+ Fµ

(
ϕµ(s;x, y)

)
;x, y

)(
1 +

d

ds
Fµ

(
ϕµ(s;x, y)

)∣∣∣
s=0

)

− v ◦ ϕµ(s;x, y)
∣∣∣
s=0

=
(
v ◦ Φµ

)
(x, y)Xµ

(
Fµ

)
+
(
v ◦ Φµ

)
(x, y) − v ◦ (x, y).

In the first equality above we use the definition of the derivative of a function with
respect to a vector field, and in the last one we took Φµ(x, y) = ϕµ

(
Fµ(x, y);x, y

)

into account. This proves the result. �

Since the proof of Theorem 2.3 is very technical, we begin by giving first its idea
omitting the dependence on µ to simplify the exposition. Let ϕt : (x, y) 7−→ ϕ(t;x, y)
be flow at time t of a given vector field X and consider also a given function H. In
this case, if

F (x, y) =

∫ 0

±∞

H ◦ ϕt(x, y) dt
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is a well-defined smooth function then it is a solution of the homological equation

X(F ) = H. Indeed, by making the change of variables τ = t+ s we obtain

X(F ) =
d

ds

∫ 0

±∞

H ◦ ϕt ◦ ϕs dt
∣∣∣
s=0

=
d

ds

∫ s

±∞

H ◦ ϕτ dτ
∣∣∣
s=0

= H.

Our goal is to solve the homological equation (6), where recall that v = xmyn with
m,n ∈ Z. Note that it coincides with the above one taking H = vh and F = vf .
The strategy consists in modifying conveniently X and h in order to make F well-
defined and f = F

v to be of class Ck. Taking this into account, let us introduce the
functions that will appear in the proof of Theorem 2.3.

So let us consider the homological equation X(vf) = vh. Since h is N -flat,
denoting by M the integer part of N/2, we can decompose it as a sum h = h1 + h2,
with h1 and h2 being M -flat with respect to x and y respectively (see [15]). The
first step in the proof will be to show that there is no loss of generality in assuming
that the homological equation is XNF (vf) = vh, where XNF is the vector field in
normal form provided by Theorem 2.1. Accordingly we consider

F (x, y) =

∫ 0

−∞

(vh1) ◦ ϕt(x, y) dt+

∫ 0

+∞

(vh2) ◦ ϕt(x, y) dt,

where ϕt is the flow of XNF
µ . In order to study F we must control the function

v ◦ ϕt, which satisfies the differential equation

d

dt
(v ◦ ϕt) = X(v) ◦ ϕt =

(
v(m− λn+ nP )

)
◦ ϕt = (v ◦ ϕt) (m− λn+ nP ◦ ϕt) .

Consequently

v ◦ ϕt

v
= e(m−λn)t exp

(
n

∫ t

0

P ◦ ϕs ds

)
,

and therefore f = F
v is given by

f(x, y) =

∫ 0

−∞

I1(x, y, t) dt−

∫ ∞

0

I2(x, y, t) dt,

where

Ii(x, y, t) = e(m−λn)t
(
hi ◦ ϕt(x, y)

)
exp

(
n

∫ t

0

P ◦ ϕs(x, y) ds

)
.

In order to prove that f is a well-defined Ck function we must bound the derivatives
of Ii and, in particular, the derivatives of the flow ϕt with respect to (x, y, µ) ∈
R2+m. To this end some technical lemmas are needed.

From now on, if g is a symmetric l-linear form on Rn and v1, . . . , vl ∈ Rn, then we
shall write g(v1, . . . , vl) ∈ R as gv1 · · · vl. The following result provides an expression
for the chain rule of higher order. (Its proof, being straightforward, is omitted for
the sake of shortness.)

Lemma 4.1. Let h : Rn −→ R, χ : Rm −→ R and ϕ : Rm −→ Rn be differentiable

functions. Then, for each I = (i1, . . . , im) with |I| = i > 1, we have

(a) ∂i
I(h ◦ ϕ) =

i∑
l=1

∑
J

CI
J (Dlh ◦ ϕ) ∂j1

J1
ϕ · · ·∂jl

Jl
ϕ,

(b) ∂i
Ie

χ = eχ
i∑

l=1

∑
J

CI
J ∂

j1
J1
χ · · · ∂jl

Jl
χ.
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Here J = (J1, . . . , Jl) is any l-tuple of vectors in (N∪{0})m verifying J1+· · ·+Jl = I
and {CI

J} is a collection of constants with CI
I = 1.

We shall also use the well-known Gronwall’s Lemma (see for instance [19]).

Lemma 4.2 (Gronwall). Let u, k, g : [a, b] 7−→ R be continuous functions and

assume that k > 0.

(a) If

u(t) 6 g(t) +

∫ t

a

k(s)u(s)ds for all t ∈ [a, b],

then

u(t) 6 g(t) +

∫ t

a

g(s)k(s) exp

(∫ t

s

k(r)dr

)
ds for all t ∈ [a, b].

(b) If

u(t) 6 g(t) +

∫ b

t

k(s)u(s)ds for all t ∈ [a, b],

then

u(t) 6 g(t) +

∫ b

t

g(s)k(s) exp

(∫ s

t

k(r)dr

)
ds for all t ∈ [a, b].

Lemma 4.3. Let X be a complete vector field in some open set V of Rn such that

‖DX‖V 6 ν. Then, for each i > 1, there exists a constant Ki > 0 such that the

total i-differential of the flow ϕt of X verifies ‖Diϕt‖V 6 Kie
iν|t| for all t ∈ R.

Proof. We proceed by induction on i. Due to ‖Diϕt‖V = max
{
‖∂i

Iϕt‖V : |I| = i
}
,

it is clear that it suffices to prove the inequality for any partial derivative of order
i.

Let us prove the result for i = 1. To this end let
{
I1, I2, . . . , In

}
be the canon-

ical basis of Rn and consider some ∂Ij
ϕt. This partial derivative verifies the first

variational equation, namely

d

dt
∂Ij
ϕt =

(
DX◦ϕt

)
∂Ij

ϕt with initial condition ∂Ij
ϕt

∣∣
t=0

= Ij .

Accordingly

∂Ij
ϕt = Ij +

∫ t

0

(DX ◦ ϕs)∂Ij
ϕs ds.

Consequently, since ‖DX‖V 6 ν by assumption, the function u1(t) = ‖∂Ij
ϕt‖V

satisfies

u1(t) 6 1 +

∫ t

0

νu1(s) ds, if t > 0, and u1(t) 6 1 +

∫ 0

t

νu1(s) ds, if t 6 0.

Applying Gronwall’s Lemma to each inequality we obtain respectively

u1(t) 6 1 +

∫ t

0

νeν(t−s) ds = eνt for t > 0

and

u1(t) 6 1 +

∫ 0

t

νeν(s−t) ds = e−νt for t 6 0.

Hence u1(t) 6 eν|t| and so this proves the result for i = 1.
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Assume now that the result is true for j < i and fix some multi-index I with
|I| = i. Since ϕt is the flow of the vector field X, we have that

d

dt
∂i

Iϕt = ∂i
I(X ◦ ϕt) with ∂i

Iϕt

∣∣
t=0

= 0.

We expand the right hand side of the above equality by applying (a) in Lemma 4.1
to the each component and, after integration, we obtain

∂i
Iϕt =

i∑

l=1

∑

J

CI
J

∫ t

0

(DlX ◦ ϕs) ∂
j1
J1
ϕs · · · ∂

jl

Jl
ϕs ds.

Note that the second summation above is taken over all the l-tuples J = (J1, . . . , Jl)
with J1 + · · · + Jl = I. Therefore we can split it up as

∂i
Iϕt = CI

I

∫ t

0

(DX ◦ ϕs) ∂
i
Iϕs ds+

i∑

l=2

∑

J

CI
J

∫ t

0

(DlX ◦ ϕs) ∂
j1
J1
ϕs · · ·∂

jl

Jl
ϕs ds.

Then, denoting ui(t) = ‖∂i
Iϕt‖V and taking CI

I = 1 into account, by using the
inductive hypothesis we obtain

ui(t) 6 KI

∫ t

0

eiνs ds+

∫ t

0

νui(s) ds 6
KI

iν
eiνt +

∫ t

0

νui(s) ds, if t > 0,

and

ui(t) 6 KI

∫ 0

t

e−iνs ds+

∫ 0

t

νui(s) ds 6
KI

iν
e−iνt +

∫ 0

t

νui(s) ds, if t 6 0.

Here the positive constant

KI =

i∑

l=2

∑

J

CI
J‖D

lX‖VKj1 · · ·Kjl

depends continuously on ‖DjX‖V , j = 2, . . . , i. Finally, by applying Gronwall’s
Lemma, it follows that

ui(t) 6
KI

iν
eiνt +

∫ t

0

KI

iν
eiνsνeν(t−s) ds 6

KI

i(i− 1)ν
eiνt 6 Kie

iνt, if t > 0,

and

ui(t) 6
KI

iν
eiνt +

∫ 0

t

KI

rν
e−iνsνeν(s−t) ds 6

KI

i(i− 1)ν
e−iνt

6 Kie
−iνt, if t 6 0,

where we take Ki = max
{

KI

i(i−1)ν : |I| = i
}
. This completes the proof of the

result.

The following result will be used to bound the derivatives of Ik(x, y, µ, t) with
respect to x, y and µ. Note that it refers to the functions Jk(x, y, µ, t) such that
Ik = e(m−λn)tJk.

Lemma 4.4. Let X(x, y, µ) = x∂x +
(
−λ0 + P (x, y, µ)

)
y∂y be a complete vector

field in the open subset Vδ = R2×
{
‖µ − µ0‖ < δ

}
⊂ R2 × U such that ‖P‖Vδ

6 η

and ‖DX‖Vδ
6 ν. Let h1 and h2 be M -flat functions on R2 × U with respect to x

and y respectively. In addition, for k = 1, 2, define

Jk(x, y, µ, t) =
(
hk ◦ ϕt(x, y, µ)

)
exp

(
n

∫ t

0

P ◦ ϕs(x, y, µ) ds

)
, (13)
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where ϕt is the flow of X. Then, for each i = 0, . . . ,M , we have

|∂i
IJ1(x, y, µ, t)| ≤ K|x|M−ie(M−(ν+1)i−|n|η)t if t ∈ (−∞, 0),

|∂i
IJ2(x, y, µ, t)| ≤ K|y|M−ie(−λ0M+(ν+λ0)i+(|n|−M+i)η)t if t ∈ (0,+∞),

for all (x, y, µ) ∈ Vδ and some positive constant K (independent of x, y, µ and t).

Proof. The flatness assumption on h1 and h2 means that, for 0 6 r 6 M,

‖Drh1(x, y, µ)‖ 6 C|x|M−r and ‖Drh2(x, y, µ)‖ 6 C|y|M−r (14)

for all (x, y, µ) ∈ R2 × U . It is easy to show that the first two components of the
flow ϕt are given by

ϕ1
t (x, y, µ) = xet and ϕ2

t (x, y, µ) = ye−λ0teχ(x,y,µ,t)

for all t ∈ R, where

χ(x, y, µ, t) =

∫ t

0

P ◦ ϕs(x, y, µ) ds.

Moreover, due to ‖P‖Vδ
6 η, we have that |χ(x, y, µ, t)| 6 |t|η for all (x, y, µ, t) ∈

Vδ × R. Accordingly, if t 6 0 then |ϕ2
t (x, y, µ)| 6 |y|e−(λ0−η)t for all (x, y, µ) ∈ Vδ.

The combination of this with (14) yields

‖Drh1◦ ϕt(x, y, µ)‖ 6 C|x|M−re(M−r)t if t 6 0,

‖Drh2◦ ϕt(x, y, µ)‖ 6 C|y|M−re−(M−r)(λ0−η)t if t > 0,
(15)

for each r = 0, . . . ,M . The case i = 0 follows easily from the above inequalities
with r = 0 and the bound for χ. On the other hand, from (a) in Lemma 4.1, if
j > 1 then

∂j
Jχ =

∫ t

0

∂j
J (P ◦ ϕs) ds =

j∑

ℓ=1

∑

L=(L1,...,Lℓ)

CJ
L

∫ t

0

(DℓP ◦ ϕs)∂
l1
L1
ϕs · · · ∂

lℓ
Lℓ
ϕs ds.

It is important to note that the second summation above is taken over all the
multi-indices L1, . . . , Lℓ such that L1 + · · ·+Lℓ = J . In order to avoid cumbersome
notations, when there is no risk of confusion we use a “universal” positive constant
K (meaning that it is something independent from x, y, µ and t). Taking this into
account, by using Lemma 4.3 we get

|∂j
Jχ(x, y, µ, t)| 6 K

∫ |t|

0

ejνs ds 6 K ejν|t| for all t ∈ R.

Hence, from (b) in Lemma 4.1, it follows that
∣∣∂j

Je
nχ(x,y,µ,t)

∣∣ 6 Ke(|n|η+jν)|t| for all t ∈ R.

Exactly in the same way as we bound |∂j
Jχ|, the combination of Lemmas 4.1 and

4.3 shows that

∣∣∂j
J

(
hk ◦ ϕt(x, y, µ)

)∣∣ 6 Kejν|t|

j∑

l=1

‖Dlhk ◦ ϕt(x, y, µ)‖ for all t ∈ R.

Now, the two last inequalities and the well-known formula

∂i
I(a b) =

∑

J+L=I

CJ,L∂
j
Ja ∂

l
Lb, (16)
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imply that if i ≥ 1 then

|∂i
IJk(x, y, µ, t)| 6 Ke(|n|η+iν)|t|

i∑

l=1

‖Dlhk ◦ ϕt(x, y, µ)‖ for all t ∈ R.

Finally, thanks to (15), we obtain the desired inequalities.

Proof of Theorem 2.3. Given {Xµ} as in (1), we must prove that if {hµ} is a fam-
ily of N -flat functions with N > N(k, λ0,m, n), then the homological equation
Xµ(vfµ) = vhµ has a solution {fµ} of class Ck. We claim that it suffices to prove
this taking the normal form family

{
XNF

µ

}
that appears in (5) instead of the origi-

nal {Xµ}. Indeed, thanks to Theorem 2.1, there exists a family of diffeomorphisms
{Φµ} such that Φ⋆

µXµ = κµX
NF
µ , where κµ is a function verifying that κµ(0, 0) 6= 0.

Since Φµ preserves the axes, we have that Φ⋆
µv := v ◦Φµ = vχµ, where χµ is a func-

tion with χµ(0, 0) 6= 0. Define hNF
µ =

χµ

κµ
Φ⋆

µhµ, which clearly is also a family of

N -flat functions. Now, if the corresponding homological equation

XNF
µ

(
vfNF

µ

)
= vhNF

µ

has a Ck solution
{
fNF

µ

}
then, using the equality Φ⋆(X(F )) = (Φ⋆X)(Φ⋆F ), one

can easily check that

fµ = 1
v

(
Φ−1

µ

)⋆(
vfNF

µ

)

is a Ck solution of the original homological equation, i.e., it verifies Xµ(vfµ) = vhµ.
From now on and, as we have just shown, without loss of generality, we study

the equation

Xµ

(
vfµ

)
= vhµ with Xµ = x∂x +

(
−λ(µ) + Pµ(u)

)
y∂y. (17)

In order to construct a solution of the homological equation it is convenient that
the flow of Xµ is defined for all t ∈ R. This can be achieved by a “globalization
process” using a suitable family of bump functions. More precisely, we consider a
family of C∞ bump functions {ψε} such that

ψε(x, y) =

{
1 if ‖(x, y)‖ 6 ε/2,

0 if ‖(x, y)‖ > ε,

and verifying moreover ‖Dψε‖ <
c
ε for a fixed c > 2. Then, setting hε

µ = hµψε and

Xε
µ = x∂x +

(
−λ0 + P ε

µ(x, y)
)
y∂y, where P ε

µ(x, y) =
(
λ0 − λ(µ) + Pµ(u)

)
ψε(x, y),

we consider the homological equation

Xε
µ(vfε

µ) = vhε
µ, (18)

which coincides with (17) on the ε/2-disk centered at the origin. Now, as we ex-
plained before, taking M =

[
N
2

]
, we write hε

µ = hε
µ,1 + hε

µ,2 with hε
µ,1 and hε

µ,2

being M -flat with respect to x and y respectively. Then we define

fε
µ(x, y) =

∫ 0

−∞

Iε
1(x, y, µ, t) dt−

∫ +∞

0

Iε
2(x, y, µ, t) dt, (19)

where

Iε
l (x, y, µ, t) = e(m−λ(µ)n)t

(
hε

µ,l ◦ ϕt(x, y, µ)
)
exp

(
n

∫ t

0

P ε
µ ◦ ϕs(x, y, µ) ds

)

and ϕt(x, y, µ) is the flow of Xε
µ. It is important to mention that this flow is defined

for all t ∈ R because Xε
µ is linear outside a compact set. Now the key point is to
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prove that (19) is a well defined Ck function because then, as we showed before, it
is straightforward to verify that it is a solution of (18). The rest of the proof is
dedicated to showing that this is the case provided that ε and ‖µ− µ0‖ are small
enough.

For each positive ε and δ we consider the subsets

Vε,δ =
{
(x, y, µ) ∈ R2+m : ‖(x, y)‖< ε, ‖µ−µ0‖< δ

}
and Vδ = R2×

{
‖µ−µ0‖< δ

}
.

Then we have the estimate

‖P ε
µ‖Vδ

6 sup
‖µ−µ0‖<δ

{|λ(µ) − λ0|} + ‖Pµ(x, y)‖Vε,δ
=: η(ε, δ),

where note that η(ε, δ) is a continuous function tending to 0 as (ε, δ) → (0, 0).
Define ν0 = max{1, λ0}. Then, since ‖yDψε‖Vε,δ

6 c, it follows that

‖DXε
µ‖Vδ

6 ν0 + ‖yDPµ‖Vε,δ
+ ‖yDλ(µ)‖Vε,δ

+ cη(ε, δ) =: ν(ε, δ),

where ν(ε, δ) is a continuous function tending to ν0 as (ε, δ) → (0, 0). We can hence
apply Lemma 4.4 to bound the partial derivatives of

J ε
l (x, y, µ, t) :=

(
hε

µ,l ◦ ϕt(x, y, µ)
)
exp

(
n

∫ t

0

P ε
µ ◦ ϕs(x, y, µ) ds

)
for l = 1, 2.

Our goal is to choose ε̄ and δ̄ small enough so that the bounds of the partial
derivatives of I ε̄

l are integrable functions with respect to t. To this end note that if

N > N(k, λ0,m, n) = 2
[
max{(ν0 + 1)k −m+ λ0n, (ν0/λ0 + 1)k +m/λ0 − n} + 1

]
,

then M =
[

N
2

]
satisfies the inequalities

M > (ν0 + 1)k −m+ λ0n and M > (ν0/λ0 + 1)k +m/λ0 − n.

By continuity of η(ε, δ) and ν(ε, δ), there exist ε̄, δ̄ > 0 such that η = η(ε̄, δ̄) and
ν = ν(ε̄, δ̄) are close enough to 0 and ν0 respectively, in order that the inequalities

α1 := M − (ν + 1)k − |n|η +m− λ(µ)n > 0

α2 := −λ0M + (ν + λ0)k + (|n| −M + k)η +m− λ(µ)n < 0

hold for ‖µ − µ0‖ < δ̄. Thus, by applying Lemma 4.4, we can assert that the
inequalities

|∂i
II

ε̄
1(x, y, µ, t)| 6 Ke(m−λ(µ)n)t

∑

16|J|6i

|∂j
JJ

ε̄
1 (x, y, µ, t)| 6 K|x|M−keα1t

and

|∂i
II

ε̄
2(x, y, µ, t)| 6 Ke(m−λ(µ)n)t

∑

16|J|6i

|∂j
JJ

ε̄
2 (x, y, µ, t)| 6 K|y|M−keα2t

are verified for 0 6 i 6 k. (To see this we also used the formula in (16) for the
derivation of a product.) Therefore, since α1 > 0 and α2 < 0 by construction, the
functions ∂i

II
ε̄
1 and ∂i

II
ε̄
1 are integrable with respect to t on (−∞, 0) and (0,∞)

respectively. Thus, f ε̄
µ is a well-defined Ck function and, accordingly, it is a solution

of the homological equation (17) for ‖(x, y)‖ < ε̄/2 and ‖µ− µ0‖ < δ̄. �
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Part 2. Asymptotic expansion of the Dulac time

5. Statement and proof of Theorem B. In this section we give an asymptotic
development of the Dulac time (time of passing around a corner) of a family of
vector fields unfolding a saddle point with possibly polar factors in the coordinate
axes. We see this result as a basic building block for studying the Poincaré time
(time associated to the Poincaré map) near a polycycle. Critical periods of the
Poincaré time are particulary important since the condition of non-criticality of
the period appears for instance in the bifurcation theory of subharmonics. Under
the non-criticality of the period, zeros of appropriate Melnikov functions guarantee
the persistence of a subharmonic periodic orbit of a Hamiltonian under a periodic
non-autonomous deformation (see Theorem 4.6.2 of [3]). Moreover, the problem
of existence of a uniform bound for the number of critical points of the period
function on a family of polynomial (or analytic) vector fields can be seen as a
problem analogous to the second part of 16th Hilbert problem on limit cycles. We
see our work as a contribution to establishing a finite “cyclicity” result in finite
codimension (i.e., existence of a local uniform bound) for the number of critical
points of the period function of polynomial vector fields on hyperbolic or more
general polycycles.

Let U be an open set of Rm and let {Xµ, µ ∈ U} be a C∞ family of vector fields
defined in some open set U of R2. Assume that the vector field Xµ has a hyperbolic
saddle pµ as unique critical point inside U . In this situation it is well know that
there exists exactly two smooth transverse invariant curves Sµ and Tµ through pµ

(depending also smoothly on µ). We also consider a family Yµ proportional to Xµ

but having poles along Sµ and Tµ of order m and n respectively. We make the
convention that if m (respectively, n) is a negative integer then Yµ vanishes along
the invariant curve Sµ (respectively, Tµ) with multiplicity −m (respectively, −n).
We can take a coordinate system (x, y, µ) on U×U ⊂ R2+m such that pµ = (0, 0, µ),
Sµ =

{
(x, y, µ) : x = 0

}
and Tµ =

{
(x, y, µ) : y = 0

}
.

In the coordinates mentioned above Xµ and Yµ can be written as in (1) and
(2) respectively. Our goal is to study these two families in a neighbourhood of a
parameter µ0 ∈ U such that

λ(µ0) =
p

q
with with (p, q) = 1.

By applying Theorem A, in a neighbourhood of (0, 0, µ0) ∈ R2+m there exists a Ck

diffeomorphism Φ such that

(
Φ⋆Yµ

)
= Y NF

µ :=
1

v + uℓQµ(u)

(
x∂x +

(
−λ(µ) + Pµ(u)

)
y∂y

)
.

Here recall that v = xmyn, Pµ and Qµ are polynomials in the resonant monomial
u = xpyq and

ℓ = min
{
β ∈ Z : β(p, q) > (m,n)

}
.

Composing Φ with suitable homotheties we can assume that Φ is defined on {|x| <
2, |y| < 2}. Let ΣN

1 and ΣN
2 be two normalized transverse sections to the separatri-

ces x = 0 and y = 0 respectively. To be more precise, ΣN
1 and ΣN

2 are parameterized
by σ1(s) := Φ(s, 1) and σ2(s) := Φ(1, s) respectively, so that ΣN

1 = Φ
(
{y = 1}

)
and

ΣN
2 = Φ

(
{x = 1}

)
. We denote the Dulac map and the time function associated

to the transverse sections ΣN
1 and ΣN

2 by D and T respectively. More precisely, if
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ϕ(t, (x0, y0);µ) is the solution of Yµ passing through (x0, y0) at t = 0, for each s > 0
we define D(s;µ) and T (s;µ) by means of the relation

ϕ
(
T (s;µ), σ1(s);µ

)
= σ2

(
D(s;µ)

)
.

Theorem B is the main result of this part of the paper. It gives an asymptotic
development of T (s;µ) near s = 0, uniform with respect to µ, assuming that m and
n are not both negative. (This assumption implies that ℓ > 1.) After exchanging
coordinates if necessary, we assume that n > 0. In order to state the result we must
introduce the so called Roussarie-Écalle compensator, namely,

ω(s;α) =

{
s−α−1

α if α 6= 0,

− log s if α = 0.

We also define α(µ) := p− λ(µ)q.

Theorem B. With the above notation and assumptions, for each K ∈ N, we have
that

T (sq;µ) = a0 log s+ smqAµ(spq) +Bµ

(
sp, spω(s, α(µ))

)
+ ΨK(s;µ),

where, for µ ≈ µ0, ΨK(s;µ) is a K-flat function at s = 0 uniformly on µ. Moreover

(a) a0 = −q in case that (m,n) = (0, 0) and zero otherwise.
(b) Aµ(z) and Bµ(z, w) are polynomials in z and w and their coefficients are

rational functions in the coefficients of Pµ and Qµ in (4) without poles at
µ = µ0.

(c) The order of Bµ(z, w) at (0, 0) is > min(n, qℓ) and, if mq − pn 6= 0, then
Aµ(0) = 1

λ(µ)n−m .

Let us clarify that the above expression of T (sq;µ) provides, after the substitution
of s by s1/q, the asymptotic development of T (s;µ) at s = 0 for µ ≈ µ0. We prefer
to state it in this way for the sake of shortness and simplicity in the proof. In order
to prove Theorem B let us first note that, by construction, if

(
xt(s), yt(s)

)
is the

solution of XNF
µ = x∂x +

(
−λ(µ)+Pµ(u)

)
y∂y with initial condition (x0, y0) = (s, 1),

then

T (s;µ) =

∫ − log s

0

(
v + uℓQµ(u)

)∣∣∣
(xt(s),yt(s))

dt,

where recall that v = xmyn and u = xpyq. Thus T (s;µ) is a finite linear combination
of terms

Tij(s) =

∫ − log s

0

xt(s)
iyt(s)

j dt

with (i, j) ∈ I :=
{
(m,n)

}
∪
{
ν (p, q) : ν = ℓ, . . . , ℓ + degQµ

}
. Here and in what

follows, in order to avoid long formulae we omit the dependence on µ when there is

no risk of ambiguity. Clearly T00(s) = − log s and, in case that i 6= 0, Ti0(s) = si−1
i .

So it suffices to study Tij(s) for j 6= 0 and to this end we take advantage of some
results of Roussarie in [13, Chapter 5]. For the sake of clarity we collect them in
the following lemma:

Lemma 5.1. For each t > 0, ut(s) = xt(s)
pyt(s)

q can be expanded as a series in s
as

ut(s) =

∞∑

k=1

gk(t)spk,
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where g1(t) = eαt and gk(0) = 0 for k > 2. In addition, for each r > 0, we have

that

|∂rgk(t)| 6 CrC
ketk/3 for all t > 0 and µ ≈ µ0

for some constants C and Cr (independent of t, µ and k). Finally, gk(t) = eαtḡk−1(t)

with ḡk−1(t) being a polynomial of degree 6 k − 1 in Ω(t, α) := eαt−1
α .

It is to be noted that the upper bound of ∂rgk in Lemma 5.1 is slightly different
from the one in [13] because there the exponential factor is etk/2 instead of etk/3.
This is only a technicality. Indeed, one can easily verify that if µ is close enough
to µ0 so that |α(µ)| < 1/3 then we can replace 1/2 by 1/3 in the exponent. Now,
with the notation introduced in Lemma 5.1, it follows that

yt(s) = e−λt

(
∞∑

k=0

ḡk(t)skp

)1/q

for t ∈ [0,− log s].

Since (1 + z)j/q =
∞∑

l=0

(
j/q
l

)
zl for |z| < 1, we get

yt(s)
j = e−λjt

∞∑

k=0

ḡjk(t)skp,

with

ḡjk :=

k∑

l=1

∑

i1+···+il=k

(
j/q

l

)
ḡi1 · · · ḡil

. (20)

Note that there are as many summands above as the number p(k) of partitions of k

and it is easy to see that p(k) 6
(
2k−1

k

)
6 22k−1 6 4k. On the other hand, if l 6 k

then
(
j/q
l

)
6 |j|l 6 |j|k. Thus, using the inequality in Lemma 5.1 for r = 0, it is

easy to check that

|ḡjk| 6
(
4|j|C0

)k
e(2/3+|α|)kt

for some positive constant C0. Consequently, if s ≈ 0 and α ≈ 0, then

Tij(s) =

∫ − log s

0

∞∑

k=0

spk+ie(i−λj)tḡjk(t) dt =

∞∑

k=0

spk+i

∫ − log s

0

e(i−λj)tḡjk(t) dt,

since the right-hand side of
∣∣∣∣∣s

pk+i

∫ − log s

0

e(i−λj)tḡjk(t) dt

∣∣∣∣∣ 6 sλj
(
4|j|C0s

(p−2/3−|α|)
)k

(21)

is the general term of a convergent series in k provided that s and α are small
enough. In short, we have shown that

Tij(s) =

∞∑

k=0

spk+iTijk(s) with Tijk(s) :=

∫ − log s

0

e(i−λj)tḡjk(t) dt. (22)

Our next goal is to bound the derivatives of the k-th term in the above series. More
concretely, we prove the following result:

Lemma 5.2. For each r > 0 there exits a positive constant Cr such that

|∂r
(
spk+iTijk(s)

)
| 6 kr

(
4|j|Cr

)k
s(p−2/3−|α|)k−r+λj .
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Proof. The case r = 0 follows directly from (21). To study the case r > 1 let us
introduce the function

h̄jk(s) = ḡjk(− log s),

so that ∂Tijk(s) = −h̄jk(s)sλj−i−1. By (a) in Lemma 4.1, we have that

∂r
(
gk ◦ (− log s)

)
=

r∑

l=1

∑

i1+···+il=r

Cr
i

(
(∂lgk) ◦ (− log s)

)
∂i1(− log s) · · ·∂il(− log s)

for some collection of constants {Cr
i }i,r. Accordingly, by applying Lemma 5.1, there

exist positive constants C and Cr such that

|∂r
(
gk ◦ (− log s)

)
| 6 CrC

ks−k/3−r.

Here C is the same as in Lemma 5.1 whereas Cr is not. Since ḡk(− log s) =
sαgk+1(− log s), on account of (16) we get

∂r
(
ḡk ◦ (− log s)

)
=

r∑

h=0

(
r

h

)
∂h(sα) ∂r−h

(
gk+1(− log s)

)

and consequently

|∂r
(
ḡk ◦ (− log s)

)
| 6 CrC

k+1s−(k+1)/3−r−|α|.

Now, by using the above estimates in the r-th derivative of (20),

∂rh̄jk(s) =

=

k∑

l=1

∑

i1+···+il=k

(
j/q

l

) ∑

j1+···+jl=r

Cj1,...,jl
∂j1
(
ḡi1(− log s)

)
· · · ∂jl

(
ḡil

(− log s)
)
,

we obtain that

|∂rh̄jk(s)| 6

k∑

l=1

|j|l
∑

i1+···+il=k

∑

j1+···+jl=r

(CrC)lCks−(k+l)/3−r−l|α|

6
(
4|j|Cr

)k
s−(2/3−|α|)k−r.

(In the two inequalities above, and in what follows, for the sake of simplicity Cr

stands for a “universal” constant not depending on k.) Hence, due to ∂Tijk(s) =
−h̄jk(s)sλj−i−1, from (16) we conclude that

|∂rTijk(s)| 6 (4|j|Cr)
ks−(2/3+|α|)k−r+λj−i.

Finally, the inequality in the statement follows by applying the derivation formula
in (16) once again.

Proposition 1. Fix (i, j) ∈ I with j 6= 0. Then, for each K > 0, there exists

M(K) > 0 such that

ΨK
ij (s) =

∞∑

k=M(K)

spk+iTijk(s)

is a K-flat function at s = 0 for µ ≈ µ0.
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Proof. Since α(µ0) = 0, there exists a constant β such that

0 < β < p− 2/3 − |α| for µ ≈ µ0.

If s is small enough then
∑∞

k=M(K) k
r
(
4|j|Crs

β
)k

is a convergent series for each

r = 0, . . . ,K. Denote by Ĉ the maximum of their values for r = 0, . . . ,K. Then,
by Lemma 5.2 and taking M(K) > K−λj

p−2/3−|α|−β , it follows that

∞∑

k=M(K)

|∂r(spk+iTijk(s))| 6 sK−r
∞∑

k=M(K)

kr
(
4|j|Crs

β
)k
s(p−2/3−|α|−β)k−K+λj

6 ĈsK−r.

This proves the result.

Proof of Theorem B. Set ΨK
i0 ≡ 0. For j 6= 0, consider the functions ΨK

ij given by

Proposition 1 and define TK
ij = Tij − ΨK

ij . Then it follows that

T (s) =
∑

(i,j)∈I

Tij(s) = TK(s) + ΨK(s),

where TK :=
∑

(i,j)∈I T
K
ij and ΨK is K-flat at s = 0. Here recall that

I =
{
(m,n)

}
∪
{
ν(p, q) : ν = ℓ, . . . , ℓ+ degQµ

}
.

Note moreover that T00(s) = − log s and, in case that i 6= 0, Ti0(s) = si−1
i . So it

suffices to study TK
ij with (i, j) ∈ I and j > 0. To this end notice that

TK
ij (s) =

M(K)−1∑

k=0

spk+iTijk(s),

where Tijk are the functions introduced in (22). We claim that the following is
verified:

(a) If (i, j) = (m,n) with mq − np 6= 0 and n > 0, then

sq(pk+m)Tmnk(sq) = b0s
(m+pk)q +B0

(
sp, spω(s, α)

)
,

where B0(z, w) is a polynomial of order > n at (0, 0).
(b) If (i, j) = ν(p, q) with ν > 0, then sp(k+ν)Tνp,νq,k(s) = Bν

(
sp, spω(s, α)

)
,

where Bν(z, w) is a polynomial of order > k + ν at (0, 0).

We will show in addition that, for each ν > 0, the coefficients of Bν are rational
functions in the coefficients of Pµ in (5) without poles at µ = µ0.

In order to prove (a) note first that, taking (20) into account and applying
Lemma 5.1, it follows that ḡjk(t) = Rjk

(
Ω(t, α)

)
for some polynomial Rjk of degree

6 k. Then

Tmnk(s) =

∫ − log s

0

e(m−λn)tRnk

(
Ω(t, α)

)
dt =

∫ ω(s,α)

0

(1 + αw)
m−λn

α
−1Rnk(w)dw,
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where to obtain the second equality we perform the change of variables w = Ω(t, α).
Then, after integrating by parts k times, we get

Tmnk(s) =

[
(1 + αw)

m−λn
α

m− λn

(
Rnk(w) −

R′
nk(w)(1 + αw)

m− λn+ α

+
R′′

nk(w)(1 + αw)2

(m− λn+ α)(m− λn+ 2α)
+ · · · +

(−1)kR
(k)
nk (w)(1 + αw)k

(m− λn+ α) · · · (m− λn+ kα)

)]ω(s,α)

0

.

Note that the denominators in the above expression are different from zero for
µ ≈ µ0 because α(µ0) = 0 and, due to mq − np 6= 0, m− λ(µ0)n 6= 0. Accordingly

Tmnk(s) = −τk(0) +
(
1 + αω(s, α)

)m−λn
α τk

(
ω(s, α)

)
,

where τk is a polynomial of degree k with τ0(0) = 1
m−λn 6= 0. Then, using that

1 + αω(s, α) = s−α and α = p− λq, some easy manipulations show that

(
1 + αω(s, α)

)m−λn
α =

(
1 + αω(s, α)

) qm−np
qα

(
1 + αω(s, α)

) n
q

= s
p
q

n−m
(
1 + αω(s, α)

) n
q = s−m

(
s

p
q + α

q s
p
q ω
(
s

1

q , α
))n

.

Therefore

spk+mTmnk(s) = −τk(0)spk+m + spkτk
(
ω(s, α)

)(
s

p
q + α

q s
p
q ω
(
s

1

q , α
))n

. (23)

Note at this point that ω(s, α) = Jq

(
ω
(
s1/q, α

))
for some polynomial Jq of degree q.

Indeed, this is so because

s−α − 1

α
=

(s−α/q)q − 1

α
=
s−α/q − 1

α

(
1 + s−α/q + · · · + s−α(q−1)/q

)

and s−α/q = 1 + αω
(
s1/q, α

)
. This shows that

spω(s, α) =
(
sp/q

)q
Jq

(
ω(s1/q, α)

)
(24)

is a polynomial in sp/q and sp/qω(s1/q, α). Consequently, so it is spkτk
(
ω(s, α)

)
since

it is a finite sum of terms of the form

spkω(s, α)i = sp(k−i)
(
spω(s, α)

)i
=
(
sp/q

)q(k−i)(
spω(s, α)

)i

with 0 6 i 6 k. This fact, on account of (23), proves (a).
Next let us prove part (b) of the claim. The same change of variables as before

gives

Tνp,νq,k(s) =

∫ − log s

0

eανtRνq,k

(
Ω(t, α)

)
dt =

∫ ω(s,α)

0

(1 + αw)ν−1Rνq,k(w)dw,

which is a polynomial of degree 6 k+ ν in ω(s, α). Exactly the same way as before
this shows that sp(k+ν)Tνp,νq,k(s) = Bν

(
sp, spω(s, α)

)
for some polynomial Bν of

order > k + ν at (0, 0), proving the validity of (b).
In view of (a) it is clear that to prove the result it suffices to study those terms

arising from (i, j) = ν(p, q) with ν > 0. However this is easy because, once again
from (24), we can write spq(k+ν)Tνp,νq,k(sq) as a polynomial in sp and spω

(
s, α(µ)

)
,

which contributes to the terms of Bµ

(
sp, spω

(
s, α(µ)

))
in T (s;µ). This concludes

the proof of the result. �
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6. Perspectives. In this section we give some perspectives for future work. The
principal motivation for this work was the study of asymptotic properties of the
period function near a hyperbolic polycycle. We give an asymptotic development
of the Dulac time near a hyperbolic singular point. It is important to note that our
Dulac time T in Theorem B is measured between normalized transverse sections
which are constructed using the diffeomorphism that brings to the normal form (4).
In order to have a result on the Dulac time between arbitrary transverse sections
one must add to the local Dulac time T in Theorem B the two times necessary
to go from given transverse sections to the normalized ones. The times must be
calculated in the coordinate on the source transversal. This leads to a composition
problem. We postpone the solution of this problem to the general paper dealing
with hyperbolic polycycles to which we hope to come in a near future. In any case
we must study then the composition problem in detail.

Note that the monomials log s, smq+kpq , sjpωj appearing in the asymptotic devel-
opment permit a process of derivation division generating a Chebyshev system (see
[6, 11]). One can hope that this can be generalized to the total period of a hyperbolic
polycycle and that hence in finite codimension one can prove non-accumulation of
critical periods on hyperbolic polycycles.

It would be useful to know the structure of the coefficients in the Dulac time and
divide the Dulac time similarly as for the Dulac map in [11]. It seems out of reach
for the moment.

Note that our study covers all the cases of the polar factors of the vector field
(2), except for the case m,n < 0. This last case occurs when both separatrices are
lines of zeros of the vector field Y . For studying the accumulation of critical periods
we don’t have to study this case, since in this case the derivative of the Dulac time
tends to infinity uniformly on the parameters and hence no critical periods can
appear. Nevertheless, in this case very interesting resonances between the order
of poles (m,n) and the eigen-values (p, q) seem to appear, leading to higher order
compensators. We hope to return to this problem later.

Some parts of the present study apply also to the saddle node case. However, in
the treatment of the remainder term via Theorem 2.3 only the part corresponding
to the strong variable can be eliminated.
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